liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Björk Wilhelms, Daniel
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Mirrasekhian, Elahe
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Engblom, David
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Cyclooxygenase isoform exchange blocks inflammatory symptoms2014Manuscript (preprint) (Other academic)
    Abstract [en]

    Cyclooxygenase‐2 (COX‐2) is the main source of inducible prostaglandin E2 production and mediates inflammatory symptoms including fever, loss of appetite and hyperalgesia. In contrast, COX‐1 is dispensable for most inflammatory symptoms. Global deletion of COX‐2 leads to a blockade of inflammation‐induced fever and appetite loss but also to high rates of fetal mortality. The latter is unfortunate since mice without COX‐2 are powerful tools in the study of inflammation and cardiovascular medicine. The differential functionality of the COX isoforms could be due to differences in regulatory regions of the genes, leading to different expression patterns, or to differences in the coding sequence, leading to distinct functional properties of the proteins. To study this in the context of inflammatory symptoms, we used mice in which the coding sequence of COX‐2 was replaced by the corresponding sequence of COX‐1. In these mice, COX‐1 mRNA was induced by inflammation but COX‐1 protein expression did not fully mimic inflammation‐induced COX‐2 expression. Just like mice globally lacking COX‐2, these mice showed a complete lack of fever and inflammation‐induced anorexia. However, as previously reported, they displayed close to normal survival rates. This shows that the COX activity generated from the hybrid gene was strong enough to allow survival but not strong enough to mediate inflammatory symptoms, making the line an interesting alternative to COX‐2 knockouts for the study of inflammation. Our results also show that the functional differences between COX‐1 and COX‐2 in the context of inflammatory symptoms is not only dependent on the features of the promoter regions. Instead they indicate that there are fundamental differences between the isoforms at translational or posttranslational levels, which make hybrid genes less functional.

  • 2.
    Eskilsson, Anna
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Matsuwaki, Takashi
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Shionoya, Kiseko
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Mirrasekhian, Elahe
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Zajdel, Joanna
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Schwaninger, Markus
    University of Lubeck, Germany.
    Engblom, David
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Blomqvist, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Immune-Induced Fever Is Dependent on Local But Not Generalized Prostaglandin E-2 Synthesis in the Brain2017In: Journal of Neuroscience, ISSN 0270-6474, E-ISSN 1529-2401, Vol. 37, no 19, p. 5035-5044Article in journal (Refereed)
    Abstract [en]

    Fever occurs upon binding of prostaglandin E-2 (PGE(2)) to EP3 receptors in the median preoptic nucleus of the hypothalamus, but the origin of the pyrogenic PGE(2) has not been clearly determined. Here, using mice of both sexes, we examined the role of local versus generalized PGE(2) production in the brain for the febrile response. In wild-type mice and in mice with genetic deletion of the prostaglandin synthesizing enzyme cyclooxygenase-2 in the brain endothelium, generated with an inducible CreER(T2) under the Slco1c1 promoter, PGE(2) levels in the CSF were only weakly related to the magnitude of the febrile response, whereas the PGE(2) synthesizing capacity in the hypothalamus, as reflected in the levels of cyclooxygenase-2 mRNA, showed strong correlation with the immune-induced fever. Histological analysis showed that the deletion of cyclooxygenase-2 in brain endothelial cells occurred preferentially in small-and medium-sized vessels deep in the brain parenchyma, such as in the hypothalamus, whereas larger vessels, and particularly those close to the neocortical surface and in the meninges, were left unaffected, hence leaving PGE(2) synthesis largely intact in major parts of the brain while significantly reducing it in the region critical for the febrile response. Furthermore, injection of a virus vector expressing microsomal prostaglandin E synthase-1 (mPGES-1) into the median preoptic nucleus of fever-refractive mPGES-1 knock-out mice, resulted in a temperature elevation in response to LPS. We conclude that the febrile response is dependent on local release of PGE(2) onto its target neurons and not on the overall PGE(2) production in the brain.

  • 3.
    Eskilsson, Anna
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Mirrasekhian, Elahe
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Dufour, Sylvie
    Institute Curie, France.
    Schwaninger, Markus
    Medical University of Lubeck, Germany.
    Engblom, David
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Blomqvist, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Immune-Induced Fever Is Mediated by IL-6 Receptors on Brain Endothelial Cells Coupled to STAT3-Dependent Induction of Brain Endothelial Prostaglandin Synthesis2014In: Journal of Neuroscience, ISSN 0270-6474, E-ISSN 1529-2401, Vol. 34, no 48, p. 15957-15961Article in journal (Refereed)
    Abstract [en]

    The cytokine IL-6, which is released upon peripheral immune challenge, is critical for the febrile response, but the mechanism by which IL-6 is pyrogenic has remained obscure. Herewegenerated mice with deletion of themembranebound IL-6 receptor alpha (IL-6R alpha) onneural cells, on peripheral nerves, on fine sensory afferent fibers, and on brain endothelial cells, respectively, and examined its role for the febrile response to peripherally injected lipopolysaccharide. We show that IL-6R alpha on neural cells, peripheral nerves, and fine sensory afferents are dispensable for the lipopolysaccharide-induced fever, whereas IL-6R alpha in the brain endothelium plays an important role. Hence deletion of IL-6R alpha on brain endothelial cells strongly attenuated the febrile response, and also led to reduced induction of the prostaglandin synthesizing enzyme Cox-2 in the hypothalamus, the temperature-regulating center in the brain, as well as reduced expression of SOCS3, suggesting involvement of the STAT signaling pathway. Furthermore, deletion of STAT3 in the brain endothelium also resulted in attenuated fever. These data show that IL-6, when endogenously released during systemic inflammation, is pyrogenic by binding to IL-6R alpha on brain endothelial cells to induce prostaglandin synthesis in these cells, probably in concerted action with other peripherally released cytokines.

  • 4.
    Klawonn, Anna
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Fritz, Michael
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Nilsson, Anna
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Bonaventura, Jordi
    NIDA, MD USA.
    Shionoya, Kiseko
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Mirrasekhian, Elahe
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Karlsson, Urban
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Jaarola, Maarit
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Granseth, Björn
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Blomqvist, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Michaelides, Michael
    NIDA, MD USA; Johns Hopkins Sch Med, MD USA.
    Engblom, David
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Motivational valence is determined by striatal melanocortin 4 receptors2018In: Journal of Clinical Investigation, ISSN 0021-9738, E-ISSN 1558-8238, Vol. 128, no 7, p. 3160-3170Article in journal (Refereed)
    Abstract [en]

    It is critical for survival to assign positive or negative valence to salient stimuli in a correct manner. Accordingly, harmful stimuli and internal states characterized by perturbed homeostasis are accompanied by discomfort, unease, and aversion. Aversive signaling causes extensive suffering during chronic diseases, including inflammatory conditions, cancer, and depression. Here, we investigated the role of melanocortin 4 receptors (MC4Rs) in aversive processing using genetically modified mice and a behavioral test in which mice avoid an environment that they have learned to associate with aversive stimuli. In normal mice, robust aversions were induced by systemic inflammation, nausea, pain, and. opioid receptorinduced dysphoria. In sharp contrast, mice lacking MC4Rs displayed preference or indifference toward the aversive stimuli. The unusual flip from aversion to reward in mice lacking MC4Rs was dopamine dependent and associated with a change from decreased to increased activity of the dopamine system. The responses to aversive stimuli were normalized when MC4Rs were reexpressed on dopamine D1 receptor-expressing cells or in the striatum of mice otherwise lacking MC4Rs. Furthermore, activation of arcuate nucleus proopiomelanocortin neurons projecting to the ventral striatum increased the activity of striatal neurons in an MC4R-dependent manner and elicited aversion. Our findings demonstrate that melanocortin signaling through striatal MC4Rs is critical for assigning negative motivational valence to harmful stimuli.

  • 5.
    Mirrasekhian, Elahe
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Nilsson, Johan L. Å.
    Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Lund, Sweden.
    Shionoya, Kiseko
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Blomgren, Anders
    Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Lund, Sweden.
    Zygmunt, Peter M.
    Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, S-221 85 Lund, Sweden.
    Engblom, David
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Högestätt, Edward D.
    Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Lund, Sweden.
    Blomqvist, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    The antipyretic effect of paracetamol occurs independent of transient receptor potential ankyrin 1–mediated hypothermia and is associated with prostaglandin inhibition in the brain2018In: The FASEB Journal, ISSN 0892-6638, E-ISSN 1530-6860Article in journal (Refereed)
    Abstract [en]

    The mode of action of paracetamol (acetaminophen), which is widely used for treating pain and fever, has remained obscure, but may involve several distinct mechanisms, including cyclooxygenase inhibition and transient receptor potential ankyrin 1 (TRPA1) channel activation, the latter being recently associated with paracetamol?s propensity to elicit hypothermia at higher doses. Here, we examined whether the antipyretic effect of paracetamol was due to TRPA1 activation or cyclooxygenase inhibition. Treatment of wild-type and TRPA1 knockout mice rendered febrile by immune challenge with LPS with a dose of paracetamol that did not produce hypothermia (150 mg/kg) but is known to be analgetic, abolished fever in both genotypes. Paracetamol completely suppressed the LPS-induced elevation of prostaglandin E2 in the brain and also reduced the levels of several other prostanoids. The hypothermia induced by paracetamol was abolished in mice treated with the electrophile-scavenger N-acetyl cysteine. We conclude that paracetamol?s antipyretic effect in mice is dependent on inhibition of cyclooxygenase activity, including the formation of pyrogenic prostaglandin E2, whereas paracetamol-induced hypothermia likely is mediated by the activation of TRPA1 by electrophilic metabolites of paracetamol, similar to its analgesic effect in some experimental paradigms.?Mirrasekhian, E., Nilsson, J. L. Å., Shionoya, K., Blomgren, A., Zygmunt, P. M., Engblom, D., Högestätt, E. D., Blomqvist, A. The antipyretic effect of paracetamol occurs independent of transient receptor potential ankyrin 1?mediated hypothermia and is associated with prostaglandin inhibition in the brain.

  • 6.
    Nilsson, Anna
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Wilhelms, Daniel
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Region Östergötland, Local Health Care Services in Central Östergötland, Department of Emergency Medicine.
    Mirrasekhian, Elahe
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Jaarola, Maarit
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Blomqvist, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Engblom, David
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Inflammation-induced anorexia and fever are elicited by distinct prostaglandin dependent mechanisms, whereas conditioned taste aversion is prostaglandin independent.2017In: Brain, behavior, and immunity, ISSN 0889-1591, E-ISSN 1090-2139, Vol. 61, p. 236-243, article id S0889-1591(16)30549-9Article in journal (Refereed)
    Abstract [en]

    Systemic inflammation evokes an array of brain-mediated responses including fever, anorexia and taste aversion. Both fever and anorexia are prostaglandin dependent but it has been unclear if the cell-type that synthesizes the critical prostaglandins is the same. Here we show that pharmacological inhibition or genetic deletion of cyclooxygenase (COX)-2, but not of COX-1, attenuates inflammation-induced anorexia. Mice with deletions of COX-2 selectively in brain endothelial cells displayed attenuated fever, as demonstrated previously, but intact anorexia in response to peripherally injected lipopolysaccharide (10μg/kg). Whereas intracerebroventricular injection of a cyclooxygenase inhibitor markedly reduced anorexia, deletion of COX-2 selectively in neural cells, in myeloid cells or in both brain endothelial and neural cells had no effect on LPS-induced anorexia. In addition, COX-2 in myeloid and neural cells was dispensable for the fever response. Inflammation-induced conditioned taste aversion did not involve prostaglandin signaling at all. These findings collectively show that anorexia, fever and taste aversion are triggered by distinct routes of immune-to-brain signaling.

  • 7.
    Singh, Anand Kumar
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Zajdel, Joanna
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Mirrasekhian, Elahe
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Almoosawi, Nader
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Frisch, Isabell
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Klawonn, Anna
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Jaarola, Maarit
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Fritz, Michael
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Engblom, David
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Prostaglandin-mediated inhibition of serotonin signaling controls the affective component of inflammatory pain2017In: Journal of Clinical Investigation, ISSN 0021-9738, E-ISSN 1558-8238, Vol. 127, no 4, p. 1370-1374Article in journal (Refereed)
    Abstract [en]

    Pain is fundamentally unpleasant and induces a negative affective state. The affective component of pain is mediated by circuits that are distinct from those mediating the sensory-discriminative component. Here, we have investigated the role of prostaglandins in the affective dimension of pain using a rodent pain assay based on conditioned place aversion to formalin injection, an inflammatory noxious stimulus. We found that place aversion induced by inflammatory pain depends on prostaglandin E-2 that is synthesized by cyclooxygenase 2 in neural cells. Further, mice lacking the prostaglandin E-2 receptor EP3 selectively on serotonergic cells or selectively in the area of the dorsal raphe nucleus failed to form an aversion to formalininduced pain, as did mice lacking the serotonin transporter. Chemogenetic manipulations revealed that EP3 receptor activation elicited conditioned place aversion to pain via inhibition of serotonergic neurons. In contrast to their role in inflammatory pain aversion, EP3 receptors on serotonergic cells were dispensable for acute nociceptive behaviors and for aversion induced by thermal pain or a kappa opioid receptor agonist. Collectively, our findings show that prostaglandin-mediated modulation of serotonergic transmission controls the affective component of inflammatory pain.

  • 8.
    Stojakovic, Andrea
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Walczak, Magdalena
    Jagiellonian Univ, Poland.
    Cieslak, Przemyslaw E.
    Polish Acad Sci, Poland.
    Trenk, Aleksandra
    Jagiellonian Univ, Poland.
    Sköld, Johan
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Zajdel, Joanna
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Mirrasekhian, Elahe
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Karlsson, Camilla
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Thorsell, Annika
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Heilig, Markus
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Local Health Care Services in Central Östergötland, Department of Psychiatry.
    Parkitna, Jan Rodriguez
    Polish Acad Sci, Poland.
    Blasiak, Tomasz
    Jagiellonian Univ, Poland.
    Engblom, David
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Several behavioral traits relevant for alcoholism are controlled by gamma 2 subunit containing GABA(A) receptors on dopamine neurons in mice2018In: Neuropsychopharmacology, ISSN 0893-133X, E-ISSN 1740-634X, Vol. 43, no 7, p. 1548-1556Article in journal (Refereed)
    Abstract [en]

    The risk factors for developing alcohol addiction include impulsivity, high sensitivity to the rewarding action of ethanol, and low sensitivity to its sedative and intoxicating effects. Genetic variation in GABA(A) receptor subunits, including the gamma 2 subunit (Gabrg2), affects the risk for developing alcoholism. Alcohol directly potentiates GABA(A) receptors and activates the mesolimbic dopamine system. Here, we deleted Gabrg2 selectively in dopamine cells of adult mice. The deletion resulted in elevated firing of dopamine neurons and made them less sensitive to drugs acting at GABA(A) receptors. At the behavioral level, the deletion increased exploratory behavior and augmented both correct and incorrect responding in the go/no-go task, a test often used to assay the response inhibition component of impulsivity. In addition, conditioned place preference to alcohol, but not to cocaine or morphine, was increased. Ethanol-induced locomotor activation was enhanced in the mice lacking Gabrg2 on dopaminergic cells, whereas the sedative effect of alcohol was reduced. Finally, the alcohol drinking, but not the alcohol preference, at a high concentration was increased in the mutant mice. In summary, deletion of Gabrg2 on dopamine cells induced several behavioral traits associated with high risk of developing alcoholism. The findings suggest that mice lacking Gabrg2 on dopaminergic cells could be used as models for individuals at high risk for developing alcoholism and that GABA(A) receptors on dopamine cells are protective against the development of excessive alcohol drinking.

  • 9.
    Svensson, Judit
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences.
    Bhai Mehta, Ratnesh
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences.
    Lindau, Robert
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences.
    Mirrasekhian, Elahe
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Rodriguez-Martinez, Heriberto
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Berg, Göran
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center of Paediatrics and Gynaecology and Obstetrics, Department of Gynaecology and Obstetrics in Linköping.
    Lash, Gendie E.
    Newcastle University, England.
    Jenmalm, Maria
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences.
    Ernerudh, Jan
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Immunology and Transfusion Medicine.
    The Human Fetal Placenta Promotes Tolerance against the Semiallogeneic Fetus by Inducing Regulatory T Cells and Homeostatic M2 Macrophages2015In: Journal of Immunology, ISSN 0022-1767, E-ISSN 1550-6606, Vol. 194, no 4, p. 1534-1544Article in journal (Refereed)
    Abstract [en]

    A successful pregnancy requires that the maternal immune system is instructed to a state of tolerance to avoid rejection of the semiallogeneic fetal-placental unit. Although increasing evidence supports that decidual (uterine) macrophages and regulatory T cells (Tregs) are key regulators of fetal tolerance, it is not known how these tolerogenic leukocytes are induced. In this article, we show that the human fetal placenta itself, mainly through trophoblast cells, is able to induce homeostatic M2 macrophages and Tregs. Placental-derived M-CSF and IL-10 induced macrophages that shared the CD14(+)CD163(+)CD206(+)CD209(+) phenotype of decidual macrophages and produced IL-10 and CCL18 but not IL-12 or IL-23. Placental tissue also induced the expansion of CD25(high)CD127(low)Foxp3(+) Tregs in parallel with increased IL-10 production, whereas production of IFN-gamma (Th1), IL-13 (Th2), and IL-17 (Th17) was not induced. Tregs expressed the suppressive markers CTLA-4 and CD39, were functionally suppressive, and were induced, in part, by IL-10, TGF-beta, and TRAIL. Placental-derived factors also limited excessive Th cell activation, as shown by decreased HLA-DR expression and reduced secretion of Th1-, Th2-, and Th17-associated cytokines. Thus, our data indicate that the fetal placenta has a central role in promoting the homeostatic environment necessary for successful pregnancy. These findings have implications for immune-mediated pregnancy complications, as well as for our general understanding of tissue-induced tolerance.

  • 10.
    Wilhelms, Daniel Björk
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Acute Health Care in Linköping.
    Kirilov, Milen
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Mirrasekhian, Elahe
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Eskilsson, Anna
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Örtegren Kugelberg, Unn
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Klar, Christine
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Ridder, Dirk A.
    Medical University of Lubeck, Germany.
    Herschman, Harvey R.
    University of Calif Los Angeles, CA 90095 USA.
    Schwaninger, Markus
    Medical University of Lubeck, Germany.
    Blomqvist, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Engblom, David
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Deletion of Prostaglandin E-2 Synthesizing Enzymes in Brain Endothelial Cells Attenuates Inflammatory Fever2014In: Journal of Neuroscience, ISSN 0270-6474, E-ISSN 1529-2401, Vol. 34, no 35, p. 11684-11690Article in journal (Refereed)
    Abstract [en]

    Fever is a hallmark of inflammatory and infectious diseases. The febrile response is triggered by prostaglandin E-2 synthesis mediated by induced expression of the enzymes cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase 1 (mPGES-1). The cellular source for pyrogenic PGE(2) remains a subject of debate; several hypotheses have been forwarded, including immune cells in the periphery and in the brain, as well as the brain endothelium. Here we generated mice with selective deletion of COX-2 and mPGES1 in brain endothelial cells. These mice displayed strongly attenuated febrile responses to peripheral immune challenge. In contrast, inflammation-induced hypoactivity was unaffected, demonstrating the physiological selectivity of the response to the targeted gene deletions. These findings demonstrate that PGE(2) synthesis in brain endothelial cells is critical for inflammation-induced fever.

  • 11.
    Wilhelms, Daniel
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Department of Clinical and Experimental Medicine. Region Östergötland, Local Health Care Services in Central Östergötland, Department of Emergency Medicine.
    Mirrasekhian, Elahe
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Zajdel, Joanna
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Singh, Anand Kumar
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Engblom, David
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Cyclooxygenase Isoform Exchange Blocks Brain-Mediated Inflammatory Symptoms2016In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 11, no 11, article id e0166153Article in journal (Refereed)
    Abstract [en]

    Cyclooxygenase-2 (COX-2) is the main source of inducible prostaglandin E-2 production and mediates inflammatory symptoms including fever, loss of appetite and hyperalgesia. COX-1 is dispensable for fever, anorexia and hyperalgesia but is important for several other functions both under basal conditions and during inflammation. The differential functionality of the COX isoforms could be due to differences in the regulatory regions of the genes, leading to different expression patterns, or to differences in the coding sequence, resulting in distinct functional properties of the proteins. To study the molecular underpinnings of the functional differences between the two isoforms in the context of inflammatory symptoms, we used mice in which the coding sequence of COX-2 was replaced by the corresponding sequence of COX-1. In these mice, COX-1 mRNA was induced by inflammation but COX-1 protein expression did not fully mimic inflammation-induced COX-2 expression. Just like mice globally lacking COX-2, these mice showed a complete lack of fever and inflammation-induced anorexia as well as an impaired response to inflammatory pain. However, as previously reported, they displayed close to normal survival rates, which contrasts to the high fetal mortality in COX-2 knockout mice. This shows that the COX activity generated from the hybrid gene was strong enough to allow survival but not strong enough to mediate the inflammatory symptoms studied, making the line an interesting alternative to COX-2 knockouts for the study of inflammation. Our results also show that the functional differences between COX-1 and COX-2 in the context of inflammatory symptoms are not only dependent on the features of the promoter regions. Instead they indicate that there are fundamental differences between the isoforms at translational or posttranslational levels.

1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf