liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Chen, Shangzhi
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Kang, Evan S. H.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Shiran Chaharsoughi, Mina
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Stanishev, Vallery
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Kuhne, Philipp
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Sun, Hengda
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Wang, Chuanfei
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Fahlman, Mats
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Fabiano, Simone
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Darakchieva, Vanya
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Jonsson, Magnus
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Science and Technology, Laboratory of Organic Electronics.
    Conductive polymer nanoantennas for dynamicorganic plasmonics2020In: Nature Nanotechnology, ISSN 1748-3387, E-ISSN 1748-3395, Vol. 15, article id s41565-019-0583-yArticle in journal (Refereed)
    Abstract [en]

    Being able to dynamically shape light at the nanoscale is oneof the ultimate goals in nano-optics1. Resonant light–matterinteraction can be achieved using conventional plasmonicsbased on metal nanostructures, but their tunability is highlylimited due to a fixed permittivity2. Materials with switchablestates and methods for dynamic control of light–matterinteraction at the nanoscale are therefore desired. Here weshow that nanodisks of a conductive polymer can supportlocalized surface plasmon resonances in the near-infraredand function as dynamic nano-optical antennas, with their resonancebehaviour tunable by chemical redox reactions. Theseplasmons originate from the mobile polaronic charge carriersof a poly(3,4-ethylenedioxythiophene:sulfate) (PEDOT:Sulf)polymer network. We demonstrate complete and reversibleswitching of the optical response of the nanoantennasby chemical tuning of their redox state, which modulatesthe material permittivity between plasmonic and dielectricregimes via non-volatile changes in the mobile chargecarrier density. Further research may study different conductivepolymers and nanostructures and explore their usein various applications, such as dynamic meta-optics andreflective displays.

  • 2.
    Kang, Evan S. H.
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Chen, Shangzhi
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Sardar, Samim
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Tordera, Daniel
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Armakavicius, Nerijus
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Darakchieva, Vanya
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Shegai, Timur
    Department of Physics, Chalmers University of Technology, Sweden.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Strong Plasmon–Exciton Coupling with Directional Absorption Features in Optically Thin Hybrid Nanohole Metasurfaces2018In: ACS Photonics, E-ISSN 2330-4022, p. 4046-4055Article in journal (Refereed)
    Abstract [en]

    Plasmons and excitons can interact to form new hybridized light–matter states, with a multitude of potential applications including optical logic circuits and single-photon switches. Here, we report the first observation of strong coupling based on optically thin plasmonic nanohole films. The absorptive plasmon resonances of these nanohole films lead to suppressed transmission and Fano-shaped extinction peaks. We prepared silver nanohole films by colloidal lithography, which enables large-scale fabrication of nanoholes distributed in a short-range order. When coated with J-aggregate molecules, both extinction and absorption spectra show clear formation of two separated polariton resonances, with vacuum Rabi splitting on the order of 300 meV determined from anticrossing experiments. In accordance with strong coupling theory, the splitting magnitude increases linearly with the square root of molecular concentration. The extinction peak positions are blue-shifted from the absorption polariton positions, as explained by additional Fano interference between the hybridized states and the metal film. This highlights that absorption measurements are important not only to prove strong coupling but also to correctly determine hybridized polariton positions and splitting magnitudes in hybrid plasmonic nanohole systems. The polariton absorption peaks also show strong dependence on illumination direction, as found related to inherent directionality of the plasmonic nanohole metasurface and differences in light interaction with nonhybridized molecules. Importantly, optical simulations could successfully reproduce the experimental results and all coupling features. Furthermore, simulated spatial distribution of the absorption provides additional evidence of strong coupling in the hybrid nanohole system. The work paves the way toward strong coupling applications based on optically thin nanohole systems, as further promoted by the scalable fabrication.

  • 3.
    Kim, Nara
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Petsagkourakis, Ioannis
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Chen, Shangzhi
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Zozoulenko, Igor
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Electric Transport Properties in PEDOT Thin Films2019In: Conjugated Polymers: Properties, Processing, and Applications / [ed] John R. Reynolds; Barry C. Thompson; Terje A. Skotheim, Boca Raton: CRC Press, 2019, p. 45-128Chapter in book (Refereed)
    Abstract [en]

    In this chapter, the authors summarize their understanding of Poly(3,4-ethylenedioxythiophene) (PEDOT), with respect to its chemical and physical fundamentals. They focus upon the structure of several PEDOT systems, from the angstrom level and up, and the impact on both electronic and ionic transport. The authors discuss the structural properties of PEDOT:X and PEDOT:poly(styrenesulfonate) based on experimental data probed at the scale ranging from angstrom to submicrometer. The morphology of PEDOT is influenced by the nature of counter-ions, especially at high oxidation levels. The doping anions intercalate between PEDOT chains to form a “sandwich” structure to screen the positive charges in PEDOT chains. The authors provide the main transport coefficients such as electrical conductivity s, Seebeck coefficient S, and Peltier coefficient σ, starting from a general thermodynamic consideration. The optical conductivity of PEDOT has also been examined based on the effective medium approximation, which is normally used to describe microscopic permittivity properties of composites made from several different constituents.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf