liu.seSearch for publications in DiVA
Change search
Refine search result
123456 1 - 50 of 298
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ahmed, Bilal
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering.
    El Ghazaly, Ahmed
    Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering.
    Halim, Joseph
    Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering.
    Electrochemical activation of commercial graphite sheets for supercapacitive applications2022In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 431, article id 140882Article in journal (Refereed)
    Abstract [en]

    Carbon-based substrates are widely used as current collectors for high-performance energy storage materials in supercapacitors. However, these substrates exhibit negligible charge storage due to inferior electrochemical activity and small surface area. Herein, electrochemical activation is utilized to enhance the electrochemical activity of - inherently inactive - commercial graphite sheets for supercapacitive applications. The results reveal that the electrochemically activated graphite sheets render a 30-fold increase in areal capacitance, i.e., from 22 to 447 mF cm(-2), which can be ascribed to the activation of graphite oxide functional groups on the surface. Also, the influence of electrochemical activation time on electrochemical performance is explored in detail, followed by the fabrication and characterization of symmetric supercapacitors based on the optimum process parameters in single-cell and tandem configurations, demonstrating the potential of electrochemically activated graphite sheets in practical applications.

  • 2.
    Ahmed, Bilal
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    El Ghazaly, Ahmed
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    i-MXenes for Energy Storage and Catalysis2020In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 30, no 47, article id 2000894Article in journal (Refereed)
    Abstract [en]

    In 2017, a new family of in-plane, chemically-ordered quaternary MAX phases, coined i-MAX, has been reported since 2017. The first i-MAX phase, (Mo2/3Sc1/3)(2)AlC, garnered significant research attention due to the presence of chemically ordered Sc within the Mo-dominated M layer, and the facilitated removal of both Al and Sc upon etching, resulting in 2D i-MXene, Mo1.33C, with ordered divacancies. The i-MXene renders an exceptionally low resistivity of 33.2 mu omega m(-1) and a high volumetric capacitance of approximate to 1150 F cm(-3). This discovery has been followed by the synthesis of, to date, 32 i-MAX phases and 5 i-MXenes, where the latter have shown potential for applications including, but not limited to, energy storage and catalysis. Herein, fundamental investigations of i-MAX phases and i-MXenes, along with their applicability in supercapacitive and catalytic applications, are reviewed. Moreover, recent results on ion intercalation and post-etching treatment of Mo1.33C are presented. The charge storage performance can also be tuned by forming MXene hydrogel and through inert atmosphere annealing, where the latter renders a superior volumetric capacitance of approximate to 1635 F cm(-3). This report demonstrates the potential of the i-MXene family for catalytic and energy storage applications, and highlights novel research directions for further development and successful employment in practical applications.

    Download full text (pdf)
    fulltext
  • 3.
    Ahmed, Heba
    et al.
    RMIT Univ, Australia.
    Alijani, Hossein
    RMIT Univ, Australia.
    El Ghazaly, Ahmed
    Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering.
    Halim, Joseph
    Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering.
    Murdoch, Billy J.
    RMIT Univ, Australia.
    Ehrnst, Yemima
    RMIT Univ, Australia.
    Massahud, Emily
    RMIT Univ, Australia.
    Rezk, Amgad R.
    RMIT Univ, Australia.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering.
    Yeo, Leslie Y.
    RMIT Univ, Australia.
    Recovery of oxidized two-dimensional MXenes through high frequency nanoscale electromechanical vibration2023In: Nature Communications, E-ISSN 2041-1723, Vol. 14, no 1, article id 3Article in journal (Refereed)
    Abstract [en]

    MXenes hold immense potential given their superior electrical properties. The practical adoption of these promising materials is, however, severely constrained by their oxidative susceptibility, leading to significant performance deterioration and lifespan limitations. Attempts to preserve MXenes have been limited, and it has not been possible thus far to reverse the materials performance. In this work, we show that subjecting oxidized micron or nanometer thickness dry MXene films-even those constructed from nanometer-order solution-dispersed oxidized flakes-to just one minute of 10 MHz nanoscale electromechanical vibration leads to considerable removal of its surface oxide layer, whilst preserving its structure and characteristics. Importantly, electrochemical performance is recovered close to that of their original state: the pseudocapacitance, which decreased by almost 50% due to its oxidation, reverses to approximately 98% of its original value, with good capacitance retention ( approximate to 93%) following 10,000 charge-discharge cycles at 10 A g(-1). These promising results allude to the exciting possibility for rejuvenating the material for reuse, therefore offering a more economical and sustainable route that improves its potential for practical translation. Despite their vast potential, the practical deployment of MXenes has been hampered by their tendency to be oxidized. Here, the authors show that simply vibrating MXene films in just a minute can remove the oxide layer formed and restore their electrochemical performance close to its original state.

    Download full text (pdf)
    fulltext
  • 4.
    Ahmed, Heba
    et al.
    RMIT Univ, Australia.
    Yang, Xinci
    RMIT Univ, Australia.
    Ehrnst, Yemima
    RMIT Univ, Australia.
    Jeorje, Ninweh N.
    RMIT Univ, Australia.
    Marqus, Susan
    RMIT Univ, Australia.
    Sherrell, Peter C.
    RMIT Univ, Australia; Univ Melbourne, Australia.
    El Ghazaly, Ahmed
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rezk, Amgad R.
    RMIT Univ, Australia.
    Yeo, Leslie Y.
    RMIT Univ, Australia.
    Ultrafast assembly of swordlike Cu-3(1,3,5-benzenetricarboxylate)(n) metal-organic framework crystals with exposed active metal sites2020In: Nanoscale Horizons, ISSN 2055-6764, E-ISSN 2055-6756, Vol. 5, no 7, p. 1050-1057Article in journal (Refereed)
    Abstract [en]

    Owing to their large surface area and high uptake capacity, metal-organic frameworks (MOFs) have attracted considerable attention as potential materials for gas storage, energy conversion, and electrocatalysis. Various strategies have recently been proposed to manipulate the MOF surface chemistry to facilitate exposure of the embedded metal centers at the crystal surface to allow more effective binding of target molecules to these active sites. Nevertheless, such strategies remain complex, often requiring strict control over the synthesis conditions to avoid blocking pore access, reduction in crystal quality, or even collapse of the entire crystal structure. In this work, we exploit the hydrodynamics and capillary resonance associated with acoustically-driven dynamically spreading and nebulizing thin films as a new method for ultrafast synthesis of swordlike Cu-3(1,3,5-benzenetricarboxylate)(n) (Cu-BTC) MOFs with unique monoclinic crystal structures (P2(1)/n) distinct to that obtained via conventional bulk solvothermal synthesis, with swordlike morphologies whose lengths far exceed their thicknesses. Through pulse modulation and taking advantage of the rapid solvent evaporation associated with the high nebulisation rates, we are also able to control the thicknesses of these large aspect ratio (width and length with respect to the thickness) crystals by arresting their vertical growth, which, in turn, allows exposure of the metal active sites at the crystal surface. An upshot of such active site exposure on the crystal surface is the concomitant enhancement in the conductivity of the MOF, evident from the improvement in its current density by two orders of magnitude.

  • 5.
    Alijani, Hossein
    et al.
    RMIT Univ, Australia.
    Rezk, Amgad R.
    RMIT Univ, Australia.
    Farsani, Mohammad Mehdi Khosravi
    RMIT Univ, Australia.
    Ahmed, Heba
    RMIT Univ, Australia.
    Halim, Joseph
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Reineck, Philipp
    RMIT Univ, Australia.
    Murdoch, Billy J.
    RMIT Univ, Australia.
    El Ghazaly, Ahmed
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Yeo, Leslie Y.
    RMIT Univ, Australia.
    Acoustomicrofluidic Synthesis of Pristine Ultrathin Ti3C2Tz MXene Nanosheets and Quantum Dots2021In: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 15, no 7, p. 12099-12108Article in journal (Refereed)
    Abstract [en]

    The conversion of layered transition metal carbides and/or nitrides (MXenes) into zero-dimensional structures with thicknesses and lateral dimensions of a few nanometers allows these recently discovered materials with exceptional electronic properties to exploit the additional benefits of quantum confinement, edge effects, and large surface area. Conventional methods for the conversion of MXene nanosheets and quantum dots, however, involve extreme conditions such as high temperatures and/or harsh chemicals that, among other disadvantages, lead to significant degradation of the material as a consequence of their oxidation. Herein, we show that the large surface acceleration.on the order of 10 million gs.produced by high-frequency (10 MHz) nanometer-order electromechanical vibrations on a chipscale piezoelectric substrate is capable of efficiently nebulizing, and consequently dimensionally reducing, a suspension of multilayer Ti3C2Tz (MXene) into predominantly monolayer nanosheets and quantum dots while, importantly, preserving the material from any appreciable oxidation. As an example application, we show that the high-purity MXene quantum dots produced using this room-temperature chemical-free synthesis method exhibit superior performance as electrode materials for electrochemical sensing of hydrogen peroxide compared to the highly oxidized samples obtained through conventional hydrothermal synthesis. The ability to detect concentrations as low as 5 nM is a 10-fold improvement to the best reported performance of Ti3C2Tz MXene electrochemical sensors to date.

    Download full text (pdf)
    fulltext
  • 6.
    Alling, Björn
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Högberg, Hans
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Armiento, Rickard
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    A theoretical investigation of mixing thermodynamics, age-hardening potential, and electronic structure of ternary (M1-xMxB2)-M-1-B-2 alloys with AlB2 type structure2015In: Scientific Reports, E-ISSN 2045-2322, Vol. 5Article in journal (Refereed)
    Abstract [en]

    Transition metal diborides are ceramic materials with potential applications as hard protective thin films and electrical contact materials. We investigate the possibility to obtain age hardening through isostructural clustering, including spinodal decomposition, or ordering-induced precipitation in ternary diboride alloys. By means of first-principles mixing thermodynamics calculations, 45 ternary (M1-xMxB2)-M-1-B-2 alloys comprising (MB2)-B-i (M-i = Mg, Al, Sc, Y, Ti, Zr, Hf, V, Nb, Ta) with AlB2 type structure are studied. In particular Al1-xTixB2 is found to be of interest for coherent isostructural decomposition with a strong driving force for phase separation, while having almost concentration independent a and c lattice parameters. The results are explained by revealing the nature of the electronic structure in these alloys, and in particular, the origin of the pseudogap at E-F in TiB2, ZrB2, and HfB2.

    Download full text (pdf)
    fulltext
  • 7.
    Anasori, Babak
    et al.
    Drexel University, PA 19104 USA; Drexel University, PA 19104 USA.
    Dahlqvist, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Halim, Joseph
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Drexel University, PA 19104 USA.
    Ju Moon, Eun
    Drexel University, PA 19104 USA.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hosler, Brian C.
    Drexel University, PA 19104 USA.
    Caspi, Elad N.
    Drexel University, PA 19104 USA; Nucl Research Centre Negev, Israel.
    May, Steven J.
    Drexel University, PA 19104 USA.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Barsoum, Michel W.
    Drexel University, PA 19104 USA.
    Experimental and theoretical characterization of ordered MAX phases Mo2TiAlC2 and Mo2Ti2AlC32015In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 118, no 9, p. 094304-Article in journal (Refereed)
    Abstract [en]

    Herein, we report on the phase stabilities and crystal structures of two newly discovered ordered, quaternary MAX phases-Mo2TiAlC2 and Mo2Ti2AlC3-synthesized by mixing and heating different elemental powder mixtures of mMo:(3-m) Ti:1.1Al:2C with 1.5 less than= m less than= 2.2 and 2Mo: 2Ti:1.1Al:2.7C to 1600 degrees C for 4 h under Ar flow. In general, for m greater than= 2 an ordered 312 phase, (Mo2Ti) AlC2, was the majority phase; for mless than 2, an ordered 413 phase (Mo2Ti2)AlC3, was the major product. The actual chemistries determined from X-ray photoelectron spectroscopy (XPS) are Mo2TiAlC1.7 and Mo2Ti1.9Al0.9C2.5, respectively. High resolution scanning transmission microscopy, XPS and Rietveld analysis of powder X-ray diffraction confirmed the general ordered stacking sequence to be Mo-Ti-Mo-Al-Mo-Ti-Mo for Mo2TiAlC2 and Mo-Ti-Ti-Mo-Al-Mo-Ti-Ti-Mo for Mo2Ti2AlC3, with the carbon atoms occupying the octahedral sites between the transition metal layers. Consistent with the experimental results, the theoretical calculations clearly show that M layer ordering is mostly driven by the high penalty paid in energy by having the Mo atoms surrounded by C in a face-centered configuration, i.e., in the center of the Mn+1Xn blocks. At 331 GPa and 367 GPa, respectively, the Youngs moduli of the ordered Mo2TiAlC2 and Mo2Ti2AlC3 are predicted to be higher than those calculated for their ternary end members. Like most other MAX phases, because of the high density of states at the Fermi level, the resistivity measurement over 300 to 10K for both phases showed metallic behavior. (C) 2015 AIP Publishing LLC.

    Download full text (pdf)
    fulltext
  • 8.
    Anasori, Babak
    et al.
    Drexel Univ, PA 19104 USA; Drexel Univ, PA 19104 USA.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rivin, Oleg
    Nucl Res Ctr Negev, Israel.
    Dahlqvist, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Halim, Joseph
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Voigt, Cooper
    Drexel Univ, PA 19104 USA.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Barsoum, Michel W.
    Drexel Univ, PA 19104 USA.
    Caspi, Elad N.
    Drexel Univ, PA 19104 USA; Nucl Res Ctr Negev, Israel.
    A Tungsten-Based Nanolaminated Ternary Carbide: (W,Ti)(4)C4-x2019In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 58, no 2, p. 1100-1106Article in journal (Refereed)
    Abstract [en]

    Nanolamellar transition metal carbides are gaining increasing interests because of the recent developments of their twodimensional (2D) derivatives and promising performance for a variety of applications from energy storage, catalysis to transparent conductive coatings, and medicine. To develop more novel 2D materials, new nanolaminated structures are needed. Here we report on a tungsten based nanolaminated ternary phase, (W,Ti)(4)C4-x, synthesized by an Al catalyzed reaction of W, Ti, and C powders at 1600 degrees C for 4 h, under flowing argon. X-ray and neutron diffraction, along with Z-contrast scanning transmission electron microscopy, were used to determine the atomic structure, ordering, and occupancies. This phase has a layered hexagonal structure (P6(3)/mmc) with lattice parameters, a = 3.00880(7) angstrom, and c = 19.5633(6) angstrom and a nominal chemistry of (W,Ti)(4)C4-x (actual chemistry, W2.1(1)Ti1.6(1)C2.6(1)). The structure is comprised of layers of pure W that are also twin planes with two adjacent atomic layers of mixed W and Ti, on either side. The use of Al as a catalyst for synthesizing otherwise difficult to make phases, could in turn lead to the discovery of a large family of nonstoichiometric ternary transition metal carbides, synthesized at relatively low temperatures and shorter times.

    Download full text (pdf)
    fulltext
  • 9.
    Anders, Andre
    et al.
    University of California Berkeley.
    Lim, Sunnie H. N.
    University of California Berkeley.
    Man Yu, Kin
    University of California Berkeley.
    Andersson, Joakim
    University of California Berkeley.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    McFarland, Mike
    Acree Technology Inc.
    Brown, Jeff
    Acree Technology Inc.
    High quality ZnO:Al transparent conducting oxide films synthesized by pulsed filtered cathodic arc deposition2010In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 518, no 12, p. 3313-3319Article in journal (Refereed)
    Abstract [en]

    Aluminum-doped zinc oxide, ZnO:Al or AZO, is a well-known n-type transparent conducting oxide with great potential in a number of applications currently dominated by indium tin oxide. In this study, the optical and electrical properties of AZO thin films deposited on glass and silicon by pulsed filtered cathodic arc deposition are systematically studied. In contrast to magnetron sputtering, this technique does not produce energetic negative ions, and therefore ion damage can be minimized. The quality of the AZO films strongly depends on growth temperature while only marginal improvements are obtained with post-deposition annealing. The best films, grown at a temperature of about 200 degrees C, have resistivities in the low to mid 10(-4) Omega cm range with a transmittance better than 85% in the visible part of the spectrum. It is remarkable that relatively good films of small thickness (60 nm) can be fabricated using this method.

  • 10.
    Azina, Clio
    et al.
    Rhein Westfal TH Aachen, Germany.
    Bartsch, Tim
    Rhein Westfal TH Aachen, Germany.
    Holzapfel, Damian M.
    Rhein Westfal TH Aachen, Germany.
    Dahlqvist, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering.
    Lofler, Lukas
    Rhein Westfal TH Aachen, Germany.
    Mendez, Alba San Jose
    Deutsch Elektronen Synchrotron DESY, Germany.
    Hans, Marcus
    Rhein Westfal TH Aachen, Germany.
    Primetzhofer, Daniel
    Uppsala Univ, Sweden.
    Schneider, Jochen M.
    Rhein Westfal TH Aachen, Germany.
    Yttrium incorporation in Cr2AlC: On the metastable phase formation and decomposition of (Cr,Y)(2)AlC MAX phase thin films2023In: Journal of The American Ceramic Society, ISSN 0002-7820, E-ISSN 1551-2916, Vol. 106, no 4, p. 2652-2665Article in journal (Refereed)
    Abstract [en]

    Herein we report on the synthesis of a metastable (Cr,Y)(2)AlC MAX phase solid solution by co-sputtering from a composite Cr-Al-C and elemental Y target, at room temperature, followed by annealing. However, direct high-temperature synthesis resulted in multiphase films, as evidenced by X-ray diffraction analyses, room-temperature depositions, followed by annealing to 760 degrees C led to the formation of phase pure (Cr,Y)(2)AlC by diffusion. Higher annealing temperatures caused a decomposition of the metastable phase into Cr2AlC, Y5Al3, and Cr-carbides. In contrast to pure Cr2AlC, the Y-containing phase crystallizes directly in the MAX phase structure instead of first forming a disordered solid solution. Furthermore, the crystallization temperature was shown to be Y-content dependent and was increased by similar to 200 degrees C for 5 at.% Y compared to Cr2AlC. Calculations predicting the metastable phase formation of (Cr,Y)(2)AlC and its decomposition are in excellent agreement with the experimental findings.

    Download full text (pdf)
    fulltext
  • 11.
    Azina, Clio
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Tunca, Bensu
    Katholieke Univ Leuven, Belgium.
    Petruhins, Andrejs
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Xin, Binbin
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Yildizhan Özyar, Melike
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Persson, Per O A
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Vleugels, Jozef
    Katholieke Univ Leuven, Belgium.
    Lambrinou, Konstantina
    SCK CEN, Belgium; Univ Huddersfield, England.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Deposition of MAX phase-containing thin films from a (Ti,Zr)(2)AlC compound target2021In: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 551, article id 149370Article in journal (Refereed)
    Abstract [en]

    This work reports on sputter depositions carried out from a compound (Ti,Zr)(2)AlC target on Al2O3(0 0 0 1) substrates at temperatures ranging between 500 and 900 degrees C. Short deposition times yielded 30-40 nm-thick Al-containing (Ti,Zr)C films, whereas longer depositions yielded thicker films up to 90 nm which contained (Ti,Zr)C and intermetallics. At 900 degrees C, the longer depositions led to films that also consisted of solid solution MAX phases. Detailed transmission electron microscopy showed that both (Ti,Zr)(2)AlC and (Ti,Zr)(3)AlC2 solid solution MAX phases were formed. Moreover, this work discusses the growth mechanism of the thicker films, which started with the formation of the mixed (Ti,Zr)C carbide, followed by the nucleation and growth of aluminides, eventually leading to solid state diffusion of Al within the carbide, at the highest temperature (900 degrees C) to form the MAX phases.

    Download full text (pdf)
    fulltext
  • 12.
    Badr, Hussein O.
    et al.
    Drexel Univ, PA 19104 USA.
    El-Melegy, Tarek
    Drexel Univ, PA 19104 USA.
    Carey, Michael
    Drexel Univ, PA 19104 USA.
    Natu, Varun
    Drexel Univ, PA 19104 USA.
    Hassig, Mary Q.
    Drexel Univ, PA 19104 USA.
    Johnson, Craig
    Drexel Univ, PA 19104 USA.
    Qian, Qian
    Drexel Univ, PA 19104 USA.
    Li, Christopher Y.
    Drexel Univ, PA 19104 USA.
    Kushnir, Kateryna
    Worcester Polytech Inst, MA 01609 USA.
    Colin-Ulloa, Erika
    Worcester Polytech Inst, MA 01609 USA.
    Titova, Lyubov V
    Worcester Polytech Inst, MA 01609 USA.
    Martin, Julia L.
    Worcester Polytech Inst, MA 01609 USA.
    Grimm, Ronald L.
    Worcester Polytech Inst, MA 01609 USA.
    Pai, Rahul
    Drexel Univ, PA 19104 USA.
    Kalra, Vibha
    Drexel Univ, PA 19104 USA.
    Karmakar, Avishek
    Drexel Univ, PA 19104 USA.
    Ruffino, Anthony
    Drexel Univ, PA 19104 USA.
    Masiuk, Stefan
    Drexel Univ, PA 19104 USA.
    Liang, Kun
    Tulane Univ, LA 70118 USA.
    Naguib, Michael
    Tulane Univ, LA 70118 USA.
    Wilson, Olivia
    Drexel Univ, PA 19104 USA.
    Magenau, Andrew
    Drexel Univ, PA 19104 USA.
    Montazeri, Kiana
    Drexel Univ, PA 19104 USA.
    Zhu, Yucheng
    Drexel Univ, PA 19104 USA.
    Cheng, Hao
    Drexel Univ, PA 19104 USA.
    Torita, Takeshi
    Murata Mfg Co Ltd, Japan.
    Koyanagi, Masashi
    Murata Mfg Co Ltd, Japan.
    Yanagimachi, Akimaro
    Murata Mfg Co Ltd, Japan.
    Ouisse, Thierry
    Univ Grenoble Alpes, France.
    Barbier, Maxime
    Univ Grenoble Alpes, France; European Synchrotron Radiat Facil ESRF, France.
    Wilhelm, Fabrice
    European Synchrotron Radiat Facil ESRF, France.
    Rogalev, Andrei
    European Synchrotron Radiat Facil ESRF, France.
    Björk, Jonas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Persson, Per O A
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hu, Yong-Jie
    Drexel Univ, PA 19104 USA.
    Barsoum, Michel
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Drexel Univ, PA 19104 USA.
    Bottom-up, scalable synthesis of anatase nanofilament-based two-dimensional titanium carbo-oxide flakes2022In: Materials Today, ISSN 1369-7021, E-ISSN 1873-4103, Vol. 54Article in journal (Refereed)
    Abstract [en]

    Two-dimensional (2D) materials offer advantages that their 3D counterparts do not. The conventional method for the bulk synthesis of 2D materials has predominantly been through etching layered solids. Herein, we convert - through a bottom-up approach - 10 binary and ternary titanium carbides, nitrides, borides, phosphides, and silicides into 2D flakes by immersing them in a tetramethylammonium hydroxide solution at temperatures in the 25-85 degrees C range. Based on X-ray diffraction, density functional theory, X-ray photoelectron, electron energy loss, Raman, X-ray absorption near edge structure spectroscopies, transmission and scanning electron microscope images and selected area diffraction, we conclude that the resulting flakes are carbon containing anatase-based layers that are, in turn, comprised of approximate to 6 x 10 angstrom(2) nanofilaments in cross-section some of which are few microns long. Electrodes made from some of these films performed well in lithium-ion and lithium-sulphur systems. These materials also reduce the viability of cancer cells thus showing potential in biomedical applications. Synthesizing 2D materials, at near ambient conditions, with non-layered, inexpensive, green precursors (e.g., TiC) is paradigm shifting and will undoubtedly open new and exciting avenues of research and applications.

  • 13.
    Bakhit, Babak
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Dorri, Samira
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Kooijman, Agnieszka
    Department of Materials Science and Engineering, Delft University of Technology, Delft, the Netherlands.
    Wu, Zhengtao
    School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, China.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Mol, Johannes M.C.
    Department of Materials Science and Engineering, Delft University of Technology, Delft, the Netherlands.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Petrov, Ivan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Materials Research Laboratory and Department of Materials Science, University of Illinois, Urbana, IL, USA; Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan .
    Greene, Joseph E
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Materials Research Laboratory and Department of Materials Science, University of Illinois, Urbana, IL, USA; Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan .
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Multifunctional ZrB2-rich Zr1-xCrxBy thin films with enhanced mechanical, oxidation, and corrosion properties2021In: Vacuum, ISSN 0042-207X, E-ISSN 1879-2715, Vol. 185, article id 109990Article in journal (Refereed)
    Abstract [en]

    Refractory transition-metal (TM) diborides have high melting points, excellent hardness, and good  chemical  stability.  However, these properties are not sufficient for applications involving extreme  environments that require high mechanical strength as well as oxidation and corrosion resistance. Here, we study the effect of Cr addition on the properties of ZrB2-rich Zr1-xCrxBy thin films grown by hybrid high-power impulse and dc magnetron co-sputtering (Cr-HiPIMS/ZrB2-DCMS) with a 100-V Cr-metal-ion synchronized potential. Cr metal fraction, x = Cr/(Zr+Cr), is increased from 0.23 to 0.44 by decreasing the power Pzrb2 applied to the DCMS ZrB2 target from 4000 to 2000 W, while the average power, pulse width, and frequency applied to the HiPIMS Cr target are maintained constant. In addition, y decreases from 2.18 to 1.11 as a function of Pzrb2, as a result of supplying Cr to the growing film and preferential B resputtering caused by the pulsed Cr-ion flux. ZrB2.18, Zr0.77Cr0.23B1.52, Zr0.71Cr0.29B1.42, and Zr0.68Cr0.32B1.38 2 films have hexagonal AlB2 crystal structure with a columnar nanostructure, while Zr0.64Cr0.36B1.30 and Zr0.56Cr0.44B1.11 are  amorphous. All films show hardness above 30 GPa. Zr0.56Cr0.44B1.11 alloys exhibit much better toughness, wear, oxidation, and corrosion resistance than ZrB2.18. This combination of properties   makes Zr0.56Cr0.44B1.11 ideal candidates for numerous strategic applications.

    Download full text (pdf)
    fulltext
  • 14.
    Bakhit, Babak
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Engberg, David
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Högberg, Hans
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Petrov, Ivan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Univ Illinois, IL 61801 USA.
    Greene, Joseph E
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Univ Illinois, IL 61801 USA.
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Strategy for simultaneously increasing both hardness and toughness in ZrB2-rich Zr1-xTaxBy thin films2019In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 37, no 3, article id 031506Article in journal (Refereed)
    Abstract [en]

    Refractory transition-metal diborides exhibit inherent hardness. However, this is not always sufficient to prevent failure in applications involving high mechanical and thermal stress, since hardness is typically accompanied by brittleness leading to crack formation and propagation. Toughness, the combination of hardness and ductility, is required to avoid brittle fracture. Here, the authors demonstrate a strategy for simultaneously enhancing both hardness and ductility of ZrB2-rich thin films grown in pure Ar on Al2O3(0001) and Si(001) substrates at 475 degrees C. ZrB2.4 layers are deposited by dc magnetron sputtering (DCMS) from a ZrB2 target, while Zr1-xTaxBy alloy films are grown, thus varying the B/metal ratio as a function of x, by adding pulsed high-power impulse magnetron sputtering (HiPIMS) from a Ta target to deposit Zr1-xTaxBy alloy films using hybrid Ta-HiPIMS/ZrB2-DCMS sputtering with a substrate bias synchronized to the metal-rich portion of each HiPIMS pulse. The average power P-Ta (and pulse frequency) applied to the HiPIMS Ta target is varied from 0 to 1800W (0 to 300 Hz) in increments of 600W (100 Hz). The resulting boron-to-metal ratio, y = B/(Zr+Ta), in as-deposited Zr1-xTaxBy films decreases from 2.4 to 1.5 as P-Ta is increased from 0 to 1800W, while x increases from 0 to 0.3. A combination of x-ray diffraction (XRD), glancing-angle XRD, transmission electron microscopy (TEM), analytical Z-contrast scanning TEM, electron energy-loss spectroscopy, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, and atom-probe tomography reveals that all films have the hexagonal AlB2 crystal structure with a columnar nanostructure, in which the column boundaries of layers with 0 amp;lt;= x amp;lt; 0.2 are B-rich, whereas those with x amp;gt;= 0.2 are Ta-rich. The nanostructural transition, combined with changes in average column widths, results in an similar to 20% increase in hardness, from 35 to 42 GPa, with a simultaneous increase of similar to 30% in nanoindentation toughness, from 4.0 to 5.2MPa root m. Published by the AVS.

    Download full text (pdf)
    fulltext
  • 15.
    Bakhit, Babak
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Mráz, Stanislav
    Materials Chemistry, RWTH Aachen University, Aachen, Germany.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Schneider, Jochen M.
    Materials Chemistry, RWTH Aachen University, Aachen, Germany.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Petrov, Ivan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Materials Research Laboratory and Department of Materials Science, University of Illinois, Urbana, IL, USA; Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Dense Ti0.67Hf0.33B1.7 thin films grown by hybrid HfB2-HiPIMS/TiB2-DCMS co-sputtering without external heating2021In: Vacuum, ISSN 0042-207X, E-ISSN 1879-2715, Vol. 186, article id 110057Article in journal (Refereed)
    Abstract [en]

    There is a need for developing synthesis techniques that allow the growth of high-quality functional films at low substrate temperatures to minimize energy consumption and enable coating temperature-sensitive substrates. A typical shortcoming of conventional low-temperature growth strategies is insufficient atomic mobility, which leads to porous microstructures with impurity incorporation due to atmosphere exposure, and, in turn, poor mechanical properties. Here, we report the synthesis of dense Ti0.67Hf0.33B1.7 thin films with a hardness of ∼41.0 GPa grown without external heating (substrate temperature below ∼100 °C) by hybrid high-power impulse and dc magnetron co-sputtering (HfB2-HiPIMS/TiB2-DCMS) in pure Ar on Al2O3(0001) substrates. A substrate bias potential of −300 V is synchronized to the target-ion-rich portion of each HiPIMS pulse. The limited atomic mobility inherent to such desired low-temperature deposition is compensated for by heavy-mass ion (Hf+) irradiation promoting the growth of dense Ti0.67Hf0.33B1.7.

    Download full text (pdf)
    fulltext
  • 16.
    Bakhit, Babak
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Palisaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Persson, Per O.Å.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering.
    Rosen, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Petrov, Ivan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Materials Research Laboratory and Department of Materials Science, University of Illinois, Urbana IL 61801, USA; Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
    Greene, Joseph E
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Materials Research Laboratory and Department of Materials Science, University of Illinois, Urbana IL 61801, USA; Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Self-organized columnar Zr0.7Ta0.3B1.5 core/shell-nanostructure thin films2020In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 401, article id 126237Article in journal (Refereed)
    Abstract [en]

    We recently showed that Zr1−xTaxBy thin films have columnar nanostructure in which column boundaries are B-rich for x < 0.2, while Ta-rich for x ≥ 0.2. Layers with x ≥ 0.2 exhibit higher hardness and, simultaneously, enhanced toughness. Here, we determine the atomic-scale nanostructure of sputter-deposited columnar Zr0.7Ta0.3B1.5 thin films. The columns, 95 ± 17 Å, are core/shell nanostructures in which 80 ± 15-Å cores are crystalline hexagonal-AlB2-structure Zr-rich stoichiometric Zr1−xTaxB2. The shell structure is a narrow dense, disordered region that is Ta-rich and highly B-deficient. The cores are formed under intense ion mixing via preferential Ta segregation, due to the lower formation enthalpy of TaB2 than ZrB2, in response to the chemical driving force to form a stoichiometric compound. The films with unique combination of nanosized crystalline cores and dense metallic-glass-like shells provide excellent mechanical properties.

    Download full text (pdf)
    fulltext
  • 17.
    Bakhit, Babak
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Palisaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Thörnberg, Jimmy
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Persson, Per O A
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Petrov, Ivan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Univ Illinois, IL 61801 USA; Natl Taiwan Univ Sci & Technol, Taiwan.
    Greene, Joseph E
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Univ Illinois, IL 61801 USA; Natl Taiwan Univ Sci & Technol, Taiwan.
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Improving the high-temperature oxidation resistance of TiB2 thin films by alloying with Al2020In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 196, p. 677-689Article in journal (Refereed)
    Abstract [en]

    Refractory transition-metal diborides (TMB2) are candidates for extreme environments due to melting points above 3000 degrees C, excellent hardness, good chemical stability, and thermal and electrical conductivity. However, they typically suffer from rapid high-temperature oxidation. Here, we study the effect of Al addition on the oxidation properties of sputter-deposited TiB2-rich Ti1-xAlxBy thin films and demonstrate that alloying the films with Al significantly increases the oxidation resistance with a slight decrease in hardness. TiB2.4 layers are deposited by dc magnetron sputtering (DCMS) from a TiB2 target, while Ti1-xAlxBy alloy films are grown by hybrid high-power impulse and dc magnetron co-sputtering (Al-HiPIMS/TiB2-DCMS). All as-deposited films exhibit columnar structure. The column boundaries of TiB2.4 are B-rich, while Ti0.68Al0.32B1.35 alloys have Ti-rich columns surrounded by a Ti(1-x)Al(x)By tissue phase which is predominantly Al rich. Air-annealing TiB2.4 at temperatures above 500 degrees C leads to the formation of oxide scales that do not contain B and mostly consist of a rutile-TiO2 (s) phase. The resulting oxidation products are highly porous due to the evaporation of B2O3 (g) phase as well as the coarsening of TiO2 crystallites. This poor oxidation resistance is significantly improved by alloying with Al. While air-annealing at 800 degrees C for 0.5 h results in the formation of an similar to 1900-nm oxide scale on TiB2.4, the thickness of the scale formed on the Ti0.68Al0.32B1.35 alloys is similar to 470 nm. The enhanced oxidation resistance is attributed to the formation of a dense, protective Al-containing oxide scale that considerably decreases the oxygen diffusion rate by suppressing the oxide-crystallites coarsening. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

    Download full text (pdf)
    fulltext
  • 18.
    Bakhit, Babak
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Palisaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Wu, Zhengtao
    School of Electromechanical Engineering, Guangdong University of Technology, China.
    Sortica, Mauritio A.
    Applied Nuclear Physics, Department of Physics and Astronomy, Uppsala University, Sweden.
    Primetzhofer, Daniel
    Applied Nuclear Physics, Department of Physics and Astronomy, Uppsala University, Sweden.
    Persson, Per O. Å.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Petrov, Ivan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Materials Research Laboratory and Department of Materials Science, University of Illinois, USA; Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taiwan.
    Greene, Joseph E.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Materials Research Laboratory and Department of Materials Science, University of Illinois, USA; Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taiwan.
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Age hardening in superhard ZrB2-rich Zr1-xTaxBy thin films2021In: Scripta Materialia, ISSN 1359-6462, E-ISSN 1872-8456, Vol. 191, p. 120-125Article in journal (Refereed)
    Abstract [en]

    We recently showed that sputter-deposited Zr1-xTaxBy thin films have hexagonal AlB2-type columnar nanostructure in which column boundaries are B-rich for x < 0.2, while Ta-rich for x ≥ 0.2. As-deposited layers with x ≥ 0.2 exhibit higher hardness and, simultaneously, enhanced toughness. Here, we study the mechanical properties of ZrB2.4, Zr0.8Ta0.2B1.8, and Zr0.7Ta0.3B1.5 films annealed in Ar atmosphere as a function of annealing temperature Ta up to 1200 °C. In-situ and ex-situ nanoindentation analyses reveal that all films undergo age hardening up to Ta = 800 °C, with the highest hardness achieved for Zr0.8Ta0.2B1.8 (45.5±1.0 GPa). The age hardening, which occurs without any phase separation or decomposition, can be explained by point-defect recovery that enhances chemical bond density. Although hardness decreases at Ta > 800 °C due mainly to recrystallization, column coarsening, and planar defect annihilation, all layers show hardness values above 34 GPa over the entire Ta range.

    Download full text (pdf)
    fulltext
  • 19.
    Bakhit, Babak
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Petrov, Ivan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Univ Illinois, IL 61801 USA; Univ Illinois, IL 61801 USA.
    Greene, Joseph E
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Univ Illinois, IL 61801 USA; Univ Illinois, IL 61801 USA.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Controlling the B/Ti ratio of TiBx thin films grown by high-power impulse magnetron sputtering2018In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 36, no 3, article id 030604Article in journal (Refereed)
    Abstract [en]

    TiBx thin films grown from compound TiB2 targets by magnetron sputter deposition are typically highly over-stoichiometric, with x ranging from 3.5 to 2.4, due to differences in Ti and B preferential-ejection angles and gas-phase scattering during transport from the target to the substrate. Here, the authors demonstrate that stoichiometric TiB2 films can be obtained using highpower impulse magnetron sputtering (HiPIMS) operated in power-controlled mode. The B/Ti ratio x of films sputter-deposited in Ar is controllably varied from 2.08 to 1.83 by adjusting the length of HiPIMS pulses t(on) between 100 and 30 mu s, while maintaining average power and pulse frequency constant. This results in peak current densities J(T), peak ranging from 0.27 to 0.88 A/cm(2). Energy- and time-resolved mass spectrometry analyses of the ion fluxes incident at the substrate position show that the density of metal ions increases with decreasing t(on) due to a dramatic increase in J(T, peak) resulting in the strong gas rarefaction. With t(on)amp;lt;60 mu s (J(T),(peak)amp;gt; 0.4 A/cm(2)), film growth is increasingly controlled by ions incident at the substrate, rather than neutrals, as a result of the higher plasma dencity and, hence, electron-impact ionization probablity. Thus, since sputter- ejected Ti atoms have a higher probability of being ionized than B atoms, due to their lower first-ionization potential and larger ionization cross-section, the Ti concentration in as-deposited films increases with decreasing ton (increasing J(T,peak)) as ionized sputtered species are steered to the substrate by the plasma in order to maintain charge neutrality. Published by the AVS.

    Download full text (pdf)
    fulltext
  • 20.
    Bakhit, Babak
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Primetzhofer, Daniel
    Uppsala University, Sweden.
    Pitthan, Eduardo
    Uppsala University, Sweden.
    Sortica, Mauricio A.
    Uppsala University, Sweden.
    Ntemou, Eleni
    Uppsala University, Sweden.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Petrov, Ivan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. University of Illinois, USA; National Taiwan University of Science and Technology, Taiwan.
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Systematic compositional analysis of sputter-deposited boron-containing thin films2021In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 39, no 6, article id 063408Article in journal (Refereed)
    Abstract [en]

    Boron-containing materials exhibit a unique combination of ceramic and metallic properties that are sensitively dependent on their given chemical bonding and elemental compositions. However, determining the composition, let alone bonding, with sufficient accuracy is cumbersome with respect to boron, being a light element that bonds in various coordinations. Here, we report on the comprehensive compositional analysis of transition-metal diboride (TMBx) thin films (TM = Ti, Zr, and Hf) by energy-dispersive x-ray spectroscopy (EDX), x-ray photoelectron spectroscopy (XPS), time-of-flight elastic recoil detection analysis (ToF-ERDA), Rutherford backscattering spectrometry (RBS), and nuclear reaction analysis (NRA). The films are grown on Si and C substrates by dc magnetron sputtering from stoichiometric TMB2 targets and have hexagonal AlB2-type columnar structures. EDX considerably overestimates B/TM ratios, x, compared to the other techniques, particularly for ZrBx. The B concentrations obtained by XPS strongly depend on the energy of Ar+ ions used for removing surface oxides and contaminants prior to analyses and are more reliable for 0.5 keV Ar+. ToF-ERDA, RBS, and NRA yield consistent compositions in TiBx. They also prove TiBx and ZrBx films to be homogeneous with comparable B/TM ratios for each film. However, ToF-ERDA, employing a 36-MeV 127I8+ beam, exhibits challenges in depth resolution and quantification of HfBx due to plural and multiple scattering and associated energy loss straggling effects. Compared to ToF-ERDA, RBS (for the film grown on C substrates) and NRA provide more reliable B/Hf ratios. Overall, a combination of methods is recommended for accurately pinpointing the compositions of borides that contain heavy transition metals.

    Download full text (pdf)
    fulltext
  • 21.
    Björk, Jonas
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering.
    Halim, Joseph
    Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering.
    Zhou, Jie
    Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering.
    Predicting chemical exfoliation: fundamental insights into the synthesis of MXenes2023In: NPJ 2D MATERIALS AND APPLICATIONS, ISSN 2397-7132, Vol. 7, no 1, article id 5Article in journal (Refereed)
    Abstract [en]

    The factors controlling the top-down synthesis of MXenes, by selectively removing the A elements from parent MAX phases, is still under debate. In particular, understanding why some MAX phases can be used for creating MXenes, while others cannot, is of immense interest and would greatly support computational screening and identification of new two-dimensional materials that could also be created by chemical exfoliation. Here we computationally study the etching of MAX phases in hydrofluoric acid, considering the complete exfoliation process and competing processes during the initial steps of the synthesis. The results are compared to experiments and MAX phases successfully converted to MXenes, as well as so far unsuccessful attempts, including previously unpublished experimental data, rationalizing why some MAX phases are exfoliable while others are not. Our results provide an improved understanding of the synthesis of MXenes under acid conditions, anticipated to be vital for our ability to discover novel two-dimensional materials.

    Download full text (pdf)
    fulltext
  • 22.
    Björk, Jonas
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering.
    Functionalizing MXenes by Tailoring Surface Terminations in Different Chemical Environments2021In: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 33, no 23, p. 9108-9118Article in journal (Refereed)
    Abstract [en]

    Two-dimensional metal carbides and nitrides-MXenes-represent a group of materials which have attained growing attention over the last decade due to their chemical versatility, making them highly promising in areas such as energy storage, superconductivity, and heterogenous catalysis. Surface terminations are a natural consequence of the MXene synthesis, conventionally consisting of O, OH, and F. However, recent studies have extended the chemical domain of the surface terminations to other elements, and they should be considered as an additional parameter governing the MXene properties. There is a shortfall in the understanding of how various chemical species could act as terminations on different MXenes. In particular, there is limited comprehension in which chemical environments different terminations are stable. Here, we present an extensive theoretical study of the surface terminations of MXenes in different atmospheres by considering in total six experimentally achieved MXenes (Ti2C, Nb2C, V2C, Mo2C, Ti3C2, and Nb4C3) and twelve surface terminations (O, OH, N, NH, NH2, S, SH, H, F, Cl, Br, and I). We consider fully terminated (single termination) MXenes and also the impact of substituting individual terminations. Our study provides insights into what terminations are stable on which MXenes in different chemical environments, with predictions of how to obtain single-termination MXenes and which MXenes are resilient under ambient conditions. In addition, we propose synthesis protocols of MXenes which have not yet been realized in experiments. It is anticipated that alongside the development of new synthesis routes, our study will provide design rules for how to tailor the surface terminations of MXenes.

    Download full text (pdf)
    fulltext
  • 23.
    Björk, Jonas
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering.
    Sanchez-Sanchez, Carlos
    Swiss Fed Labs Mat Sci & Technol, Switzerland; Inst Mat Sci Madrid ICMM CSIC, Spain.
    Chen, Qiang
    Max Planck Inst Polymer Res, Germany; Univ Oxford, England.
    Pignedoli, Carlo A.
    Swiss Fed Labs Mat Sci & Technol, Switzerland.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering.
    Ruffieux, Pascal
    Swiss Fed Labs Mat Sci & Technol, Switzerland.
    Feng, Xinliang
    Tech Univ Dresden, Germany; Tech Univ Dresden, Germany.
    Narita, Akimitsu
    Max Planck Inst Polymer Res, Germany; Okinawa Inst Sci & Technol Grad Univ, Japan.
    Mullen, Klaus
    Max Planck Inst Polymer Res, Germany.
    Fasel, Roman
    Swiss Fed Labs Mat Sci & Technol, Switzerland; Univ Bern, Switzerland.
    The Role of Metal Adatoms in a Surface-Assisted Cyclodehydrogenation Reaction on a Gold Surface2022In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 61, no 49, article id e202212354Article in journal (Refereed)
    Abstract [en]

    Dehydrogenation reactions are key steps in many metal-catalyzed chemical processes and in the on-surface synthesis of atomically precise nanomaterials. The principal role of the metal substrate in these reactions is undisputed, but the role of metal adatoms remains, to a large extent, unanswered, particularly on gold substrates. Here, we discuss their importance by studying the surface-assisted cyclodehydrogenation on Au(111) as an ideal model case. We choose a polymer theoretically predicted to give one of two cyclization products depending on the presence or absence of gold adatoms. Scanning probe microscopy experiments observe only the product associated with adatoms. We challenge the prevalent understanding of surface-assisted cyclodehydrogenation, unveiling the catalytic role of adatoms and their effect on regioselectivity. The study adds new perspectives to the understanding of metal catalysis and the design of on-surface synthesis protocols for novel carbon nanomaterials.

    Download full text (pdf)
    fulltext
  • 24.
    Cao, Nan
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Tech Univ Munich, Germany.
    Yang, Biao
    Tech Univ Munich, Germany.
    Riss, Alexander
    Tech Univ Munich, Germany.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering.
    Björk, Jonas
    Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering.
    Barth, Johannes V.
    Tech Univ Munich, Germany.
    On-surface synthesis of enetriynes2023In: Nature Communications, E-ISSN 2041-1723, Vol. 14, no 1, article id 1255Article in journal (Refereed)
    Abstract [en]

    Belonging to the enyne family, enetriynes comprise a distinct electron-rich all-carbon bonding scheme. However, the lack of convenient synthesis protocols limits the associated application potential within, e.g., biochemistry and materials science. Herein we introduce a pathway for highly selective enetriyne formation via tetramerization of terminal alkynes on a Ag(100) surface. Taking advantage of a directing hydroxyl group, we steer molecular assembly and reaction processes on square lattices. Induced by O-2 exposure the terminal alkyne moieties deprotonate and organometallic bis-acetylide dimer arrays evolve. Upon subsequent thermal annealing tetrameric enetriyne-bridged compounds are generated in high yield, readily self-assembling into regular networks. We combine high-resolution scanning probe microscopy, X-ray photoelectron spectroscopy and density functional theory calculations to examine the structural features, bonding characteristics and the underlying reaction mechanism. Our study introduces an integrated strategy for the precise fabrication of functional enetriyne species, thus providing access to a distinct class of highly conjugated pi-system compounds. Enetriynes, which belong to the enyne family, are characterized by a distinct electron-rich carbon-bonding scheme. Here, the authors report the formation of enetriynes with high selectivity by tetramerization of terminal alkynes on Ag(100).

    Download full text (pdf)
    fulltext
  • 25.
    Carlsson, Adam
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering.
    Dahlqvist, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering.
    Finding stable multi-component materials by combining cluster expansion and crystal structure predictions2023In: npj Computational Materials, E-ISSN 2057-3960, Vol. 9, no 1, article id 21Article in journal (Refereed)
    Abstract [en]

    A desired prerequisite when performing a quantum mechanical calculation is to have an initial idea of the atomic positions within an approximate crystal structure. The atomic positions combined should result in a system located in, or close to, an energy minimum. However, designing low-energy structures may be a challenging task when prior knowledge is scarce, specifically for large multi-component systems where the degrees of freedom are close to infinite. In this paper, we propose a method for identification of low-energy crystal structures within multi-component systems by combining cluster expansion and crystal structure predictions with density-functional theory calculations. Crystal structure prediction searches are applied to the Mo2AlB2 and Sc2AlB2 ternary systems to identify candidate structures, which are subsequently used to explore the quaternary (pseudo-binary) (MoxSc1-x)(2)AlB2 system through the cluster expansion formalism utilizing the ground-state search approach. Furthermore, we show that utilizing low-energy structures found within the cluster expansion ground-state search as seed structures within crystal structure predictions of (MoxSc1-x)(2)AlB2 can significantly reduce the computational demands. With this combined approach, we not only correctly identified the recently discovered Mo(4/3)Sc(2/3)AlB(2)i-MAB phase, comprised of in-plane chemical ordering of Mo and Sc and with Al in a Kagome lattice, but also predict additional low-energy structures at various concentrations. This result demonstrates that combining crystal structure prediction with cluster expansion provides a path for identifying low-energy crystal structures in multi-component systems by employing the strengths from both frameworks.

    Download full text (pdf)
    fulltext
  • 26.
    Carlsson, Adam
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering.
    Dahlqvist, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering.
    Theoretical predictions of phase stability for orthorhombic and hexagonal ternary MAB phases2022In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 24, no 18, p. 11249-11258Article in journal (Refereed)
    Abstract [en]

    In the quest for finding novel thermodynamically stable, layered, MAB phases promising for synthesis, we herein explore the phase stability of ternary MAB phases by considering both orthorhombic and hexagonal crystal symmetries for various compositions (MAB, M2AB2, M3AB4, M4AB4, and M4AB6 where M = Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, and Co, A = Al, Ga, and In, and B is boron). The thermodynamic stability of seven previously synthesized MAB phases is confirmed, three additional phases are predicted to be stable, and 23 phases are found to be close to stable. Furthermore, the crystal symmetry preference for forming orthorhombic or hexagonal crystal structures is investigated where the considered Al-based MAB phases tend to favour orthorhombic structures whereas Ga- and In-based phases in general prefer hexagonal structures. The theoretically predicted stable MAB phases along with the structural preference is intended to both guide experimental efforts and to give an insight into the stability for different crystal symmetries of MAB phases.

    Download full text (pdf)
    fulltext
  • 27.
    Chaix-Pluchery, O.
    et al.
    University of Grenoble Alpes, France.
    Thore, Andreas
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Kota, S.
    Drexel University, PA 19104 USA.
    Halim, Joseph
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Drexel University, PA 19104 USA.
    Hu, C.
    Drexel University, PA 19104 USA.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Ouisse, T.
    University of Grenoble Alpes, France.
    Barsoum, M. W.
    Drexel University, PA 19104 USA.
    First-order Raman scattering in three-layered Mo-based ternaries: MoAlB, Mo2Ga2C and Mo2GaC2017In: Journal of Raman Spectroscopy, ISSN 0377-0486, E-ISSN 1097-4555, Vol. 48, no 5, p. 631-638Article in journal (Refereed)
    Abstract [en]

    Here, we report, for the first time, on the first-order Raman spectra of the layered Mo-based ternaries: MoAlB, Mo2Ga2C and Mo2GaC. Polycrystalline samples were fabricated, and well-defined Raman spectra were recorded. When the experimental peak positions were compared with those predicted from density functional theory, good agreement was obtained, indirectly validating both. Furthermore, all modes in the three compounds were symmetry assigned. Copyright (c) 2017 John Wiley amp; Sons, Ltd.

    Download full text (pdf)
    fulltext
  • 28.
    Champagne, A.
    et al.
    UCLouvain, Belgium.
    Chaix-Pluchery, O.
    Univ Grenoble Alpes, France.
    Ouisse, T.
    Univ Grenoble Alpes, France.
    Pinek, D.
    Univ Grenoble Alpes, France.
    Gelard, I
    Univ Grenoble Alpes, France.
    Jouffret, L.
    Univ Clermont Auvergne, France.
    Barbier, M.
    Univ Grenoble Alpes, France; European Synchrotron Radiat Facil, France.
    Wilhelm, F.
    European Synchrotron Radiat Facil, France.
    Tao, Quanzheng
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Barsoum, M. W.
    Drexel Univ, PA 19104 USA.
    Charlier, J-C
    UCLouvain, Belgium.
    First-order Raman scattering of rare-earth containing i-MAX single crystals (Mo2/3RE1/3)(2)AlC (RE = Nd, Gd, Dy, Ho, Er)2019In: Physical Review Materials, E-ISSN 2475-9953, Vol. 3, no 5, article id 053609Article in journal (Refereed)
    Abstract [en]

    Herein, we report on the growth of single crystals of various (Mo2/3RE1/3)(2)AlC (RE = Nd, Gd, Dy, Ho, Er) i-MAX phases and their Raman characterization. Using first principles, the wave numbers of the various phonon modes and their relative atomic displacements are calculated and compared to experimental results. Twelve high-intensity Raman peaks are identified as the fingerprint of this new family of rare-earth containing i-MAX phases, thus being a useful tool to investigate their corresponding composition and structural properties. Indeed, while a redshift is observed in the low-wave-number range due to an increase of the rare-earth atomic mass when moving from left to right on the lanthanide row, a blueshift is observed for most of the high-wave-number modes due to a strengthening of the bonds. A complete classification of bond stiffnesses is achieved based on the direct dependence of a phonon mode wave number with respect to the bond stiffness. Finally, STEM images are used to confirm the crystal structure.

    Download full text (pdf)
    fulltext
  • 29.
    Chen, Liugang
    et al.
    Katholieke Univ Leuven, Belgium.
    Dahlqvist, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lapauw, Thomas
    Katholieke Univ Leuven, Belgium; SCK CEN, Belgium.
    Tunca, Bensu
    Katholieke Univ Leuven, Belgium; SCK CEN, Belgium.
    Wang, Fei
    Katholieke Univ Leuven, Belgium.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Meshkian, Rahele
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lambrinou, Konstantina
    SCK CEN, Belgium.
    Blanpain, Bart
    Katholieke Univ Leuven, Belgium.
    Vleugels, Jozef
    Katholieke Univ Leuven, Belgium.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Theoretical Prediction and Synthesis of (Cr2/3Zr1/3)(2)AIC i-MAX Phase2018In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 57, no 11, p. 6237-6244Article in journal (Refereed)
    Abstract [en]

    Guided by predictive theory, a new compound with chemical composition (Cr2/3Zr1/3)(2)AlC was synthesized by hot pressing of Cr, ZrH2, Al, and C mixtures at 1300 degrees C. The crystal structure is monoclinic of space group C2/c and displays in-plane chemical order in the metal layers, a so-called i-MAX phase. Quantitative chemical composition analyses confirmed that the primary phase had a (Cr2/3Zr1/3)(2)AlC stoichiometry, with secondary Cr2AlC, AlZrC2, and ZrC phases and a small amount of Al-Cr intermetallics. A theoretical evaluation of the (Cr2/3Zr1/3)(2)AlC magnetic structure was performed, indicating an antiferromagnetic ground state. Also (Cr2/3Zr1/3)(2)AlC, of the same structure, was predicted to be stable.

  • 30.
    Dahlqvist, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics . Linköping University, The Institute of Technology.
    Abrikosov, Igor A.
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics . Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Phase stability of Ti2AlC upon oxygen incorporation: A first-principles investigation2010In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 81, no 2, p. 024111-1-024111-8Article in journal (Refereed)
    Abstract [en]

    The phase stability of Ti2AlC upon oxygen incorporation has been studied by means of first-principles calculations. Recent experimental observations of this so-called MAX phase (M = early transition metal, A = A-group element, and X = C or N) show that the characteristic nanolaminated structure is retained upon oxygen incorporation, with strong indications of O substituting for C. Therefore, a solid solution of C and O on the carbon sublattice has been simulated by the so-called special quasirandom structure method. Through a developed systematic approach, the enthalpy of formation of Ti2Al(C1−x,Ox) has been compared to all experimentally known competing phases, and has been found favorable for all C to O ratios at the composition of the MAX phase. A negative isostructural formation enthalpy has also been predicted for Ti2Al(C1−x,Ox). Altogether, the results indicate that a large amount of oxygen, at least up to x=0.75, might be present in the Ti2AlC MAX-phase structure without decomposition of the material into its competing phases. Furthermore, an effect of an increased oxygen content is a corresponding increase in the bulk modulus and a change in electronic properties. These results are of importance for further understanding and identification of possible composition range of the MAX-phase oxycarbide, and hence for the prospect of tuning the material properties by a varying incorporation of oxygen.

    Download full text (pdf)
    FULLTEXT02
  • 31.
    Dahlqvist, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology.
    Abrikosov, Igor
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Magnetic nanoscale laminates with tunable exchange coupling from first principles2011In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 84, no 22, article id 220403Article in journal (Refereed)
    Abstract [en]

    The M(n+1)AX(n) (MAX) phases are nanolaminated compounds with a unique combination of metallic and ceramic properties, not yet including magnetism. We carry out a systematic theoretical study of potential magnetic MAX phases and predict the existence of stable magnetic (Cr(1-x)Mn(x))(2)AlC alloys. We show that in this system ferromagnetically ordered Mn layers are exchange coupled via nearly nonmagnetic Cr layers, forming an inherent structure of atomic-thin magnetic multilayers, and that the degree of disorder between Cr and Mn in the alloy can be used to tune the sign and magnitude of the coupling.

    Download full text (pdf)
    fulltext
  • 32.
    Dahlqvist, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Ingason, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Magnus, F.
    2Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden.
    Thore, Andreas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Petruhins, Andrejs
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Mockute, Aurelija
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Meshkian, Rahele
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Sahlberg, M.
    3Department of Chemistry, The Ångström Laboratory, Uppsala University, Uppsala, Sweden.
    Persson, Per O A
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hjörvarsson, B.
    Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden.
    Abrikosov, A.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Complex magnetism in nanolaminated Mn2GaC2014Manuscript (preprint) (Other academic)
    Abstract [en]

    We have used first-principles calculations and Heisenberg Monte Carlo simulations to search for the magnetic ground state of Mn2GaC, a recently synthesized magnetic nanolaminate. We have, independent on method, identified a range of low energy collinear as well as non-collinear magnetic configurations, indicating a highly frustrated magnetic material with several nearly degenerate magnetic states. An experimentally obtained magnetization of only 0.29 per Mn atom in Mn2GaC may be explained by canted spins in an antiferromagnetic configuration of ferromagnetically ordered sub-layers with alternating spin orientation, denoted AFM[0001]. Furthermore, low temperature X-ray diffraction show a new basal plane peak appearing upon a magnetic transition, which is consistent with the here predicted change in inter-layer spacing for the AFM[0001] configuration.

  • 33.
    Dahlqvist, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    A critical evaluation of GGA plus U modeling for atomic, electronic and magnetic structure of Cr2AlC, Cr2GaC and Cr2GeC2015In: Journal of Physics: Condensed Matter, ISSN 0953-8984, E-ISSN 1361-648X, Vol. 27, no 9, p. 095601-Article in journal (Refereed)
    Abstract [en]

    In this work we critically evaluate methods for treating electron correlation effects in multicomponent carbides using a GGA + U framework, addressing doubts from previous works on the usability of density functional theory in the design of magnetic MAX phases. We have studied the influence of the Hubbard U-parameter, applied to Cr 3d orbitals, on the calculated lattice parameters, magnetic moments, magnetic order, bulk modulus and electronic density of states of Cr2AlC, Cr2GaC and Cr2GeC. By considering non-, ferro-, and five different antiferromagnetic spin configurations, we show the importance of including a broad range of magnetic orders in the search for MAX phases with finite magnetic moments in the ground state. We show that when electron correlation is treated on the level of the generalized gradient approximation (U = 0 eV), the magnetic ground state of Cr(2)AC (A = Al, Ga, Ge) is in-plane antiferromagnetic with finite Cr local moments, and calculated lattice parameters and bulk modulus close to experimentally reported values. By comparing GGA and GGA + U results with experimental data we find that using a U-value larger than 1 eV results in structural parameters deviating strongly from experimentally observed values. Comparisons are also done with hybrid functional calculations (HSE06) resulting in an exchange splitting larger than what is obtained for a U-value of 2 eV. Our results suggest caution and that investigations need to involve several different magnetic orders before lack of magnetism in calculations are blamed on the exchange-correlation approximations in this class of magnetic MAX phases.

    Download full text (pdf)
    fulltext
  • 34.
    Dahlqvist, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Correlation between magnetic state and bulk modulus of Cr2AlC2013In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 113, no 21Article in journal (Refereed)
    Abstract [en]

    The effect of magnetism on the bulk modulus (B0) of M2AlC (M  = Ti, V, and Cr) has been studied using first principles calculations. We find that it is possible to identify an energetically favorable magnetic Cr2AlC phase without using any adjustable parameter, such as the Hubbard U. Furthermore, we show that an in-plane spin polarized configuration has substantially lower B0 as compared to the non-magnetic model. The existences of local magnetic moments on Cr atoms considerably improve agreement between theory and experiment regarding trends in B0 for M2AlC phases.

    Download full text (pdf)
    fulltext
  • 35.
    Dahlqvist, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Magnetic ground state of Cr2AlC, Cr2GaC, and Cr2GeC from first-principles interplay of spin configurations and strong electrons correlation2014Manuscript (preprint) (Other academic)
    Abstract [en]

    We have studied the interplay between spin configuration and electron correlations approximations as well as their influence on calculated lattice parameters, magnetic moments, and bulk modulus of the nanolaminated MAX phase materials Cr2AlC, Cr2GaC, and Cr2GeC. By considering non-, ferro- and, and five different antiferromagnetic configurations, we show the importance of including a broad range of magnetic states in search for the ground state. Our calculations show that when electron correlation is treated on the level of the generalized gradient approximation or with an additional Hubbard U interaction term up to a value of 1 eV, the magnetic ground state of Cr2AC (A=Al, Ga, Ge) is in-plane antiferromagnetic with finite Cr local moments and calculated lattice parameters and bulk modulus close to experimentally reported values.

  • 36.
    Dahlqvist, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics . Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Stability trends of MAX phases from first principles2010In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 81, no 22, p. 220102-Article in journal (Refereed)
    Abstract [en]

    We have developed a systematic method to investigate the phase stability of M(n+1)AX(n) phases, here applied for M=Sc, Ti, V, Cr, or Mn, A=Al, and X=C or N. Through a linear optimization procedure including all known competing phases, we identify the set of most competitive phases for n=1-3 in each system. Our calculations completely reproduce experimental occurrences of stable MAX phases. We also identify and suggest an explanation for the trend in stability as the transition metal is changed across the 3d series for both carbon- and nitrogen-based systems. Based on our results, the method can be used to predict stability of potentially existing undiscovered phases.

    Download full text (pdf)
    FULLTEXT01
  • 37.
    Dahlqvist, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Ingason, Arni Sigurdur
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Magnus, F.
    Uppsala University, Sweden.
    Thore, Andreas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Petruhins, Andrejs
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Mockuté, Aurelija
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Arnalds, U. B.
    University of Iceland, Iceland.
    Sahlberg, M.
    Uppsala University, Sweden.
    Hjorvarsson, B.
    Uppsala University, Sweden.
    Abrikosov, Igor
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering. National University of Science and Technology MISIS, Russia; Tomsk State University, Russia.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Magnetically driven anisotropic structural changes in the atomic laminate Mn2GaC2016In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 93, no 1, p. 014410-Article in journal (Refereed)
    Abstract [en]

    Inherently layered magnetic materials, such as magnetic M(n+1)AX(n) (MAX) phases, offer an intriguing perspective for use in spintronics applications and as ideal model systems for fundamental studies of complex magnetic phenomena. The MAX phase composition M(n+1)AX(n) consists of M(n+1)AX(n) blocks separated by atomically thin A-layers where M is a transition metal, A an A-group element, X refers to carbon and/or nitrogen, and n is typically 1, 2, or 3. Here, we show that the recently discovered magnetic Mn2GaC MAX phase displays structural changes linked to the magnetic anisotropy, and a rich magnetic phase diagram which can be manipulated through temperature and magnetic field. Using first-principles calculations and Monte Carlo simulations, an essentially one-dimensional (1D) interlayer plethora of two-dimensioanl (2D) Mn-C-Mn trilayers with robust intralayer ferromagnetic spin coupling was revealed. The complex transitions between them were observed to induce magnetically driven anisotropic structural changes. The magnetic behavior as well as structural changes dependent on the temperature and applied magnetic field are explained by the large number of low energy, i.e., close to degenerate, collinear and noncollinear spin configurations that become accessible to the system with a change in volume. These results indicate that the magnetic state can be directly controlled by an applied pressure or through the introduction of stress and show promise for the use of Mn2GaC MAX phases in future magnetoelectric and magnetocaloric applications.

    Download full text (pdf)
    fulltext
  • 38.
    Dahlqvist, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Jansson, Ulf
    Uppsala University, Sweden.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Influence of boron vacancies on phase stability, bonding and structure of MB2 (M = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W) with AlB2 type structure2015In: Journal of Physics: Condensed Matter, ISSN 0953-8984, E-ISSN 1361-648X, Vol. 27, no 43, p. 435702-Article in journal (Refereed)
    Abstract [en]

    Transition metal diborides in hexagonal AlB2 type structure typically form stable MB2 phases for group IV elements (M = Ti, Zr, Hf). For group V (M = V, Nb, Ta) and group VI (M = Cr, Mo, W) the stability is reduced and an alternative hexagonal rhombohedral MB2 structure becomes more stable. In this work we investigate the effect of vacancies on the B-site in hexagonal MB2 and its influence on the phase stability and the structure for TiB2, ZrB2, HfB2, VB2, NbB2, TaB2, CrB2, MoB2, and WB2 using first-principles calculations. Selected phases are also analyzed with respect to electronic and bonding properties. We identify trends showing that MB2 with M from group V and IV are stabilized when introducing B-vacancies, consistent with a decrease in the number of states at the Fermi level and by strengthening of the B-M interaction. The stabilization upon vacancy formation also increases when going from M in period 4 to period 6. For TiB2, ZrB2, and HfB2, introduction of B-vacancies have a destabilizing effect due to occupation of B-B antibonding orbitals close to the Fermi level and an increase in states at the Fermi level.

    Download full text (pdf)
    fulltext
  • 39.
    Dahlqvist, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Meshkian, Rahele
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Tao, Quanzheng
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Prediction and synthesis of a family of atomic laminate phases with Kagome-like and in-plane chemical ordering2017In: Science Advances, E-ISSN 2375-2548, Vol. 3, no 7, article id e1700642Article in journal (Refereed)
    Abstract [en]

    The enigma of MAX phases and their hybrids prevails. We probe transition metal (M) alloying in MAX phases for metal size, electronegativity, and electron configuration, and discover ordering in these MAX hybrids, namely, (V2/3Zr1/3)(2)AlC and (Mo2/3Y1/3)(2)AlC. Predictive theory and verifying materials synthesis, including a judicious choice of alloying M from groups III to VI and periods 4 and 5, indicate a potentially large family of thermodynamically stable phases, with Kagome-like and in-plane chemical ordering, and with incorporation of elements previously not known for MAX phases, including the common Y. We propose the structure to be monoclinic C2/c. As an extension of the work, we suggest a matching set of novel MXenes, from selective etching of the A-element. The demonstrated structural design on simultaneous two-dimensional (2D) and 3D atomic levels expands the property tuning potential of functional materials.

    Download full text (pdf)
    fulltext
  • 40.
    Dahlqvist, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Meshkian, Rahele
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Dataset on the structure and thermodynamic and dynamic stability of Mo2ScAlC2 from experiments and first-principles calculations.2017In: Data In Brief, ISSN 2352-3409, Vol. 10, p. 576-582Article in journal (Refereed)
    Abstract [en]

    The data presented in this paper are related to the research article entitled "Theoretical stability and materials synthesis of a chemically ordered MAX phase, Mo2ScAlC2, and its two-dimensional derivate Mo2ScC" (Meshkian et al. 2017) [1]. This paper describes theoretical phase stability calculations of the MAX phase alloy MoxSc3-xAlC2 (x=0, 1, 2, 3), including chemical disorder and out-of-plane order of Mo and Sc along with related phonon dispersion and Bader charges, and Rietveld refinement of Mo2ScAlC2. The data is made publicly available to enable critical or extended analyzes.

    Download full text (pdf)
    fulltext
  • 41.
    Dahlqvist, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Petruhins, Andrejs
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Origin of Chemically Ordered Atomic Laminates (i-MAX): Expanding the Elemental Space by a Theoretical/Experimental Approach2018In: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 12, no 8, p. 7761-7770Article in journal (Refereed)
    Abstract [en]

    With increased chemical diversity and structural complexity comes the opportunities for innovative materials possessing advantageous properties. Herein, we combine predictive first-principles calculations with experimental synthesis, to explore the origin of formation of the atomically laminated i-MAX phases. By probing (Mo2/3M1/32)(2)AC (where M-2 = Sc, Y and A = Al, Ga, In, Si, Ge, In), we predict seven stable i-MAX phases, five of which should have a retained stability at high temperatures. (Mo2/3Sc1/3)(2)GaC and (Mo2/3Y1/3)(2)GaC were experimentally verified, displaying the characteristic in-plane chemical order of Mo and Sc/Y and Kagome-like ordering of the A-element. We suggest that the formation of i-MAX phases requires a significantly different size of the two metals, and a preferable smaller size of the A-element. Furthermore, the population of antibonding orbitals should be minimized, which for the metals herein (Mo and Sc/Y) means that A elements from Group 13 (Al, Ga, In) are favored over Group 14 (Si, Ge, Sn). Using these guidelines, we foresee a widening of elemental space for the family of i-MAX phases and expect more phases to be synthesized, which will realize useful properties. Furthermore, based on i-MAX phases as parent materials for 2D MXenes, we also expect that the range of MXene compositions will be expanded.

    Download full text (pdf)
    fulltext
  • 42.
    Dahlqvist, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering.
    Chemical order or disorder - a theoretical stability expose for expanding the compositional space of quaternary metal borides2022In: Materials Advances, E-ISSN 2633-5409, Vol. 3, no 6, p. 2908-2917Article in journal (Refereed)
    Abstract [en]

    Inspired by the recent discovery of Ti4MoSiB2, a quaternary phase with out-of-plane chemical order that we denote as o-MAB, we perform an extensive first-principles study to explore the attained chemical order and disorder (solid-solution) upon metal alloying of M(5)AB(2) (T2 phases), with M from Groups 3 to 9 and A = Al, Si, P, Ga, and Ge. We show that the attainable chemistries of T2 can be significantly expanded and predict 35 chemically ordered o-MAB phases and 121 solid solutions of an MM-4 AB(2) stoichiometry. The possibility of realizing o-MAB or solid solution MAB phases combined with multiple elemental combinations previously not observed in these borides suggests an increased property tuning potential. Furthermore, five ternary T2 phases, yet to be synthesized, are also predicted to be stable.

    Download full text (pdf)
    fulltext
  • 43.
    Dahlqvist, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Impact of strain, pressure, and electron correlation on magnetism and crystal structure of Mn2GaC from first-principles2020In: Scientific Reports, E-ISSN 2045-2322, Vol. 10, no 1Article in journal (Refereed)
    Abstract [en]

    The atomically laminated Mn2GaC has previously been synthesized as a heteroepitaxial thin film and found to be magnetic with structural changes linked to the magnetic anisotropy. Related theoretical studies only considered bulk conditions and thus neglected the influence from possible strain linked to the choice of substrate. Here we employ first principles calculations considering different exchange-correlation functionals (PBE, PW91, PBEsol, AM05, LDA) and effect from use of+U methods (or not) combined with a magnetic ground-state search using Heisenberg Monte Carlo simulations, to study influence from biaxial in-plane strain and external pressure on the magnetic and crystal structure of Mn2GaC. We find that PBE and PBE+U, with U-eff &lt;= 0.25 eV, gives both structural and magnetic properties in quantitative agreement with available experimental data. Our results also indicate that strain related to choice of substrate or applied pressure is a route for accessing different spin configurations, including a ferromagnetic state. Moreover, the easy axis is parallel to the atomic planes and the magnetocrystalline anisotropy energy can be increased through strain engineering by expanding the in-plane lattice parameter a. Altogether, we show that a quantitative description of the structural and magnetic properties of Mn2GaC is possible using PBE, which opens the way for further computational studies of these and related materials.

    Download full text (pdf)
    fulltext
  • 44.
    Dahlqvist, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering.
    Impact of vacancies on structure, stability and properties of hexagonal transition metal diborides, MB2 (M = Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, and Fe)2022In: Materialia, E-ISSN 2589-1529, Vol. 26, article id 101629Article in journal (Refereed)
    Abstract [en]

    In this study, we have used density functional theory (DFT) calculations to characterize if and how defects influence the stability and electronic/mechanical properties of MB2 (AlB2-type) for different transition metal M. From a point defect analysis including vacancies, interstitials, and anti-sites, we identify vacancies to be most favored, or least unfavored. To provide insight into possible vacancy ordering, we focus on vacancies on M- and B-sublattices for nine metals (M = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W), modelled both as disordered and ordered. We demonstrate and explain why vacancies have a significant impact for M from Group 4 (Ti, Zr, Hf), Group 5 (Nb, Ta) and 6 (Mo, W) with improved thermodynamical and dynamical stability as well as mechanical properties. This by diverging from the ideal composition through controlled off-stoichiometry in terms of vacancies in M- or B-deficient structures. Line compounds TiB2, ZrB2 and HfB2 account for B-poor or M-rich conditions by forming planar defects comprised of vacant B. This in contrast to the ordered M- and B vacancies identified for MoB2 and WB2, with an optimal result at 33.33% M- and 25% B-vacancies, respectively, which significantly improves the stability and concurrent properties through elimination of antibonding states and minimization of non-bonding states. Similar behavior with enhanced stability and properties is demonstrated for NbB2 and TaB2 with an optimum around 10% M- and 17% B-vacancies, respectively.

    Download full text (pdf)
    fulltext
  • 45.
    Dahlqvist, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Order and disorder in quaternary atomic laminates from first-principles calculations2015In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 17, no 47, p. 31810-31821Article in journal (Refereed)
    Abstract [en]

    We report on the phase stability of chemically ordered and disordered quaternary MAX phases - TiMAlC, TiM2AlC2, MTi2AlC2, and Ti2M2AlC3 where M = Zr, Hf (group IV), M = V, Nb, Ta (group V), and M = Cr, Mo, W (group VI). At 0 K, layered chemically ordered structures are predicted to be stable for M from groups V and VI. By taking into account the configurational entropy, an order-disorder temperature T-disorder can be estimated. TiM2AlC2 (M = Cr, Mo, W) and Ti2M2AlC3 (M = Mo, W) are found with Tdisorder 4 1773 K and are hence predicted to be ordered at the typical bulk synthesis temperature of 1773 K. Other ordered phases, even though metastable at elevated temperatures, may be synthesized by non-equilibrium methods such as thin film growth. Furthermore, phases predicted not to be stable in any form at 0 K can be stabilized at higher temperatures in a disordered form, being the case for group IV, for MTi2AlC2 (M = V, Cr, Mo), and for Ti2M2AlC3 (M = V, Ta). The stability of the layered ordered structures with M from group VI can primarily be explained by Ti breaking the energetically unfavorable stacking of M and C where M is surrounded by C in a face-centered cubic configuration, and by M having a larger electro-negativity than Al resulting in a fewer electrons available for populating antibonding Al-Al orbitals. The results show that these chemically ordered quaternary MAX phases allow for new elemental combinations in MAX phases, which can be used to add new properties to this family of atomic laminates and in turn prospects for tuning these properties.

    Download full text (pdf)
    fulltext
  • 46.
    Dahlqvist, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Oxygen incorporation and defect formation in Ti2AlC, V2AlC and Cr2AlC from first-principles calculations2014Manuscript (preprint) (Other academic)
    Abstract [en]

    We have studied oxygen incorporation and defect formation in M2AlC (M = Ti, V, Cr) MAX phases using first principles calculations. Evaluating phase stability and electronic structure for different oxygen and/or vacancy configurations, we show that oxygen prefer different lattice sites depending on M-element, which can be correlated to the number of available non-bonding M d-electrons. The results show that oxygen substitutes for carbon in Ti2AlC, while forming an interstitial oxygen in the Al-layer for Cr2AlC. We also predict that oxygen incorporation in Ti2AlC stabilizes the material, which explains the experimentally observed 12.5 at% oxygen (x = 0.5) in Ti2Al(C1-xOx). Due to similar valence electron configuration of Ti2AlC and the hypothetical M2AlC (M =Zr, Hf), we also investigate if oxygen can be used to stabilize the latter MAX phases.

  • 47.
    Dahlqvist, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Predictions of attainable compositions of layered quaternary i-MAB phases and solid solution MAB phases2021In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 13, no 43, p. 18311-18321Article in journal (Refereed)
    Abstract [en]

    MAB phases are layered materials combining metallic and ceramic attributes. Their ternary compositions, however, have been limited to a few elemental combinations which makes controlled and tailored properties challenging. Inspired by the recent discovery of Mo4/3Y2/3AlB2 and Mo(4/3)Sc(2/3)AlB(2)i-MAB phases, i.e., quaternary layered MAB phases with in-plane chemical order, we perform an extensive first-principles study to explore formation of chemical order and solid-solutions upon metal alloying of M(2)AB(2) phases of 1092 compositions (M from group 3 to 9 and A = Al, Ga, In, Si, Ge, Sn). This large dataset provides 39 chemically ordered (i-MAB) and 52 solid solution (MAB) phases that are predicted to be thermodynamically stable at typical synthesis temperatures, of which a majority have not yet been experimentally reported. The possibility for realizing both i-MAB and solid solution MAB phases, combined with the multiple elemental combinations previously not observed in these boride-based materials, allows for an increased potential for property tuning and potential chemical exfoliation into 2D derivatives.

    Download full text (pdf)
    fulltext
  • 48.
    Dahlqvist, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Predictive theoretical screening of phase stability for chemical order and disorder in quaternary 312 and 413 MAX phases2020In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 12, no 2, p. 785-794Article in journal (Refereed)
    Abstract [en]

    In this work we systematically explore a class of atomically laminated materials, M(n+1)AX(n) (MAX) phases upon alloying between two transition metals, M and M , from groups III to VI (Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W). The materials investigated focus on so called o-MAX phases with out-of-plane chemical ordering of M and M , and their disordered counterparts, for A = Al and X = C. Through use of predictive phase stability calculations, we confirm all experimentally known phases to date, and also suggest a range of stable ordered and disordered hypothetical elemental combinations. Ordered o-MAX is favoured when (i) M next to the Al-layer does not form a corresponding binary rock-salt MC structure, (ii) the size difference between M and M is small, and (iii) the difference in electronegativity between M and Al is large. Preference for chemical disorder is favoured when the size and electronegativity of M and M is similar, in combination with a minor difference in electronegativity of M and Al. We also propose guidelines to use in the search for novel o-MAX; to combine M from group 6 (Cr, Mo, W) with M from groups 3 to 5 (Sc only for 312, Ti, Zr, Hf, V, Nb, Ta). Correspondingly, we suggest formation of disordered MAX phases by combing M and M within groups 3 to 5 (Sc, Ti, Zr, Hf, V, Nb, Ta). The addition of novel elemental combinations in MAX phases, and in turn in their potential two-dimensional MXene derivatives, allow for property tuning of functional materials.

    Download full text (pdf)
    fulltext
  • 49.
    Dahlqvist, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering.
    The rise of MAX phase alloys - large-scale theoretical screening for the prediction of chemical order and disorder2022In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 14, no 30, p. 10958-10971Article in journal (Refereed)
    Abstract [en]

    MAX phases (M = metal, A = A-group element, X = C and/or N) are layered materials, combining metallic and ceramic attributes. They are also parent materials for the two-dimensional (2D) derivative, MXene, realized from selective etching of the A-element. In this work, we present a historical survey of MAX phase alloying to date along with an extensive theoretical investigation of MAX phase alloys (M = Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, and Ni, A = Al, Ga, In, Si, Ge, Sn, Ni, Cu, Zn, Pd, Ag, Pt, and Au, and X = C). We assess both in-plane chemical ordering (in the so-called i-MAX phases) and solid solution. Out of the 2702 compositions, 92 i-MAX and 291 solid solution MAX phases are predicted to be thermodynamically stable. A majority of these have not yet been experimentally reported. In general, i-MAX is favored for a smaller size of A and a large difference in metal size, while solid solution is favored for a larger size of A and with comparable size of the metals. The results thus demonstrate avenues for a prospective and substantial expansion of the MAX phase and MXene chemistries.

    Download full text (pdf)
    fulltext
  • 50.
    Dahlqvist, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Tao, Quanzheng
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Zhou, Jie
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Palisaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Persson, Per O A
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Theoretical Prediction and Synthesis of a Family of Atomic Laminate Metal Borides with In-Plane Chemical Ordering2020In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 142, no 43, p. 18583-18591Article in journal (Refereed)
    Abstract [en]

    All atomically laminated MAB phases (M = transition metal, A = A-group element, and B = boron) exhibit orthorhombic or tetragonal symmetry, with the only exception being hexagonal Ti2InB2. Inspired by the recent discovery of chemically ordered hexagonal carbides, i-MAX phases, we perform an extensive first-principles study to explore chemical ordering upon metal alloying of M2AlB2 (M from groups 3 to 9) in orthorhombic and hexagonal symmetry. Fifteen stable novel phases with in-plane chemical ordering are identified, coined i-MAB, along with 16 disordered stable alloys. The predictions are verified through the powder synthesis of Mo4/3Y2/3 AlB2 and Mo4/3Sc2/3AlB2 of space group R (3) over barm (no. 166), displaying the characteristic in-plane chemical order of Mo and Y/Sc and Kagome ordering of the Al atoms, as evident from X-ray diffraction and electron microscopy. The discovery of i-MAB phases expands the elemental space of these borides with M = Sc, Y, Zr, Hf, and Nb, realizing an increased property tuning potential of these phases as well as their suggested potential twodimensional derivatives.

    Download full text (pdf)
    fulltext
123456 1 - 50 of 298
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf