liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abrahamsson, Tobias
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Poxson, David
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Gabrielsson, Erik
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Sandberg, Mats
    RISE Acreo AB, Sweden.
    Simon, Daniel T
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Formation of Monolithic Ion-Selective Transport Media Based on "Click" Cross-Linked Hyperbranched Polyglycerol2019In: Frontiers in Chemistry, E-ISSN 2296-2646, Vol. 7, article id 484Article in journal (Refereed)
    Abstract [en]

    In the emerging field of organic bioelectronics, conducting polymers and ion-selective membranes are combined to form resistors, diodes, transistors, and circuits that transport and process both electronic and ionic signals. Such bioelectronics concepts have been explored in delivery devices that translate electronic addressing signals into the transport and dispensing of small charged biomolecules at high specificity and spatiotemporal resolution. Manufacturing such "iontronic" devices generally involves classical thin film processing of polyelectrolyte layers and insulators followed by application of electrolytes. This approach makes miniaturization and integration difficult, simply because the ion selective polyelectrolytes swell after completing the manufacturing. To advance such bioelectronics/iontronics and to enable applications where relatively larger molecules can be delivered, it is important to develop a versatile material system in which the charge/size selectivity can be easily tailormade at the same time enabling easy manufacturing of complex and miniaturized structures. Here, we report a one-pot synthesis approach with minimal amount of organic solvent to achieve cationic hyperbranched polyglycerol films for iontronics applications. The hyperbranched structure allows for tunable pre multi-functionalization, which combines available unsaturated groups used in crosslinking along with ionic groups for electrolytic properties, to achieve a one-step process when applied in devices for monolithic membrane gel formation with selective electrophoretic transport of molecules.

  • 2.
    Arbring Sjöström, Theresia
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Gabrielsson, Erik
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Janson, Per
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Poxson, David
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Seitanidou, Maria S.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Simon, Daniel
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    A Decade of Iontronic Delivery Devices2018In: Advanced Materials Technologies, ISSN 2365-709X, Vol. 3, no 5, article id 1700360Article, review/survey (Refereed)
    Abstract [en]

    In contrast to electronic systems, biology rarely uses electrons as the signal to regulate functions, but rather ions and molecules of varying size. Due to the unique combination of both electronic and ionic/molecular conductivity in conjugated polymers and polyelectrolytes, these materials have emerged as an excellent tool for translating signals between these two realms, hence the field of organic bioelectronics. Since organic bioelectronics relies on the electron-mediated transport and compensation of ions (or the ion-mediated transport and compensation of electrons), a great deal of effort has been devoted to the development of so-called "iontronic" components to effect precise substance delivery/transport, that is, components where ions are the dominant charge carrier and where ionic-electronic coupling defines device functionality. This effort has resulted in a range of technologies including ionic resistors, diodes, transistors, and basic logic circuits for the precisely controlled transport and delivery of biologically active chemicals. This Research News article presents a brief overview of some of these "ion pumping" technologies, how they have evolved over the last decade, and a discussion of applications in vitro, in vivo, and in plantae.

  • 3.
    Bernacka Wojcik, Iwona
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Huerta, Miriam
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Tybrandt, Klas
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Karady, Michal
    Swedish Univ Agr Sci, Sweden.
    Mulla, Yusuf
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Poxson, David
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Gabrielsson, Erik
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Ljung, Karin
    Swedish Univ Agr Sci, Sweden.
    Simon, Daniel
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Stavrinidou, Eleni
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Implantable Organic Electronic Ion Pump Enables ABA Hormone Delivery for Control of Stomata in an Intact Tobacco Plant2019In: Small, ISSN 1613-6810, E-ISSN 1613-6829, Vol. 15, no 43, article id 1902189Article in journal (Refereed)
    Abstract [en]

    Electronic control of biological processes with bioelectronic devices holds promise for sophisticated regulation of physiology, for gaining fundamental understanding of biological systems, providing new therapeutic solutions, and digitally mediating adaptations of organisms to external factors. The organic electronic ion pump (OEIP) provides a unique means for electronically-controlled, flow-free delivery of ions, and biomolecules at cellular scale. Here, a miniaturized OEIP device based on glass capillary fibers (c-OEIP) is implanted in a biological organism. The capillary form factor at the sub-100 mu m scale of the device enables it to be implanted in soft tissue, while its hyperbranched polyelectrolyte channel and addressing protocol allows efficient delivery of a large aromatic molecule. In the first example of an implantable bioelectronic device in plants, the c-OEIP readily penetrates the leaf of an intact tobacco plant with no significant wound response (evaluated up to 24 h) and effectively delivers the hormone abscisic acid (ABA) into the leaf apoplast. OEIP-mediated delivery of ABA, the phytohormone that regulates plants tolerance to stress, induces closure of stomata, the microscopic pores in leafs epidermis that play a vital role in photosynthesis and transpiration. Efficient and localized ABA delivery reveals previously unreported kinetics of ABA-induced signal propagation.

  • 4.
    Jakešová, Marie
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Arbring, Theresia
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Science and Technology, Laboratory of Organic Electronics.
    Đerek, Vedran
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Poxson, David
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Glowacki, Eric
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Simon, Daniel T
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Wireless organic electronic ion pumps driven by photovoltaics2019In: npj Flexible Electronics, ISSN 2397-4621, Vol. 3, no 1, p. 14-14Article in journal (Refereed)
    Abstract [en]

    The organic electronic ion pump (OEIP) is an emerging bioelectronic technology for on-demand and local delivery of pharmacologically active species, especially targeting alkali ions, and neurotransmitters. While electrical control is advantageous for providing precise spatial, temporal, and quantitative delivery, traditionally, it necessitates wiring. This complicates implantation. Herein, we demonstrate integration of an OEIP with a photovoltaic driver on a flexible carrier, which can be addressed by red light within the tissue transparency window. Organic thin-film bilayer photovoltaic pixels are arranged in series and/or vertical tandem to provide the 2.5–4.5 V necessary for operating the high-resistance electrophoretic ion pumps. We demonstrate light-stimulated transport of cations, ranging in size from protons to acetylcholine. The device, laminated on top of the skin, can easily be driven with a red LED emitting through a 1.5-cm-thick finger. The end result of our work is a thin and flexible integrated wireless device platform.

  • 5.
    Poxson, David
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Gabrielsson, Erik
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Bonisoli, Alberto
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering. Ist Italiano Tecnol, Italy; St Anna Sch Adv Studies, Italy.
    Linderhed, Ulrika
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. Res Inst Sweden, Sweden.
    Abrahamsson, Tobias
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Matthiesen, Isabelle
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. KTH Royal Inst Technol, Sweden.
    Tybrandt, Klas
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Simon, Daniel
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Capillary-Fiber Based Electrophoretic Delivery Device2019In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 11, no 15, p. 14200-14207Article in journal (Refereed)
    Abstract [en]

    Organic electronic ion pumps (OEIPs) are versatile tools for electrophoretic delivery of substances with high spatiotemporal resolution. To date, OEIPs and similar iontronic components have been fabricated using thin-film techniques and often rely on laborious, multistep photolithographic processes. OEIPs have been demonstrated in a variety of in vitro and in vivo settings for controlling biological systems, but the thin-film form factor and limited repertoire of polyelectrolyte materials and device fabrication techniques unnecessarily constrain the possibilities for miniaturization and extremely localized substance delivery, e.g., the greater range of pharmaceutical compounds, on the scale of a single cell. Here, we demonstrate an entirely new OEIP form factor based on capillary fibers that include hyperbranched polyglycerols (dPGs) as the selective electrophoretic membrane. The dPGs enable electrophoretic channels with a high concentration of fixed charges and well-controlled cross-linking and can be realized using a simple one-pot fluidic manufacturing protocol. Selective electrophoretic transport of cations and anions of various sizes is demonstrated, including large substances that are difficult to transport with other OEIP technologies. We present a method for tailoring and characterizing the electrophoretic channels fixed charge concentration in the operational state. Subsequently, we compare the experimental performance of these capillary OEIPs to a computational model and explain unexpected features in the ionic current for the transport and delivery of larger, lower-mobility ionic compounds. From this model, we are able to elucidate several operational and design principles relevant to miniaturized electrophoretic drug delivery technologies in general. Overall, the compactness of the capillary OEIP enables electrophoretic delivery devices with probelike geometries, suitable for a variety of ionic compounds, paving the way for less-invasive implantation into biological systems and for healthcare applications.

    The full text will be freely available from 2020-03-27 15:15
  • 6.
    Poxson, David
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Karady, Michal
    Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden.
    Gabrielsson, Roger
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology.
    Alkattan, Aziz Yousif Aziz
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Gustavsson, Anna
    Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden.
    Doyle, Siamsa M.
    Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden.
    Robert, Stéphanie
    Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden.
    Ljung, Karin
    Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden.
    Grebe, Markus
    Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden; Plant Physiology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Golm, Germany.
    Simon, Daniel
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Regulating plant physiology with organic electronics.2017In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 114, no 18, p. 4597-4602Article in journal (Refereed)
    Abstract [en]

    The organic electronic ion pump (OEIP) provides flow-free and accurate delivery of small signaling compounds at high spatiotemporal resolution. To date, the application of OEIPs has been limited to delivery of nonaromatic molecules to mammalian systems, particularly for neuroscience applications. However, many long-standing questions in plant biology remain unanswered due to a lack of technology that precisely delivers plant hormones, based on cyclic alkanes or aromatic structures, to regulate plant physiology. Here, we report the employment of OEIPs for the delivery of the plant hormone auxin to induce differential concentration gradients and modulate plant physiology. We fabricated OEIP devices based on a synthesized dendritic polyelectrolyte that enables electrophoretic transport of aromatic substances. Delivery of auxin to transgenic Arabidopsis thaliana seedlings in vivo was monitored in real time via dynamic fluorescent auxin-response reporters and induced physiological responses in roots. Our results provide a starting point for technologies enabling direct, rapid, and dynamic electronic interaction with the biochemical regulation systems of plants.

1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf