liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abellán, C.
    et al.
    ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain.
    Acín, A.
    ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain / ICREA - Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
    Alarcón, A.
    Millennium Institute for Research in Optics, Universidad de Concepción, Universidad de Concepción, Concepción, Chile / Departamento de Ingeniería Eléctrica, Universidad de Concepción, Concepción, Chile.
    Alibart, O.
    Université Côte d’Azur, CNRS UMR 7010, Institut de Physique de Nice (INPHYNI), Nice, France.
    Andersen, C. K.
    Department of Physics, ETH Zurich,, Zurich, Switzerland.
    Andreoli, F.
    Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy.
    Beckert, A.
    Department of Physics, ETH Zurich,, Zurich, Switzerland.
    Beduini, F. A.
    ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain.
    Bendersky, A.
    Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Investigación en Ciencias de la Comunicación (ICC), CONICET, Buenos Aires, Argentina.
    Bentivegna, M.
    Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy.
    Bierhorst, P.
    National Institute of Standards and Technology, Boulder, CO, USA.
    Burchardt, D.
    Ludwig-Maximilians-Universität, Munich, Germany.
    Cabello, A.
    Departamento de Física Aplicada II, Universidad de Sevilla, Seville, Spain.
    Cariñe, J.
    Millennium Institute for Research in Optics, Universidad de Concepción, Universidad de Concepción, Concepción, Chile.
    Carrasco, S.
    ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain.
    Carvacho, G.
    Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy.
    Cavalcanti, D.
    Chaves, R.
    Cortés-Vega, J.
    Cuevas, A.
    Delgado, A.
    de Riedmatten, H.
    Eichler, C.
    Farrera, P.
    Fuenzalida, J.
    García-Matos, M.
    Garthoff, R.
    Gasparinetti, S.
    Gerrits, T.
    Ghafari Jouneghani, F.
    Glancy, S.
    Gómez, E. S.
    González, P.
    Guan, J. -Y.
    Handsteiner, J.
    Heinsoo, J.
    Heintze, G.
    Hirschmann, A.
    Jiménez, O.
    Kaiser, F.
    Knill, E.
    Knoll, L. T.
    Krinner, S.
    Kurpiers, P.
    Larotonda, M. A.
    Larsson, Jan-Åke
    Linköping University, Department of Electrical Engineering, Information Coding. Linköping University, Faculty of Science & Engineering.
    Lenhard, A.
    Li, H.
    Li, M. -H.
    Lima, G.
    Liu, B.
    Liu, Y.
    López Grande, I. H.
    Lunghi, T.
    Ma, X.
    Magaña-Loaiza, O. S.
    Magnard, P.
    Magnoni, A.
    Martí­-Prieto, M.
    Martínez, D.
    Mataloni, P.
    Mattar, A.
    Mazzera, M.
    Mirin, R. P.
    Mitchell, M. W.
    Nam, S.
    Oppliger, M.
    Pan, J. -W.
    Patel, R. B.
    Pryde, G. J.
    Rauch, D.
    Redeker, K.
    Rieländer, D.
    Ringbauer, M.
    Roberson, T.
    Rosenfeld, W.
    Salathé, Y.
    Santodonato, L.
    Sauder, G.
    Scheidl, T.
    Schmiegelow, C. T.
    Sciarrino, F.
    Seri, A.
    Shalm, L. K.
    Shi, S. -C
    Slussarenko, S.
    Stevens, M. J.
    Tanzilli, S.
    Toledo, F.
    Tura, J.
    Ursin, R.
    Vergyris, P.
    Verma, V. B.
    Walter, T.
    Wallraff, A.
    Wang, Z.
    Weinfurter, H.
    Weston, M. M.
    White, A. G.
    Wu, C.
    Xavier, Guilherme B.
    Linköping University, Department of Electrical Engineering, Information Coding. Linköping University, Faculty of Science & Engineering.
    You, L.
    Yuan, X.
    Zeilinger, A.
    Zhang, Q.
    Zhang, W.
    Zhong, J.
    Challenging Local Realism with Human Choices2018In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 557, p. 212-216Article in journal (Refereed)
    Abstract [en]

    A Bell test is a randomized trial that compares experimental observations against the philosophical worldview of local realism , in which the properties of the physical world are independent of our observation of them and no signal travels faster than light. A Bell test requires spatially distributed entanglement, fast and high-efficiency detection and unpredictable measurement settings. Although technology can satisfy the first two of these requirements, the use of physical devices to choose settings in a Bell test involves making assumptions about the physics that one aims to test. Bell himself noted this weakness in using physical setting choices and argued that human 'free will' could be used rigorously to ensure unpredictability in Bell tests. Here we report a set of local-realism tests using human choices, which avoids assumptions about predictability in physics. We recruited about 100,000 human participants to play an online video game that incentivizes fast, sustained input of unpredictable selections and illustrates Bell-test methodology. The participants generated 97,347,490 binary choices, which were directed via a scalable web platform to 12 laboratories on five continents, where 13 experiments tested local realism using photons, single atoms, atomic ensembles and superconducting devices. Over a 12-hour period on 30 November 2016, participants worldwide provided a sustained data flow of over 1,000 bits per second to the experiments, which used different human-generated data to choose each measurement setting. The observed correlations strongly contradict local realism and other realistic positions in bi-partite and tri-partite 12 scenarios. Project outcomes include closing the 'freedom-of-choice loophole' (the possibility that the setting choices are influenced by 'hidden variables' to correlate with the particle properties), the utilization of video-game methods for rapid collection of human-generated randomness, and the use of networking techniques for global participation in experimental science.

  • 2.
    Aguilar, Edgar A.
    et al.
    Univ Gdansk, Poland.
    Farkas, Mate
    Univ Gdansk, Poland.
    Martinez, Daniel
    Univ Concepcion, Chile.
    Alvarado, Matias
    Univ Concepcion, Chile.
    Carine, Jaime
    Univ Concepcion, Chile.
    Xavier, Guilherme B
    Linköping University, Department of Electrical Engineering, Information Coding. Linköping University, Faculty of Science & Engineering. Univ Concepcion, Chile.
    Barra, Johanna F.
    Univ Concepcion, Chile.
    Canas, Gustavo
    Univ Bio Bio, Chile.
    Pawlowski, Marcin
    Univ Gdansk, Poland.
    Lima, Gustavo
    Univ Concepcion, Chile.
    Certifying an Irreducible 1024-Dimensional Photonic State Using Refined Dimension Witnesses2018In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 120, no 23, article id 230503Article in journal (Refereed)
    Abstract [en]

    We report on a new class of dimension witnesses, based on quantum random access codes, which are a function of the recorded statistics and that have different bounds for all possible decompositions of a high-dimensional physical system. Thus, it certifies the dimension of the system and has the new distinct feature of identifying whether the high-dimensional system is decomposable in terms of lower dimensional subsystems. To demonstrate the practicability of this technique, we used it to experimentally certify the generation of an irreducible 1024-dimensional photonic quantum state. Therefore, certifying that the state is not multipartite or encoded using noncoupled different degrees of freedom of a single photon. Our protocol should find applications in a broad class of modern quantum information experiments addressing the generation of high-dimensional quantum systems, where quantum tomography may become intractable.

  • 3.
    Gomez, E. S.
    et al.
    Univ Concepcion, Chile.
    Riquelme, P.
    Univ Concepcion, Chile.
    Solis-Prosser, M. A.
    Univ Concepcion, Chile.
    Gonzalez, P.
    Univ Concepcion, Chile.
    Ortega, E.
    Univ Concepcion, Chile; Austrian Acad Sci, Austria.
    Xavier, Guilherme B
    Linköping University, Department of Electrical Engineering, Information Coding. Linköping University, Faculty of Science & Engineering. Univ Concepcion, Chile.
    Lima, G.
    Univ Concepcion, Chile; Univ Concepcion, Chile.
    Tunable entanglement distillation of spatially correlated down-converted photons2018In: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 26, no 11, p. 13961-13972Article in journal (Refereed)
    Abstract [en]

    We report on a new technique for entanglement distillation of the bipartite continuous variable state of spatially correlated photons generated in the spontaneous parametric down-conversion process ( SPDC), where tunable non-Gaussian operations are implemented and the post-processed entanglement is certified in real-time using a single-photon sensitive electron multiplying CCD (EMCCD) camera. The local operations are performed using non-Gaussian filters modulated into a programmable spatial light modulator and, by using the EMCCD camera for actively recording the probability distributions of the twin-photons, one has fine control of the Schmidt number of the distilled state. We show that even simple non-Gaussian filters can be finely tuned to a similar to 67% net gain of the initial entanglement generated in the SPDC process. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

  • 4.
    Lin, R.
    et al.
    KTH Royal Inst Technol, Sweden; Huazhong Univ Sci and Technol, Peoples R China.
    Gan, L.
    Huazhong Univ Sci and Technol, Peoples R China.
    Udalcovs, A.
    Res Inst Sweden AB, Sweden.
    Ozolins, O.
    KTH Royal Inst Technol, Sweden; Res Inst Sweden AB, Sweden.
    Pang, X.
    Res Inst Sweden AB, Sweden.
    Shen, L.
    Huazhong Univ Sci and Technol, Peoples R China.
    Popov, Sergei
    KTH Royal Inst Technol, Sweden.
    Tang, M.
    Huazhong Univ Sci and Technol, Peoples R China.
    Fu, S.
    Huazhong Univ Sci and Technol, Peoples R China.
    Tong, W.
    Yangtze Opt Fiber and Cable Joint Stock Ltd Co YOFC, Peoples R China.
    Liu, D.
    Huazhong Univ Sci and Technol, Peoples R China.
    Ferreira da Silva, T.
    Natl Inst Metrol Qual and Technol, Brazil.
    Xavier, Guilherme B
    Linköping University, Department of Electrical Engineering, Information Coding. Linköping University, Faculty of Science & Engineering.
    Chen, J.
    KTH Royal Inst Technol, Sweden.
    Spontaneous Raman Scattering Effects in Multicore Fibers: Impact on Coexistence of Quantum and Classical Channels2019In: 2019 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), IEEE , 2019Conference paper (Refereed)
    Abstract [en]

    We measure spontaneous Raman scattering (SRS) effects in C-band and observe trench-assisted MCF is robust to SRS noise, making it possible to run quantum channels in the neighboring and/or the same core as data channels.

  • 5.
    Lin, Rui
    et al.
    KTH Royal Inst Technol, Sweden.
    Udalcovs, Aleksejs
    RISE Acreo AB, Sweden.
    Ozolins, Oskars
    RISE Acreo AB, Sweden.
    Pang, Xiaodan
    KTH Royal Inst Technol, Sweden.
    Gan, Lin
    Huazhong Univ Sci and Technol, Peoples R China.
    Shen, Li
    Huazhong Univ Sci and Technol, Peoples R China.
    Tang, Ming
    Huazhong Univ Sci and Technol, Peoples R China.
    Fu, Songnian
    Huazhong Univ Sci and Technol, Peoples R China.
    Yang, Chen
    Yangtze Opt Fiber and Cable Joint Stock Ltd Co YOFC, Peoples R China.
    Tong, Weijun
    Yangtze Opt Fiber and Cable Joint Stock Ltd Co YOFC, Peoples R China.
    Liu, Deming
    Huazhong Univ Sci and Technol, Peoples R China.
    da Silva, Thiago Ferreira
    Natl Inst Metrol Qual and Technol, Brazil.
    Xavier, Guilherme B
    Linköping University, Department of Electrical Engineering, Information Coding. Linköping University, Faculty of Science & Engineering.
    Chen, Jiajia
    KTH Royal Inst Technol, Sweden.
    Integrating Quantum Key Distribution with the Spatial Division Multiplexing Enabled High Capacity Optical Networks2018In: 2018 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), IEEE , 2018Conference paper (Refereed)
    Abstract [en]

    In this talk, we discuss integrating the quantum key distribution (QKD) with the spatial division multiplexing (SDM) enabled optical communication network for the cyber security.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf