liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Deniz, Daniel
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Causes of multimodality of efficiency gain distributions in accelerated Monte Carlo based dose calculations for brachytherapy planning using correlated sampling2009Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Fixed-collision correlated sampling for Monte Carlo (MC) simulations is a method which can be used in order to shorten the simulation time for brachytherapy treatment planning in a 3D patient geometry. The increased efficiency compared to conventional MC simulation is measured by efficiency gain. However, a previous study showed that, in some cases, PDFs (probability density functions) of estimates of the efficiency gain, simulated using resampling and other MC methods, were multimodal with values below 1. This means that the method was less effective than conventional sampling for these cases. The aims of this thesis were to trace the causes of the multimodal distributions and to propose techniques to mitigate the problem caused by photons with high statistical weights.Two simulation environments were used for the study case, a homogeneous and a heterogeneous environment. The homogenous environment consisted of a water sphere with the radius 100mm. For the heterogeneous environment a cylindrical block of tungsten alloy (diameter 15 mm, height 2.5 mm) was placed in the water sphere. The sphere was divided into an array of cubic voxels of size 2.5 mm x 2.5 mm x 2.5 mm for dose calculations. A photon source was positioned in the middle of the water sphere and emitted photons with the energy 400 keV.It was found that the low values and multimodal PDFs for the efficiency gain estimates originated from photons depositing high values of energy in some voxels in the heterogeneous environment. The high energy deposits were due to extremely high statistical weights of photons interacting repeatedly in the highly attenuating tungsten cylinder. When photon histories contributing to the rare events of high energy deposits (outliers) were removed, the PDFs became uni-modal and efficiency gain increased. However, removing outliers will cause results to be biased calling for other techniques to handle the problem with high statistical weights.One way to resolve the problem in the current implementation of the fixed-collision correlated sampling scheme in PTRAN (the MC code used) could be to split photons with high statistical weights into several photons with the same sum weight as the initial photon. The splitting of photons will result in more time consuming simulations in areas with high attenuation coefficients, which may not be the areas of interest. This could be resolved by using Russian roulette, eliminating some of the photons with high statistical weight in such areas.Fixed-collision correlated sampling for Monte Carlo (MC) simulations is a method which can be used in order to shorten the simulation time for brachytherapy treatment planning in a 3D patient geometry. The increased efficiency compared to conventional MC simulation is measured by efficiency gain. However, a previous study showed that, in some cases, PDFs (probability density functions) of estimates of the efficiency gain, simulated using resampling and other MC methods, were multimodal with values below 1. This means that the method was less effective than conventional sampling for these cases. The aims of this thesis were to trace the causes of the multimodal distributions and to propose techniques to mitigate the problem caused by photons with high statistical weights.Two simulation environments were used for the study case, a homogeneous and a heterogeneous environment. The homogenous environment consisted of a water sphere with the radius 100mm. For the heterogeneous environment a cylindrical block of tungsten alloy (diameter 15 mm, height 2.5 mm) was placed in the water sphere. The sphere was divided into an array of cubic voxels of size 2.5 mm x 2.5 mm x 2.5 mm for dose calculations. A photon source was positioned in the middle of the water sphere and emitted photons with the energy 400 keV.It was found that the low values and multimodal PDFs for the efficiency gain estimates originated from photons depositing high values of energy in some voxels in the heterogeneous environment. The high energy deposits were due to extremely high statistical weights of photons interacting repeatedly in the highly attenuating tungsten cylinder. When photon histories contributing to the rare events of high energy deposits (outliers) were removed, the PDFs became uni-modal and efficiency gain increased. However, removing outliers will cause results to be biased calling for other techniques to handle the problem with high statistical weights.One way to resolve the problem in the current implementation of the fixed-collision correlated sampling scheme in PTRAN (the MC code used) could be to split photons with high statistical weights into several photons with the same sum weight as the initial photon. The splitting of photons will result in more time consuming simulations in areas with high attenuation coefficients, which may not be the areas of interest. This could be resolved by using Russian roulette, eliminating some of the photons with high statistical weight in such areas.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf