liu.seSearch for publications in DiVA
Endre søk
Begrens søket
1 - 3 of 3
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Azharuddin, Mohammad
    et al.
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för klinisk kemi. Linköpings universitet, Medicinska fakulteten.
    Zhu, Geyunjian H.
    Univ Cambridge, England.
    Das, Debapratim
    Indian Inst Technol Guwahati, India.
    Ozgur, Erdogan
    Hacettepe Univ, Turkey.
    Uzun, Lokman
    Hacettepe Univ, Turkey.
    Turner, Anthony P. F.
    Cranfield Univ, England.
    Patra, Hirak Kumar
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för cellbiologi. Linköpings universitet, Medicinska fakulteten. Univ Cambridge, England.
    A repertoire of biomedical applications of noble metal nanoparticles2019Inngår i: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 55, nr 49, s. 6964-6996Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    Noble metals comprise any of several metallic chemical elements that are outstandingly resistant to corrosion and oxidation, even at elevated temperatures. This group is not strictly defined, but the tentative list includes ruthenium, rhodium, palladium, silver, osmium, iridium, platinum and gold, in order of atomic number. The emerging properties of noble metal nanoparticles are attracting huge interest from the translational scientific community and have led to an unprecedented expansion of research and exploration of applications in biotechnology and biomedicine. Noble metal nanomaterials can be synthesised both by top-down and bottom up approaches, as well as via organism-assisted routes, and subsequently modified appropriately for the field of use. Nanoscale analogues of gold, silver, platinum, and palladium in particular, have gained primary importance owing to their excellent intrinsic properties and diversity of applications; they offer unique functional attributes, which are quite unlike the bulk material. Modulation of noble metal nanoparticles in terms of size, shape and surface functionalisation has endowed them with unusual capabilities and manipulation at the chemical level, which can lead to changes in their electrical, chemical, optical, spectral and other intrinsic properties. Such flexibility in multi-functionalisation delivers Ockhams razor to applied biomedical science. In this feature article, we highlight recent advances in the adaptation of noble metal nanomaterials and their biomedical applications in therapeutics, diagnostics and sensing.

    Fulltekst tilgjengelig fra 2020-05-21 00:01
  • 2.
    Bandyopadhyay, Souvik K.
    et al.
    GlaxoSmithKline Asia Pvt. Ltd., Bangalore, India.
    Azharuddin, Mohammad
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för klinisk kemi. Linköpings universitet, Medicinska fakulteten.
    Dasgupta, Anjan K.
    Department of Biochemistry, University of Calcutta, Kolkata, India.
    Ganguli, Bhaswati
    Department of Statistics, University of Calcutta, Kolkata, India.
    SenRoy, Sugata
    Department of Statistics, University of Calcutta, Kolkata, India.
    Patra, Hirak Kumar
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för cellbiologi. Linköpings universitet, Medicinska fakulteten. Wolfson College, University of Cambridge, Cambridge, United Kingdom; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom.
    Deb, Suryyani
    Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Kolkata, India.
    Probing ADP Induced Aggregation Kinetics During Platelet-Nanoparticle Interactions: Functional Dynamics Analysis to Rationalize Safety and Benefits2019Inngår i: Frontiers in Bioengineering and Biotechnology, E-ISSN 2296-4185, Vol. 7, s. 163-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Platelets, one of the most sensitive blood cells, can be activated by a range of external and internal stimuli including physical, chemical, physiological, and/or non-physiological agents. Platelets need to respond promptly during injury to maintain blood hemostasis. The time profile of platelet aggregation is very complex, especially in the presence of the agonist adenosine 5′-diphosphate (ADP), and it is difficult to probe such complexity using traditional linear dose response models. In the present study, we explored functional analysis techniques to characterize the pattern of platelet aggregation over time in response to nanoparticle induced perturbations. This has obviated the need to represent the pattern of aggregation by a single summary measure and allowed us to treat the entire aggregation profile over time, as the response. The modeling was performed in a flexible manner, without any imposition of shape restrictions on the curve, allowing smooth platelet aggregation over time. The use of a probabilistic framework not only allowed statistical prediction and inference of the aggregation signatures, but also provided a novel method for the estimation of higher order derivatives of the curve, thereby allowing plausible estimation of the extent and rate of platelet aggregation kinetics over time. In the present study, we focused on the estimated first derivative of the curve, obtained from the platelet optical aggregometric profile over time and used it to discern the underlying kinetics as well as to study the effects of ADP dosage and perturbation with gold nanoparticles. In addition, our method allowed the quantification of the extent of inter-individual signature variations. Our findings indicated several hidden features and showed a mixture of zero and first order kinetics interrupted by a metastable zero order ADP dose dependent process. In addition, we showed that the two first order kinetic constants were ADP dependent. However, we were able to perturb the overall kinetic pattern using gold nanoparticles, which resulted in autocatalytic aggregation with a higher aggregate mass and which facilitated the aggregation rate.

  • 3.
    Patra, Hirak Kumar
    et al.
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för cellbiologi. Linköpings universitet, Medicinska fakulteten. Department of Chemical Engineering and Biotechnology, Cambridge University, Cambridge, UK; Wolfson College, University of Cambridge, Cambridge, UK.
    Azharuddin, Mohammad
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för klinisk kemi. Linköpings universitet, Medicinska fakulteten.
    Islam, Mohammad Mirazul
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för cellbiologi. Linköpings universitet, Medicinska fakulteten. Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, USA.
    Papapavlou, Georgia
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för neuro- och inflammationsvetenskap. Linköpings universitet, Medicinska fakulteten.
    Deb, Suryyani
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för mikrobiologi och molekylär medicin. Linköpings universitet, Medicinska fakulteten. Department of Biochemistry, University of Calcutta, Calcutta, India; Department of Biotechnology, Maulana Abul Kalam Azad University of Technology (MAKAUT), West Bengal, India.
    Osterrieth, Johannes
    Department of Chemical Engineering and Biotechnology, Cambridge University, Philippa Fawcett Drive, Cambridge, UK.
    Zhu, Geyunjian Harry
    Department of Chemical Engineering and Biotechnology, Cambridge University, Philippa Fawcett Drive, Cambridge, UK.
    Romu, Thobias
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Dhara, Ashis K.
    Centre for Image Analysis, Uppsala University, Uppsala, Sweden; Department of Electrical Engineering, National Institute of Technology Durgapur, West Bengal, India.
    Jafari, Mohammad Javad
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Gadheri, Amineh
    Department of Oncology‐Pathology, Karolinska Institute, Stockholm, Sweden.
    Hinkula, Jorma
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för hematopoes och utvecklingsbiologi. Linköpings universitet, Medicinska fakulteten.
    Rajan, Madhavan S.
    Department of Ophthalmology, Cambridge University Hospitals NHS Trust and Vision and Eye Research Institute (VERI), Anglia Ruskin University, Cambridge, UK.
    Slater, Nigel K. H.
    Department of Chemical Engineering and Biotechnology, Cambridge University, Philippa Fawcett Drive, Cambridge, UK.
    Rational Nanotoolbox with Theranostic Potential for Medicated Pro-Regenerative Corneal Implants2019Inngår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, artikkel-id 1903760Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Cornea diseases are a leading cause of blindness and the disease burden is exacerbated by the increasing shortage around the world for cadaveric donor corneas. Despite the advances in the field of regenerative medicine, successful transplantation of laboratory‐made artificial corneas is not fully realized in clinical practice. The causes of failure of such artificial corneal implants are multifactorial and include latent infections from viruses and other microbes, enzyme overexpression, implant degradation, extrusion or delayed epithelial regeneration. Therefore, there is an urgent unmet need for developing customized corneal implants to suit the host environment and counter the effects of inflammation or infection, which are able to track early signs of implant failure in situ. This work reports a nanotoolbox comprising tools for protection from infection, promotion of regeneration, and noninvasive monitoring of the in situ corneal environment. These nanosystems can be incorporated within pro‐regenerative biosynthetic implants, transforming them into theranostic devices, which are able to respond to biological changes following implantation.

    Fulltekst tilgjengelig fra 2020-07-15 00:01
1 - 3 of 3
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf