liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Fallqvist, Amie
    Linköping University, Department of Physics, Chemistry and Biology.
    Pillar Gate Devices for Gas Sensing2009Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Chemical gas sensors can be used in a variety of applications such as process control, security systems and medical diagnosis. In the research for new functions and new sensing materials a “breadboard” would be useful. A technique that has been investigated for such a purpose is the grid-gate device which is a metal-oxide-semiconductor (MOS) based gas sensor. It is a MOS capacitor consisting of a passive grid-gate with depositions of sensing materials overlapping the grid. The measuring is carried out with a light addressable method called scanning light pulse technique (SLPT) which enables the detection of spatially distributed gas response.

    A development of the grid-gate sensor would be to separate the sensing materials from the chip. In this thesis the aim was to see if this was possible by depositing the sensing material on a slide of micro pillars which was put on top of a biased grid-gate chip.

    The test was made with palladium depositions in an ambient of synthetic air and 2500 ppm hydrogen, and the measuring technique was SLPT as for the preceding device.

    The result of the test was that the new device showed a combined gas response of both charge content shift at flat-band voltage and at inversion voltages. The conclusion is therefore that the sensing material can be separated from the grid-gate chip and that the response will be caused by several mechanisms. The two-dimensional image response utilized for the preceding grid-gate device will instead be a multi-dimensional response consisting of the curve for the charge content shift at every measuring position.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf