liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Giovanni, David
    et al.
    Nanyang Technol Univ, Singapore; Energy Res Inst NTU ERI N, Singapore.
    Lim, Jia Wei Melvin
    Nanyang Technol Univ, Singapore.
    Yuan, Zhongcheng
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Lim, Swee Sien
    Nanyang Technol Univ, Singapore.
    Righetto, Marcello
    Nanyang Technol Univ, Singapore.
    Qing, Jian
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Zhang, Qiannan
    Nanyang Technol Univ, Singapore.
    Dewi, Herlina Arianita
    Energy Res Inst NTU ERI N, Singapore.
    Gao, Feng
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Mhaisalkar, Subodh Gautam
    Energy Res Inst NTU ERI N, Singapore; Nanyang Technol Univ, Singapore.
    Mathews, Nripan
    Energy Res Inst NTU ERI N, Singapore; Nanyang Technol Univ, Singapore.
    Sum, Tze Chien
    Nanyang Technol Univ, Singapore.
    Ultrafast long-range spin-funneling in solution-processed Ruddlesden-Popper halide perovskites2019In: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 10, article id 3456Article in journal (Refereed)
    Abstract [en]

    Room-temperature spin-based electronics is the vision of spintronics. Presently, there are few suitable material systems. Herein, we reveal that solution-processed mixed-phase Ruddlesden-Popper perovskite thin-films transcend the challenges of phonon momentum-scattering that limits spin-transfer in conventional semiconductors. This highly disordered system exhibits a remarkable efficient ultrafast funneling of photoexcited spin-polarized excitons from two-dimensional (2D) to three-dimensional (3D) phases at room temperature. We attribute this efficient exciton relaxation pathway towards the lower energy states to originate from the energy transfer mediated by intermediate states. This process bypasses the omnipresent phonon momentum-scattering in typical semiconductors with stringent band dispersion, which causes the loss of spin information during thermalization. Film engineering using graded 2D/3D perovskites allows unidirectional out-of-plane spin-funneling over a thickness of similar to 600 nm. Our findings reveal an intriguing family of solution-processed perovskites with extraordinary spin-preserving energy transport properties that could reinvigorate the concepts of spin-information transfer.

    Download full text (pdf)
    fulltext
  • 2.
    Qing, Jian
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering. Shenzhen Univ, Peoples R China.
    Kuang, Chaoyang
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Wang, Heyong
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Wang, Yuming
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Liu, Xiaoke
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Bai, Sai
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Li, Mingjie
    Nanyang Technol Univ, Singapore.
    Sum, Tze Chien
    Nanyang Technol Univ, Singapore.
    Hu, Zhang-Jun
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Zhang, Wenjing
    Shenzhen Univ, Peoples R China.
    Gao, Feng
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    High-Quality Ruddlesden-Popper Perovskite Films Based on In Situ Formed Organic Spacer Cations2019In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, article id 1904243Article in journal (Refereed)
    Abstract [en]

    Ruddlesden-Popper perovskites (RPPs), consisting of alternating organic spacer layers and inorganic layers, have emerged as a promising alternative to 3D perovskites for both photovoltaic and light-emitting applications. The organic spacer layers provide a wide range of new possibilities to tune the properties and even provide new functionalities for RPPs. However, the preparation of state-of-the-art RPPs requires organic ammonium halides as the starting materials, which need to be ex situ synthesized. A novel approach to prepare high-quality RPP films through in situ formation of organic spacer cations from amines is presented. Compared with control devices fabricated from organic ammonium halides, this new approach results in similar (and even better) device performance for both solar cells and light-emitting diodes. High-quality RPP films are fabricated based on different types of amines, demonstrating the universality of the approach. This approach not only represents a new pathway to fabricate efficient devices based on RPPs, but also provides an effective method to screen new organic spacers with further improved performance.

    The full text will be freely available from 2020-08-28 15:10
  • 3.
    Qing, Jian
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering. City Univ Hong Kong, Peoples R China.
    Liu, Xiaoke
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Li, Mingjie
    Nanyang Technol Univ, Singapore.
    Liu, Feng
    Shanghai Jiao Tong University, Peoples Republic of China.
    Yuan, Zhongcheng
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Tiukalova, Elizaveta
    Nanyang Technol Univ, Singapore.
    Yan, Zhibo
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering. Nanjing Univ, Peoples R China.
    Duchamp, Martial
    Nanyang Technol Univ, Singapore.
    Chen, Shi
    Nanyang Technol Univ, Singapore; ASTAR, Singapore.
    Wang, Yuming
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Bai, Sai
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering. Univ Oxford, England.
    Liu, Jun-Ming
    Nanjing Univ, Peoples R China.
    Snaith, Henry J.
    Univ Oxford, England.
    Lee, Chun-Sing
    City Univ Hong Kong, Peoples R China.
    Sum, Tze Chien
    Nanyang Technol Univ, Singapore.
    Gao, Feng
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering. Shanghai Jiao Tong Univ, Peoples R China; Univ Oxford, England.
    Aligned and Graded Type-II Ruddlesden-Popper Perovskite Films for Efficient Solar Cells2018In: ADVANCED ENERGY MATERIALS, ISSN 1614-6832, Vol. 8, no 21, article id 1800185Article in journal (Refereed)
    Abstract [en]

    Recently, Ruddlesden-Popper perovskites (RPPs) have attracted increasing interests due to their promising stability. However, the efficiency of solar cells based on RPPs is much lower than that based on 3D perovskites, mainly attributed to their poor charge transport. Herein, a simple yet universal method for controlling the quality of RPP films by a synergistic effect of two additives in the precursor solution is presented. RPP films achieved by this method show (a) high quality with uniform morphology, enhanced crystallinity, and reduced density of sub-bandgap states, (b) vertically oriented perovskite frameworks that facilitate efficient charge transport, and (c) type-II band alignment that favors self-driven charge separation. Consequently, a hysteresis-free RPP solar cell with a power conversion efficiency exceeding 12%, which is much higher than that of the control device (1.5%), is achieved. The findings will spur new developments in the fabrication of high-quality, aligned, and graded RPP films essential for realizing efficient and stable perovskite solar cells.

    Download full text (pdf)
    fulltext
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf