liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 25 of 25
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Greczynski, Grzegorz
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Zhirkov, Igor
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Petrov, Ivan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. University of Illinois, IL 61801 USA; University of Illinois, IL 61801 USA.
    Greene, Joseph E
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. University of Illinois, IL 61801 USA; University of Illinois, IL 61801 USA; University of Illinois, IL 61801 USA.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Control of the metal/gas ion ratio incident at the substrate plane during high-power impulse magnetron sputtering of transition metals in Ar2017In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 642, p. 36-40Article in journal (Refereed)
    Abstract [en]

    High-power impulse magnetron sputtering (HiPIMS) of materials systems with metal/gas-atom mass ratios m(Me)/m(g) near, or less than, unity presents a challenge for precise timing of synchronous substrate-bias pulses to select metal-ion irradiation of the film and, thus, reduce stress while increasing layer density during low-temperature growth. The problem stems from high gas-ion fluxes Fg+(t) at the substrate, which overlap with metal-ion fluxes FMe+(t). We use energy-and time-dependent mass spectrometry to analyze FMe+(t) and Fg+(t) for Group IVb transition-metal targets in Ar and show that the time-and energy-integrated metal/gas ion ratio NMe+/NAr+ at the substrate can be controlled over a wide range by adjusting the HiPIMS pulse length tau(ON), while maintaining the peak target current density J(T,peak) constant. The effect is a consequence of severe gas rarefaction which scales with J(T)(t). For Ti-HiPIMS, terminating the discharge at the maximum J(T)(t), corresponding to tau(ON) = 30 mu s, there is an essentially complete loss of Ar+ ion intensity, yielding NTi+/NAr+ similar to 60. With increasing tau(ON),J(T)(t) decreases and NTi+/NAr+ gradually decays, due to Ar refill, to similar to 1 with tau(ON) = 120 s. Time-resolved ion-energy distribution functions confirm that the degree of rarefaction depends on tau(ON): for shorter pulses, tau ONHTC/SUBTAG amp;lt; FORTITLEHTC_RETAIN 60 [rs, the original sputtered-atom Sigmund-Thompson energy distributions are preserved long after the HiPIMS pulse, which is in distinct contrast to longer pulses, tau(ON) amp;gt;= 60 mu s, for which the energy distributions collapse into narrow ther-malized peaks. Thus, optimizing the HiPIMS pulse width minimizes the gas-ion flux to the substrate independent of m(Me)/m(g).

    Download full text (pdf)
    fulltext
  • 2.
    Greczynski, Grzegorz
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Zhirkov, Igor
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Petrov, Ivan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. University of Illinois, IL 61801 USA; University of Illinois, IL 61801 USA.
    Greene, Joseph E
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. University of Illinois, IL 61801 USA; University of Illinois, IL 61801 USA; University of Illinois, IL 61801 USA.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Gas rarefaction effects during high power pulsed magnetron sputtering of groups IVb and VIb transition metals in Ar2017In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 35, no 6, article id 060601Article in journal (Refereed)
    Abstract [en]

    The authors use energy- and time-dependent mass spectrometry to analyze the evolution of metal- and gas-ion fluxes incident at the substrate during high-power pulsed magnetron sputtering (HiPIMS) of groups IVb and VIb transition-metal (TM) targets in Ar. For all TMs, the time-and energy-integrated metal/gas-ion ratio at the substrate plane NMe+/NAr+ increases with increasing peak target current density J(T,peak) due to rarefaction. In addition, NMe+/NAr+ exhibits a strong dependence on metal/gas-atom mass ratio m(Me)/m(g) and varies from similar to 1 for Ti (m(Ti)/m(Ar) = 1.20) to similar to 100 for W (m(W)/m(Ar) = 4.60), with J(T,peak) maintained constant at 1 A/cm(2). Time-resolved ion-energy distribution functions confirm that the degree of rarefaction scales with m(Me)/m(g): for heavier TMs, the original sputtered-atom Sigmund-Thompson energy distributions are preserved long after the HiPIMS pulse, which is in distinct contrast to lighter metals for which the energy distributions collapse into a narrow thermalized peak. Hence, precise timing of synchronous substrate-bias pulses, applied in order to reduce film stress while increasing densification, is critical for metal/gas combinations with m(Me)/m(g) near unity, while with m(Me)/m(g) amp;gt;amp;gt; 1, the width of the synchronous bias pulse is essentially controlled by the metal-ion time of flight. The good agreement between results obtained in an industrial system employing 440 cm(2) cathodes and a laboratory-scale system with a 20 cm(2) target is indicative of the fundamental nature of the phenomena. 

    Download full text (pdf)
    fulltext
  • 3.
    Greczynski, Grzegorz
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Zhirkov, Igor
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Petrov, Ivan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Univ Illinois, IL 61801 USA; Univ Illinois, IL 61801 USA.
    Greene, Joseph E
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Univ Illinois, IL 61801 USA; Univ Illinois, IL 61801 USA; Univ Illinois, IL 61801 USA.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Time evolution of ion fluxes incident at the substrate plane during reactive high-power impulse magnetron sputtering of groups IVb and VIb transition metals in Ar/N-22018In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 36, no 2, article id 020602Article in journal (Refereed)
    Abstract [en]

    Reactive transition-metal (TM) nitride film growth employing bias-synchronized high power impulse magnetron sputtering (HiPIMS) requires a detailed knowledge of the time evolution of metal-and gas-ion fluxes incident at the substrate plane in order to precisely tune momentum transfer and, hence, provide the recoil density and energy necessary to eliminate film porosity at low deposition temperatures without introducing significant film stress. Here, the authors use energy- and time-dependent mass spectrometry to analyze the evolution of metal-and gas-ion fluxes at the substrate plane during reactive HiPIMS sputtering of groups IVb and VIb TM targets in Ar/N-2 atmospheres. The time-and energy-integrated metal/gas ion ratio NMe+/Ng+ incident at the substrate is significantly lower for group IVb TMs (ranging from 0.2 for Ti to 0.9 for Hf), due to high N-2 reactivity which results in severely reduced target sputtering rates and, hence, decreased rarefaction. In contrast, for less reactive group VIb metals, sputtering rates are similar to those in pure Ar as a result of significant gas heating and high NMe+/Ng+ ratios, ranging from 2.3 for Cr to 98.1 for W. In both sets of experiments, the peak target current density is maintained constant at 1 A/cm(2). Within each TM group, NMe+/N(g+)scales with increasing metal-ion mass. For the group-VIb elements, sputtered-atom Sigmund-Thompson energy distributions are preserved long after the HiPIMS pulse, in contradistinction to group-IVb TMs for which the energy distributions collapse into narrow thermalized peaks. For all TMs, the N+ flux dominates that of N-2(+) ions, as the molecular ions are collisionally dissociated at the target, and N+ exhibits ion energy distribution functions resembling those of metal ions. The latter result implies that both N+ and Me+ species originate from the target. High-energy Ar+ tails, assigned to ionized reflected-Ar neutrals, are observed with heavier TM targets. Published by the AVS.

    Download full text (pdf)
    fulltext
  • 4.
    Hellgren, Niklas
    et al.
    Messiah Coll, PA 17055 USA.
    Thörnberg, Jimmy
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Zhirkov, Igor
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Sortica, Maurico A.
    Uppsala Univ, Sweden.
    Petrov, Ivan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Univ Illinois, IL 61801 USA.
    Greene, Joseph E
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Univ Illinois, IL 61801 USA; Natl Taiwan Univ Sci and Technol, Taiwan.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    High-power impulse magnetron sputter deposition of TiBx thin films: Effects of pressure and growth temperature2019In: Vacuum, ISSN 0042-207X, E-ISSN 1879-2715, Vol. 169, article id UNSP 108884Article in journal (Refereed)
    Abstract [en]

    Titanium boride, TiBx thin films are grown in pure Ar discharges by high-power impulse magnetron sputtering (HiPIMS) from a compound TiB2 target Film compositions are determined by time-of-flight elastic recoil detection analysis and Rutherford backscattering spectrometry as a function of deposition temperature (T-s = 25-900 degrees C) and Ar pressure (p(Ar) = 0.67-2.67 Pa, 5-20 mTorr). For reference, films are also grown by direct current magnetron sputtering (dcMS) under similar conditions. The HiPIMS waveform, average target power P-T, and resulting film compositions are strongly dependent not only on P-Ar, but also on T-s. At high pressures the effect of varying T-s on P-T is minimal, while at lower P-Ar the effect of T-s is more pronounced, due to substrate-temperature-induced gas rarefaction. Films grown by HiPIMS at 0.67 Pa are understoichiometric, with B/Ti = 1.4-1.5, while at 2.67 Pa, B/Ti decreases from 2.4 to 1.4 as T-s increases from 25 to 900 degrees C. dcMS-deposited films are overstoichiometric (B/Ti similar or equal to 3) when grown at low pressures, and near-stoichiometric (B/Ti similar or equal to r 1.9-2.2) for higher P-Ar. All experimental results are explained by differences in the ionization potentials of sputtered Ti and B atoms, together with P-Ar- and T-s-dependent gas-phase scattering.

    The full text will be freely available from 2021-08-17 15:22
  • 5.
    Kholodnaya, G. E.
    et al.
    Tomsk Polytech University, Russia.
    Sazonov, R. V.
    Tomsk Polytech University, Russia.
    Ponomarev, D. V.
    Tomsk Polytech University, Russia.
    Remnev, G. E.
    Tomsk Polytech University, Russia.
    Zhirkov, Igor
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Pulsed electron beam propagation in argon and nitrogen gas mixture2015In: Physics of Plasmas, ISSN 1070-664X, E-ISSN 1089-7674, Vol. 22, no 10, article id 103116Article in journal (Refereed)
    Abstract [en]

    The paper presents the results of current measurements for the electron beam, propagating inside a drift tube filled in with a gas mixture (Ar and N-2). The experiments were performed using the TEA-500 pulsed electron accelerator. The main characteristics of electron beam were as follows: 60 ns pulse duration, up to 200 J energy, and 5 cm diameter. The electron beam propagated inside the drift tube assembled of three sections. Gas pressures inside the drift tube were 760 +/- 3, 300 +/- 3, and 50 +/- 1 Torr. The studies were performed in argon, nitrogen, and their mixtures of 33%, 50%, and 66% volume concentrations, respectively. (C) 2015 AIP Publishing LLC.

    Download full text (pdf)
    fulltext
  • 6.
    Kholodnaya, Galina
    et al.
    Tomsk Polytech Univ, Russia.
    Sazonov, Roman
    Tomsk Polytech Univ, Russia.
    Ponomarev, Denis
    Tomsk Polytech Univ, Russia.
    Zhirkov, Igor
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Obtaining Silicon Oxide Nanoparticles Doped with Fluorine and Gold Particles by the Pulsed Plasma-Chemical Method2019In: Journal of Nanotechnology, ISSN 1687-9503, E-ISSN 1687-9511, article id 7062687Article in journal (Refereed)
    Abstract [en]

    This paper presents a study on pulsed plasma-chemical synthesis of fluorine- and gold-doped silicon oxide nanopowder. The gold- and fluorine-containing precursors were gold chloride (AuCl3) and sulphur hexafluoride (SF6). Pulsed plasma-chemical synthesis is realized on the laboratory stand, including a plasma-chemical reactor and TEA-500 electron accelerator. The parameters of the electron beam are as follows: 400-450keV electron energy, 60ns half-amplitude pulse duration, up to 200J pulse energy, and 5cm beam diameter. We confirmed the composite structure of SixOy@Au by using transmission electron microscopy and energy-dispersive spectroscopy. We determined the chemical composition and morphology of synthesized SixOy@Au and SixOy@F nanocomposites. The material contained a SixOy@Au carrier with an average size of 50-150nm and a shell of fine particles with an average size of 5-10nm.

    Download full text (pdf)
    fulltext
  • 7.
    Kholodnaya, Galina
    et al.
    Tomsk Polytech Univ, Russia.
    Sazonov, Roman
    Tomsk Polytech Univ, Russia.
    Ponomarev, Denis
    Tomsk Polytech Univ, Russia.
    Zhirkov, Igor
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Pulsed plasma chemical synthesis of carbon-containing titanium and silicon oxide based nanocomposite2018In: Radiation Physics and Chemistry, ISSN 0969-806X, E-ISSN 1879-0895, Vol. 144, p. 132-137Article in journal (Refereed)
    Abstract [en]

    The paper presents the results of the experimental investigation of the physical and. chemical properties of the TixSiyCzOw composite nanopowders, which were first obtained using a pulsed plasma chemical method. The pulsed plasma chemical synthesis was achieved using a technological electron accelerator (TEA-500). The parameters of the electron beam are as follows: 400-450 keV electron energy, 60 ns half-amplitude pulse duration, up to 200 J pulse energy, and 5 cm beam diameter. The main physical and chemical properties of the obtained composites were studied (morphology, chemical, elemental and phase composition). The morphology of the TixSiyCzOw composites is multiform. There are large round particles, with an average size of above 150 nm. Besides, there are small particles (an average size is in the range of 15-40 nm). The morphology of small particles is in the form of crystallites. In the TixSiyCzOw synthesised composite, the peak with a maximum of 946 cm(-1) was registered. The presence of IR radiation in this region of the spectrum is typical for the deformation of atomic oscillations in the Si-O-Ti bond, which indicates the formation of the solid solution. The composites consist of two crystal phases - anatase and rutile. The prevailing phase of the crystal structure is rutile.

  • 8.
    Konusov, F. V.
    et al.
    Tomsk Polytech University, Russia.
    Kholodnaya, G. E.
    Tomsk Polytech University, Russia.
    Sazonov, R. V.
    Tomsk Polytech University, Russia.
    Ponomarev, D. V.
    Tomsk Polytech University, Russia.
    Zhirkov, Igor
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Optical properties of carbon-containing titanium oxide nanocomposites obtained by the pulsed plasma chemical method2017In: Fullerenes, nanotubes, and carbon nanostructures (Print), ISSN 1536-383X, E-ISSN 1536-4046, Vol. 25, no 6, p. 343-347Article in journal (Refereed)
    Abstract [en]

    This paper presents the results of an experimental investigation on the optical properties of the TiO2 and TixCyOz nanopowders, produced by the pulsed plasma chemical method. Pulsed plasma chemical synthesis is realized on the laboratory stand, including a plasma chemical reactor (6 l) and TEA-500 electron accelerator. The parameters of the electron beam are as follows: 400-450 keV electron energy, 60 ns half-amplitude pulse duration, up to 200 J pulse energy, and 5 cm beam diameter. In TiO2 sample, obtained using the pulsed plasma chemical method, the particles can be divided into two groups: 100-500 nm large spherical particles and tiny complex particles (sized less than 100 nm). For TixCyOz sample, the morphology of the particles is mainly presented with irregular fragment shape. The average size of the particles is ranged from 200 to 300 nm. The band gap for all synthesized samples is within 2.94-3.35 eV.

  • 9.
    Paternoster, Carlo
    et al.
    University of Libre Bruxelles ULB University of Brussels, Belgium .
    Zhirkov, Igor
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Delplancke-Ogletree, Marie-Paule
    University of Libre Bruxelles ULB University of Brussels, Belgium .
    Structural and mechanical characterization of nanostructured titanium oxide thin films deposited by filtered cathodic vacuum arc2013In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 227, p. 42-47Article in journal (Refereed)
    Abstract [en]

    Titanium oxides are interesting materials, because they can be used for photocatalytic, optical and gas sensing purposes. In a variety of applications, the present phases and film structure have an influence on the effectiveness of the coating function: for this reason, deposition parameter control plays a fundamental role in the formation of coatings with the wished features. In this work, titanium oxide films are deposited by filtered cathodic vacuum arc (FCVA) operated in a pulse mode. FCVA is a versatile deposition system appreciated both in research and industry for its high deposition rate, for the possibility to control the ion energy and for the production of nearly fully ionized plasma. A pure titanium cathode is used as ion source, and depositions are carried out in an oxygen reactive atmosphere. The effects of substrate temperature and substrate bias on film properties, structure and composition are investigated. Bragg-Brentano X-ray diffraction, and electron and atomic force microscopy are used to assess the deposited film structure, while nanoindentation is used to study film mechanical properties. Phases, roughness, hardness and reduced Youngs modulus are studied as a function of the deposition parameters. Correlation between deposition conditions and structure of synthesized films is discussed, taking into account the features of plasma produced by a filtered cathodic arc system.

  • 10.
    Petrov, Ivan
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. University of Illinois, IL 61801 USA.
    Hall, Allen
    University of Illinois, IL 61801 USA; University of Illinois, IL 61801 USA.
    Mei, Antonio B.
    University of Illinois, IL 61801 USA.
    Nedfors, Nils
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Zhirkov, Igor
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Reed, Amber
    Mat and Mfg Directorate, OH 45431 USA.
    Howe, Brandon
    Mat and Mfg Directorate, OH 45431 USA.
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Greene, Joseph E
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. University of Illinois, IL 61801 USA; University of Illinois, IL 61801 USA; University of Illinois, IL 61801 USA.
    Controlling the boron-to-titanium ratio in magnetron-sputter-deposited TiBx thin films2017In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 35, no 5, article id 050601Article in journal (Refereed)
    Abstract [en]

    Magnetron sputter-deposited TiBx films grown from TiB2 targets are typically highly overstoichiometric with x ranging from 3.5 to 2.4 due to differences in Ti and B preferential ejection angles and gasphase scattering during transport between the target and the substrate. The authors show that the use of highly magnetically unbalanced magnetron sputtering leads to selective ionization of sputter-ejected Ti atoms which are steered via an external magnetic field to the film, thus establishing control of the B/Ti ratio with the ability to obtain stoichiometric TiB2 films over a wide range in Ar sputtering pressures. (C) 2017 American Vacuum Society.

  • 11.
    Sazonov, R. V.
    et al.
    Tomsk Polytech University, Russia.
    Kholodnaya, G. E.
    Tomsk Polytech University, Russia.
    Ponomarev, D. V.
    Tomsk Polytech University, Russia.
    Zhirkov, Igor
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Pulsed plasma chemical synthesis of carbon-containing titanium oxide-based composite2017In: Fullerenes, nanotubes, and carbon nanostructures (Print), ISSN 1536-383X, E-ISSN 1536-4046, Vol. 25, no 9, p. 526-530Article in journal (Refereed)
    Abstract [en]

    The carbon-containing titanium oxide-based composite was first obtained using a pulsed plasma chemical method. The composite was obtained from the following reagents: TiCl4, CH4, and O-2. The physical and chemical properties of the TixCyOz composite powders were studied (morphology, chemical, elemental and phase composition). The presence of spherical particles and the cubic and prismatic particles were typical for the synthesised carbon-containing titanium oxide-based composites. The large particles are observed (the average size exceeds 150nm) and smaller particles (the average size is 15-30nm). The presence of the dense layer of amorphous carbon (10-15nm thick) around particles is typical for the composites. The peak with a maximum of 1080cm(-1) is registered in IR absorption spectrum of the TixCyOz synthesised composite. The presence of IR radiation in this region of the spectrum is typical for the deformation of atomic oscillations in the Ti-O-C bond, which indicates that carbon and titanium in the composite are bound through oxygen. The content of the defined amount of titanium carbide has not been detected.

  • 12.
    Sazonov, Roman
    et al.
    Tomsk Polytech Univ, Russia.
    Kholodnaya, Galina
    Tomsk Polytech Univ, Russia.
    Ponomarev, Denis
    Tomsk Polytech Univ, Russia.
    Konusov, Fedor
    Tomsk Polytech Univ, Russia.
    Gadirov, Ruslan
    Tomsk State Univ, Russia.
    Zhirkov, Igor
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    On the possibility of controlling the morphology of carbon-containing titanium dioxide-based nanocomposites during pulsed plasma chemical synthesis2019In: Fullerenes, nanotubes, and carbon nanostructures (Print), ISSN 1536-383X, E-ISSN 1536-4046, Vol. 27, no 9, p. 677-683Article in journal (Refereed)
    Abstract [en]

    Three sets of carbon-containing nanocomposites based on titanium dioxide were synthesised by changing the concentrations of the original precursors (CH4, (2)) using a pulsed plasma chemical method. The elemental and chemical analyses of the synthesised nanocomposites were performed. The morphology of the carbon-containing titanium dioxide-based nanocomposites was studied by transmission electron microscopy. To determine the crystal structures of the nanocomposites, the standard method of X-ray phase analysis was used. The band gaps for the synthesised carbon-containing titanium dioxide-based composites were calculated using the diffuse reflectance spectra in the range of 1.3-3.6eV. It was experimentally proved that the band gap for indirect transitions depended on the total carbon content in the synthesised samples and was 2.76eV for some samples.

  • 13.
    Sazonov, Roman
    et al.
    Tomsk Polytech Univ, Russia.
    Kholodnaya, Galina
    Tomsk Polytech Univ, Russia.
    Ponomarev, Denis
    Tomsk Polytech Univ, Russia.
    Sivkov, Alexander
    Tomsk Polytech Univ, Russia.
    Shanenkov, Ivan
    Tomsk Polytech Univ, Russia.
    Zhirkov, Igor
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Synthesis of multicomponent nanocomposites containing filamentary carbon nanostructures2019In: Fullerenes, nanotubes, and carbon nanostructures (Print), ISSN 1536-383X, E-ISSN 1536-4046Article in journal (Refereed)
    Abstract [en]

    In this work, the multicomponent nanocomposites containing filamentary carbon nanostructures were synthesized using materials based on iron oxides with a predominant content of the epsilon phase (epsilon-Fe2O3). These iron oxide-based materials were obtained by a direct plasma-dynamic synthesis with supersonic outflow of an iron-containing electric discharge plasma into an oxygen atmosphere. Subsequently, they were used as an initial precursor and placed in the plasma-chemical reactor, where the multicomponent C/SixOy/Fe2O3 nanostructures were synthesized under the influence of the pulsed electron beam. This method was based on the volume excitation of the reaction gas by a pulsed electron beam in such a way as to control the uniform process implementation in the entire excitation region. The morphology and phase composition of the synthesized C/SixOy/Fe2O3 nanocomposites were studied. A typical morphological feature of the C/SixOy/Fe2O3 samples was found to be the formation of filamentary nanostructures. Their diameter does not exceed 10-20 nm, while their length varies up to 1 mu m.

  • 14.
    Zhirkov, Igor
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Eriksson, Anders
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Petruhins, Andrejs
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Dahlqvist, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Ingason, Arni Sigurdur
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Effect of Ti-Al cathode composition on plasma generation and plasma transport in direct current vacuum arc2014In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 115, no 12, p. 123301-Article in journal (Refereed)
    Abstract [en]

    DC arc plasma from Ti, Al, and Ti1-xAlx (x = 0.16, 0.25, 0.50, and 0.70) compound cathodes was characterized with respect to plasma chemistry and charge-state-resolved ion energy. Scanning electron microscopy, X-ray diffraction, and Energy-dispersive X-ray spectroscopy of the deposited films and the cathode surfaces were used for exploring the correlation between cathode-, plasma-, and film composition. Experimental work was performed at a base pressure of 10(-6) Torr, to exclude plasma-gas interaction. The plasma ion composition showed a reduction of Al of approximately 5 at. % compared to the cathode composition, while deposited films were in accordance with the cathode stoichiometry. This may be explained by presence of neutrals in the plasma/vapour phase. The average ion charge states (Ti = 2.2, Al = 1.65) were consistent with reference data for elemental cathodes, and approximately independent on the cathode composition. On the contrary, the width of the ion energy distributions (IEDs) were drastically reduced when comparing the elemental Ti and Al cathodes with Ti0.5Al0.5, going from similar to 150 and similar to 175 eV to similar to 100 and similar to 75 eV for Ti and Al ions, respectively. This may be explained by a reduction in electron temperature, commonly associated with the high energy tail of the IED. The average Ti and Al ion energies ranged between similar to 50 and similar to 61 eV, and similar to 30 and similar to 50 eV, respectively, for different cathode compositions. The attained energy trends were explained by the velocity rule for compound cathodes, which states that the most likely velocities of ions of different mass are equal. Hence, compared to elemental cathodes, the faster Al ions will be decelerated, and the slower Ti ions will be accelerated when originating from compound cathodes. The intensity of the macroparticle generation and thickness of the deposited films were also found to be dependent on the cathode composition. The presented results may be of importance for choice of cathodes for thin film depositions involving compound cathodes.

    Download full text (pdf)
    fulltext
  • 15.
    Zhirkov, Igor
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Eriksson, Anders
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Ion velocities in direct current arc plasma generated from compound cathodes2111022013In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 114, no 21, p. 213302-Article in journal (Refereed)
    Abstract [en]

    Arc plasma from Ti-C, Ti-Al, and Ti-Si cathodes was characterized with respect to charge-state-resolved ion energy. The evaluated peak velocities of different ion species in plasma generated from a compound cathode were found to be equal and independent on ion mass. Therefore, measured difference in kinetic energies can be inferred from the difference in ion mass, with no dependence on ion charge state. The latter is consistent with previous work. These findings can be explained by plasma quasineutrality, ion acceleration by pressure gradients, and electron-ion coupling. Increasing the C concentration in Ti-C cathodes resulted in increasing average and peak ion energies for all ion species. This effect can be explained by the "cohesive energy rule," where material and phases of higher cohesive energy generally result in increasing energies (velocities). This is also consistent with the here obtained peak velocities around 1.37, 1.42, and 1.55 (10(4) m/s) for ions from Ti0.84Al0.16, Ti0.90Si0.10, and Ti0.90C0.10 cathodes, respectively.

    Download full text (pdf)
    fulltext
  • 16.
    Zhirkov, Igor
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Landälv, Ludvig
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Sandvik Coromant, Sweden.
    Gothelid, E.
    Sandvik Coromant, Sweden.
    Ahlgren, M.
    Sandvik Coromant, Sweden.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Effect of Si on DC arc plasma generation from Al-Cr and Al-Cr-Si cathodes used in oxygen2017In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 121, no 8, article id 083303Article in journal (Refereed)
    Abstract [en]

    Al2O3 alloyed with Cr is an important material for the tooling industry. It can be synthesized from an arc discharge using Al-Cr cathodes in an oxygen atmosphere. Due to formation of Al-rich oxide islands on the cathode surface, the arc process stability is highly sensitive to oxygen pressure. For improved stability, the use of Al0.70Cr0.25Si0.05 cathodes has previously been suggested, where Si may reduce island formation. Here, we have investigated the effect of Si by comparing plasma generation and thin film deposition from Al0.7Cr0.3 and Al0.7Cr0.25Si0.05 cathodes. Plasma ion composition, ion energies, ion charge states, neutral species, droplet formation, and film composition have been characterized at different O-2 flow rates for arc currents of 60 and 90 A. Si and related compounds are detected in plasma ions and in plasma neutrals. Scanning electron microscopy and energy dispersive X-ray analysis show that the cathode composition and the film composition are the same, with Si present in droplets as well. The effect of Si on the process stability, ion energies, and ion charge states is found to be negligible compared to that of the arc current. The latter is identified as the most relevant parameter for tuning the properties of the reactive discharge. The present work increases the fundamental understanding of plasma generation in a reactive atmosphere, and provides input for the choice of cathode composition and process parameters in reactive DC arc synthesis.

    Download full text (pdf)
    fulltext
  • 17.
    Zhirkov, Igor
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Oks, Efim
    Institute High Current Elect SB RAS, Russia.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Effect of N-2 and Ar gas on DC arc plasma generation and film composition from Ti-Al compound cathodes2015In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 117, no 21, p. 213301-Article in journal (Refereed)
    Abstract [en]

    DC arc plasma from Ti, Al, and Ti(1-x)A(l)x (x = 0.16, 0.25, 0.50, and 0.70) compound cathodes has been characterized with respect to plasma chemistry (charged particles) and charge-stateresolved ion energy for Ar and N-2 pressures in the range 10(-6) to 3 x 10(-2) Torr. Scanning electron microscopy was used for exploring the correlation between the cathode and film composition, which in turn was correlated with the plasma properties. In an Ar atmosphere, the plasma ion composition showed a reduction of Al of approximately 5 at.% compared to the cathode composition, while deposited films were in accordance with the cathode stoichiometry. Introducing N-2 above similar to 5 x 10(-3) Torr, lead to a reduced Al content in the plasma as well as in the film, and hence a 1:1 correlation between the cathode and film composition cannot be expected in a reactive environment. This may be explained by an influence of the reactive gas on the arc mode and type of erosion of Ti and Al rich contaminations, as well as on the plasma transport. Throughout the investigated pressure range, a higher deposition rate was obtained from cathodes with higher Al content. The origin of generated gas ions was investigated through the velocity rule, stating that the most likely ion velocities of all cathode elements from a compound cathode are equal. The results suggest that the major part of the gas ions in Ar is generated from electron impact ionization, while gas ions in a N-2 atmosphere primarily originate from a nitrogen contaminated layer on the cathode surface. The presented results provide a contribution to the understanding processes of plasma generation from compound cathodes. It also allows for a more reasonable approach to the selection of composite cathode and experimental conditions for thin film depositions. (C) 2015 AIP Publishing LLC.

    Download full text (pdf)
    fulltext
  • 18.
    Zhirkov, Igor
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Oks, Efim
    Institute High Current Elect SB RAS, Russia.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Experimentally established correlation between ion charge state distributions and kinetic ion energy distributions in a direct current vacuum arc discharge2015In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 117, no 9, p. 093301-Article in journal (Refereed)
    Abstract [en]

    DC arc plasmas from Al, Ti, Cu, Mo, and W cathodes have been characterized with respect to plasma chemistry and charge-state-resolved ion energy. The evaluated average ionization energies in the plasmas were found to be linearly correlated with the kinetic ion energies. This was further supported by evaluation of previously published data for 42 elements. A comparison of the total ion kinetic energy distribution and the corresponding ion charge state distribution, as defined by the ionization energies of the constituent ions, showed close to equivalent shapes and widths, for all cathodes analyzed. This suggests that the energy provided for ionization and acceleration varies simultaneously during plasma generation in the arc spot. The presented results provide a link between the ionization and acceleration processes, and may provide further insight into the fundamentals of cathode spot evolution and plasma generation. (C) 2015 AIP Publishing LLC.

  • 19.
    Zhirkov, Igor
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Petruhins, Andrejs
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Näslund, Lars-Åke
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Kolozsvari, Szilard
    PLANSEE Composite Mat GmbH, Germany.
    Polcik, Peter
    PLANSEE Composite Mat GmbH, Germany.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Vacuum arc plasma generation and thin film deposition from a TiB2 cathode2015In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 107, no 18, p. 184103-Article in journal (Refereed)
    Abstract [en]

    We have studied the utilization of TiB2 cathodes for thin film deposition in a DC vacuum arc system. We present a route for attaining a stable, reproducible, and fully ionized plasma flux of Ti and B by removal of the external magnetic field, which leads to dissipation of the vacuum arc discharge and an increased active surface area of the cathode. Applying a magnetic field resulted in instability and cracking, consistent with the previous reports. Plasma analysis shows average energies of 115 and 26 eV, average ion charge states of 2.1 and 1.1 for Ti and B, respectively, and a plasma ion composition of approximately 50% Ti and 50% B. This is consistent with measured resulting film composition from X-ray photoelectron spectroscopy, suggesting a negligible contribution of neutrals and macroparticles to the film growth. Also, despite the observations of macroparticle generation, the film surface is very smooth. These results are of importance for the utilization of cathodic arc as a method for synthesis of metal borides. (C) 2015 AIP Publishing LLC.

    Download full text (pdf)
    fulltext
  • 20.
    Zhirkov, Igor
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Petruhins, Andrejs
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Polcik, Peter
    PLANSEE Composite Mat GmbH, Germany.
    Kolozsvari, Szilard
    PLANSEE Composite Mat GmbH, Germany.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Effect of Ti-Al cathode grain size on plasma generation and thin film synthesis from a direct current vacuum arc plasma source2019In: AIP Advances, ISSN 2158-3226, E-ISSN 2158-3226, Vol. 9, no 4, article id 045008Article in journal (Refereed)
    Abstract [en]

    Herein, we investigate the influence of powder metallurgical manufactured Ti0.5Al0.5 cathode grain size (45-150 mu m) on the properties of a DC arc discharge, for N-2 pressures in the range 10(-5) Torr (base pressure) up to 3x10(-2) Torr. Intermetallic TiAl cathodes are also studied. The arc plasma is characterized with respect to ion composition, ion charge state, and ion energy, and is found to change with pressure, independent on choice of cathode. Scanning electron microscopy, X-ray diffraction, and Energy-dispersive X-ray spectroscopy of the cathode surfaces and the concurrently deposited films are used for exploring the correlation between cathode-, plasma-, and film composition. The plasma has a dominating Al ion content at elevated pressures, while the film composition is consistent with the cathode composition, independent on cathode grain size. Cross-sections of the used cathodes are studied, and presence of a converted layer, up to 10 mu m, is shown, with an improved intermixing of the elements on the cathode surface. This layer is primarily explained by condensation of cathode material from the melting and splashes accompanying the arc spot movement, as well as generated plasma ions being redeposited upon returning to the cathode. The overall lack of dependence on grain size is likely due to similar physical properties of Ti, Al and TiAl grains, as well as the formation of a converted layer. The presented findings are of importance for large scale manufacturing and usage of Ti-Al cathodes in industrial processes. (C) 2019 Author(s).

    Download full text (pdf)
    fulltext
  • 21.
    Zhirkov, Igor
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Petruhins, Andrejs
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Polcik, Peter
    PLANSEE Composite Mat GmbH, Germany.
    Kolozsvari, Szilard
    PLANSEE Composite Mat GmbH, Germany.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Generation of super-size macroparticles in a direct current vacuum arc discharge from a Mo-Cu cathode2016In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 108, no 5, p. 054103-Article in journal (Refereed)
    Abstract [en]

    An inherent property of cathodic arc is the generation of macroparticles, of a typical size ranging from submicrometer up to a few tens of mu m. In this work, we have studied macroparticle generation from a Mo0.78Cu0.22 cathode used in a dc vacuum arc discharge, and we present evidence for super-size macroparticles of up to 0.7mm in diameter. All analyzed particles are found to be rich in Mo (>= 98 at. %). The particle generation is studied by visual observation of the cathode surface during arcing, by analysis of composition and geometrical features of the used cathode surface, and by examination of the generated macroparticles with respect to shape and composition. A mechanism for super-size macroparticle generation is suggested based on observed segregated layers of Mo and Cu identified in the topmost part of the cathode surface, likely due to the discrepancy in melting and evaporation temperatures of Mo and Cu. The results are of importance for increasing the fundamental understanding of macroparticle generation, which in turn may lead to increased process control and potentially provide paths for tuning, or even mitigating, macroparticle generation. (C) 2016 AIP Publishing LLC.

  • 22.
    Zhirkov, Igor
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Petruhins, Andrejs
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Jakob
    Linköping University, Department of Computer and Information Science, ESLAB - Embedded Systems Laboratory. Linköping University, The Institute of Technology.
    Effect of cathode composition and nitrogen pressure on macroparticle generation and type of arc discharge in a DC arc source with Ti-Al compound cathodes2015In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 281, p. 20-26Article in journal (Refereed)
    Abstract [en]

    Thin films deposited with unfiltered DC arc plasma from Ti, Ti0.75Al0.25, Ti0.50Al0.50, Ti0.30Al0.70, and Al cathodes were characterized with a scanning electron microscope for quantification of extent of macroparticle incorporation. Depositions were performed in N-2 atmosphere in the pressure range from 10(-6) Torr up to 3 . 10(-2) Torr, and the formation of cathode surface nitride contamination was identified from X-ray diffraction analysis. Visual observation and photographic fixation of the arc spot behavior was simultaneously performed. A reduction in macroparticle generation with decreasing Al content and increasing N-2 pressure was demonstrated. A correlated transformation of the arc from type 2 to the type 1 was visually detected and found to be a function of N-2 pressure and at of Al in the cathode. For the Ti cathode, no arc transformation was detected. These observations can be explained by a comparatively high electrical resistivity and high melting point of Al rich surface nitrides, promoting an arc transformation and a reduction in macropartide generation. (C) 2015 Elsevier B.V. All rights reserved.

  • 23.
    Zhirkov, Igor
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Polcik, Peter
    Plansee Composite Mat GmbH, Germany.
    Kolozsvari, Szilard
    Plansee Composite Mat GmbH, Germany.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Macroparticle generation in DC arc discharge from a WC cathode2017In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 121, no 10, article id 103305Article in journal (Refereed)
    Abstract [en]

    We have studied macroparticle generation from a tungsten carbide cathode used in a dc vacuum arc discharge. Despite a relatively high decomposition/ melting point (similar to 3100 K), there is an intensive generation of visible particles with sizes in the range 20-35 mu m. Visual observations during the discharge and scanning electron microscopy of the cathode surface and of collected macroparticles indicate a new mechanism for particle formation and acceleration. Based on the W-C phase diagram, there is an intensive sublimation of carbon from the melt resulting from the cathode spot. The sublimation supports the formation of a sphere, which is accelerated upon an explosion initiated by Joule heating at the critical contact area between the sphere and the cathode body. The explosive nature of the particle acceleration is confirmed by surface features resembling the remains of a splash on the droplet surface. Published by AIP Publishing.

    Download full text (pdf)
    fulltext
  • 24.
    Zhirkov, Igor
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Polcik, Peter
    PLANSEE Composite Mat GmbH, Germany.
    Kolozsvari, Szilard
    PLANSEE Composite Mat GmbH, Germany.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Process development for stabilization of vacuum arc plasma generation from a TiB2 cathode2019In: AIP Advances, ISSN 2158-3226, E-ISSN 2158-3226, Vol. 9, no 1, article id 015103Article in journal (Refereed)
    Abstract [en]

    Herein, we present stable and reproducible arc plasma generation from a TiB2 cathode. The process development contains three complimentary features: Use of a Mo cylinder around the TiB2 cathode improves arc ignition and stabilizes the process by keeping the arc spot at the cathode surface. The evolution of the cathode surface during erosion and the process stability is further improved by addition of 1wt% carbon in the cathode, with no resulting change in plasma characteristics (ion energy, ion charge states, macroparticles). Finally, an increased plasma density through use of a separate anode provides the last key point, which together with the other two contributes to highly controlled plasma generation from TiB2 using DC vacuum arc, and complete utilization of the cathode material. The combined results provide a novel and efficient route for synthesis of metal borides. (C) 2019 Author(s).

    Download full text (pdf)
    fulltext
  • 25.
    Zhirkov, Igor
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Polcik, Peter
    PLANSEE Composite Mat GmbH, Germany.
    Petruhins, Andrejs
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Kolozsvari, Szilard
    PLANSEE Composite Mat GmbH, Germany.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Effect of Mo-Cu cathode composition on process stability, macroparticle formation, plasma generation, and thin-film deposition in DC arc synthesis2020In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 127, no 1, article id 013301Article in journal (Refereed)
    Abstract [en]

    In this work, we present the correlation between cathode composition and features of the arcing process for Mo1-xCux [x = 0.0, 0.07 (0.05), 0.14 (0.10), 0.21 (0.15), 0.40 (0.3), 0.73 (0.63), 0.97 (0.95), and 1.00, atomic fraction (weight fraction)] cathodes used in a DC vacuum-arc deposition system. It is found that the stability of the arcing process crucially depends on the cathode composition. The most stable arc spot and the lowest cathode potential (similar to 19 V) are detected for the Mo0.27Cu0.73 cathode, while the Mo0.93Cu0.07 cathode shows the most unstable arcing process with the highest cathode potential (similar to 28 V). The properties of the generated plasma are also strongly dependent on the relative ratio of the cathode elements. The metal ions from the Mo and Cu cathodes have peak kinetic energies around 136 and 62 eV, respectively, while for a Mo0.79Cu0.21 cathode, the corresponding energies are only 45 and 28 eV. The average charge states decreased from 2.1 to 1.6 for Mo ions and from 2 to 1.2 for Cu ions. The intensity of macroparticle generation and the size of the droplets correlate with the relative fraction of Cu. However, it is shown that, typically for the cathodes with a low amount of Cu, an increased abundance of visually observed macroparticles leads to droplet-free films. The film thicknesses and their compositions also demonstrate dependencies on the elemental composition of the cathode. These results are discussed in the light of no solubility between Mo and Cu and the high temperature of the cathode surface during the arcing process. Published under license by AIP Publishing.

    The full text will be freely available from 2021-01-03 13:40
1 - 25 of 25
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf