liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andersson, Elias
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Arfwidsson, Oskar
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Bergstrand, Victor
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Thollander, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    A study of the comparability of energy audit program evaluations2017In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 142, p. 2133-2139Article in journal (Refereed)
    Abstract [en]

    There is a large untapped potential for improved energy efficiency in various sectors of the economy. Governmental industrial energy audit programs subsidizing the companies to conduct an energy audit are the most common policy in trying to overcome the energy efficiency gap. Evaluation studies have been carried out to gain knowledge about the success of a completed energy audit policy program. The evaluations were made in different ways and in addition focused on different performance indicators and used different ways of categorizing data. In this article, a literature review has been made of five evaluation studies from different energy audit programs, where the problems of the present incomparability between programs due to differences are discussed. The policy implication of this paper is that new energy audit policy programs must distinguish a harmonized way of categorizing data, both regarding energy efficiency measures and energy end-use. Further, a proposition for a standard for how to evaluate energy audit policy programs is suggested. Conclusions from this study are that important elements, such as the free-rider effect and harmonized energy end-use data, should be defined and included in evaluation studies. A harmonized standard for evaluating audit programs is not least needed within the EU, where member states are obliged to launch audit programs for large enterprises, and preferably also for small and medium-sized enterprises. This paper serves as an important contribution for the development of such a standard in further research. (C) 2016 Elsevier Ltd. All rights reserved.

  • 2.
    Andersson, Elias
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Arfwidsson, Oskar
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Thollander, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Benchmarking energy performance of industrial small and medium-sized enterprises using an energy efficiency index: Results based on an energy audit policy program2018In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 182, p. 883-895Article in journal (Refereed)
    Abstract [en]

    Improved energy efficiency among industrial companies is recognized as a key effort to reduce emissions of greenhouse gases. In this context, benchmarking industrial energy efficiency plays an important part in increasing industrial companies awareness of their energy efficiency potential. A method for calculating an energy efficiency index is proposed in this paper. The energy efficiency index is used to benchmark the energy performance of industrial small and medium-sized companies support and production processes. This enables the possibility to compare the energy performance of single energy end-use processes. This papers proposed energy efficiency index is applied to energy data from 11 sawmills that participated in the Swedish national energy audit program. The index values were compared with each sawmills energy saving potential, as stated in the energy audits. One conclusion is that the energy efficiency index is suitable as an energy strategy tool in industrial energy management and could be used both by industrial SMEs and by governmental agencies with an auditing role. However, it does require a harmonized categorization of energy end-use processes as well as quality assured energy data. Given this, a national energy end-use database could be created to facilitate the calculation of an energy efficiency index. (C) 2018 Elsevier Ltd. All rights reserved.

    The full text will be freely available from 2020-02-10 14:54
  • 3.
    Andersson, Elias
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Thollander, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Paramonova, Svetlana
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Energy end-use and efficiency potentials among Swedish industrial small and medium-sized enterprises - A dataset analysis from the national energy audit program2018In: Renewable & sustainable energy reviews, ISSN 1364-0321, E-ISSN 1879-0690, Vol. 93, p. 165-177Article, review/survey (Refereed)
    Abstract [en]

    Improving energy efficiency in industry is recognized as one of the most vital activities for the mitigation of climate change. Consequently, policy initiatives from governments addressing both energy-intensive and small and medium-sized industry have been enacted. In this paper, the energy end-use and the energy efficiency potential among industrial small and medium-sized companies participating in the Swedish Energy Audit Program are reviewed. The three manufacturing industries of wood and cork, food products and metal products (excluding machinery and equipment) are studied. A unique categorization of their production processes energy end-use is presented, the results of which show that the amount of energy used in various categories of production processes differ between these industries. This applies to support processes as well, highlighting the problem of generalizing results without available bottom-up energy end-use data. In addition, a calculation of conservation supply curves for measures related to production processes is presented, showing that there still remains energy saving potential among companies participating in the Swedish Energy Audit Program. However, relevant data in the database used from the Swedish Energy Audit Program is lacking which limits the conclusions that can be drawn from the conservation supply curves. This study highlights the need to develop energy policy programs delivering high-quality data. This paper contributes to a further understanding of the intricate matters of industrial energy end-use and energy efficiency measures.

  • 4.
    Andersson, Elias
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Thollander, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Key performance indicators for energy management in the Swedish pulp and paper industry2019In: Energy Strategy Reviews, ISSN 2211-467X, E-ISSN 2211-4688, Vol. 24, p. 229-235Article in journal (Refereed)
    Abstract [en]

    The pulp and paper industry is one of the five most energy-intensive industries world-wide. In Sweden, most pulp and paper mills were certified with a standardized energy management system already in 2005. As Swedish mills have more than a decade of experience with energy management systems and energy key performance indicators (KPIs), studying KPIs within Swedish pulp and paper mills will enable both a state-of-the-art positioning of best-practice in relation to energy KPIs in pulp and paper mills, but also spot potential barriers and drivers in the utilization of energy KPIs. This paper studies the current level of implementation and operationalization of energy-related KPIs in the Swedish pulp and paper industry. The results show a potential for improvement.

  • 5.
    Johnsson, Simon
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Andersson, Elias
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Thollander, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Energy savings and greenhouse gas mitigation potential in the Swedish wood industry2019In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 187, article id 115919Article in journal (Refereed)
    Abstract [en]

    Improving energy efficiency in industry is recognized as one of the most crucial actions for mitigating climate change. The lack of knowledge regarding energy end-use makes it difficult for companies to know in which processes the highest energy efficiency potential is located. Using a case study design, the paper provides a taxonomy for energy end-use and greenhouse gas (GHG) emissions on a process and energy carrier level. It can be seen that drying of wood is the largest energy using and GHG emitting process in the studied companies. The paper also investigates applied and potentially viable energy key performance indicators (KPIs). Suggestions for improving energy KPIs within the wood industry include separating figures for different wood varieties and different end-products and distinguishing between different drying kiln technologies. Finally, the paper presents the major energy saving and carbon mitigating measures by constructing conservation supply curves and marginal abatement cost curves. The energy saving potential found in the studied companies indicates that significant improvements might be achieved throughout the Swedish wood industry. Even though the scope of this paper is the Swedish wood industry, several of the findings are likely to be relevant in other countries with a prominent wood industry.

  • 6.
    Lawrence, Akvile
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Nehler, Therese
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Andersson, Elias
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Thollander, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Drivers, barriers and success factors for energy management in the Swedish pulp and paper industry2019In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 223, p. 67-82Article in journal (Refereed)
    Abstract [en]

    Research has revealed the existence of an energy-efficiency gap – the difference between optimal and actual energy end-use, suggesting that energy efficiency can be improved. Energy management (EnM) is a means for improving industrial energy efficiency. However, due to various barriers, the full potential of EnM is not realised. Several studies have addressed drivers and barriers to energy efficiency but few to EnM. This study aims to identify EnM practices, the most important perceived drivers and barriers for EnM, and relations among them in the energy-intensive Swedish pulp and paper industry (PPI), which has the longest experience internationally of practising EnM systems, and has worked according to the standards since 2004. Our results show that, altogether, the PPI works regularly and continuously with EnM, with a clear division of responsibilities. The highest maturity for EnM practices was for energy policy, followed by organization, investments, and performance measurement. The study also shows that communication between middle management and operations personnel has potential for improvement. The most important categories of drivers were economic, whereas for barriers they were organizational. Nevertheless, knowledge-related barriers and drivers were amongst the most important, suggesting that the absorptive capacity for energy issues could be improved.

  • 7.
    Nehler, Therese
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Andersson, Elias
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Energy management in Swedish pulp and paper industry: benchmarking and non-energy benefits2018Conference paper (Refereed)
    Abstract [en]

    Manufacturing industry has a large energy efficiency potential, yet to be utilized, known as the energy efficiency gap. This gap exists due to barriers that hinder industrial companies from making energy efficiency investments. Research also shows that the gap is even larger if energy management practices are included as well. One type of energy management practice for industrial companies is energy performance benchmarking, which deals with several organisational applications. For example, energy performance benchmarking can be used to compare a company’s degree of energy efficiency to its peers. A benchmarking approach can also be adopted on different levels of aggregation, including sector, site, and process level. Furthermore, continuous work with energy management also entails additional benefits beyond the energy effects, known as non-energy benefits. In an energy management context, these benefits might for instance be organisational or informational in nature. The aim of this paper is to study these aspects of energy management – benchmarking and non-energy benefits – within the Swedish pulp and paper industry.

    These aspects of energy management have not, to the authors’ knowledge, been extensively investigated. The adopted method for data collection is a mixed method approach, where a questionnaire was sent to all operating pulp and paper mills in Sweden, and semi-structured interviews were carried out at six mills. The findings in this study show that the most common benchmarking method in the Swedish pulp and paper mills is external benchmarking within a company group. The benchmarking method with the highest perceived value for a mill’s energy management, however, is historical benchmarking of energy use. Furthermore, the pulp and paper mills have perceived a number of non-energy benefits from energy management practices, where top management’s interest in energy efficiency issues increasing more than expected was perceived as the most substantial.

  • 8.
    Trianni, Andrea
    et al.
    Univ Technol Sydney, Australia.
    Cagno, Enrico
    Politecn Milan, Italy.
    Bertolotti, Matteo
    Politecn Milan, Italy.
    Thollander, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Andersson, Elias
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Energy management: A practice-based assessment model2019In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 235, p. 1614-1636Article in journal (Refereed)
    Abstract [en]

    Industrial energy efficiency is crucial for energy cost saving and sustainable competitiveness, but its potential is not exploited due to several barriers. Previous literature has pointed out that, among the most effective means, energy management in industrial companies could bring a valuable contribution. Therefore, it is crucial to assess and evaluate the energy management status in an organisation so to undertake the most appropriate improvement actions. So far, literature has neither described the fundamental characteristics of energy management practices, nor specifically developed an assessment model to support industrial decision-makers. Stemming from those research gaps, the present work presents and discusses an innovative energy management assessment model based on a novel characterization of energy management practices. We validated and applied the model through case studies among large Italian and Swedish manufacturing companies, both proving the model to be able to thoroughly describe the energy management status and benchmarking the adoption level of energy management practices with respect to specific baselines. The model highlights both strengths and critical areas in an industrial companys energy management, thus offering a valuable support to drive further improvement activities. The work concludes with interesting suggestions for industrial decision-makers and policy-makers, sketching also some further research avenues.

1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf