liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Alsufyani, Maryam
    et al.
    King Abdullah Univ Sci & Technol KAUST, Saudi Arabia.
    Hallani, Rawad K.
    King Abdullah Univ Sci & Technol KAUST, Saudi Arabia.
    Wang, Suhao
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Xiao, Mingfei
    Univ Cambridge, England.
    Ji, Xudong
    Northwestern Univ, IL 60208 USA.
    Paulsen, Bryan D.
    Northwestern Univ, IL 60208 USA.
    Xu, Kai
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Bristow, Helen
    Univ Cambridge, England.
    Chen, Hu
    King Abdullah Univ Sci & Technol KAUST, Saudi Arabia.
    Chen, Xingxing
    King Abdullah Univ Sci & Technol KAUST, Saudi Arabia.
    Sirringhaus, Henning
    King Abdullah Univ Sci & Technol KAUST, Saudi Arabia.
    Rivnay, Jonathan
    Northwestern Univ, IL 60208 USA.
    Fabiano, Simone
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    McCulloch, Iain
    King Abdullah Univ Sci & Technol KAUST, Saudi Arabia; Univ Oxford, England.
    The effect of aromatic ring size in electron deficient semiconducting polymers for n-type organic thermoelectrics2020In: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 8, no 43, p. 15150-15157Article in journal (Refereed)
    Abstract [en]

    N-type semiconducting polymers have been recently utilized in thermoelectric devices, however they have typically exhibited low electrical conductivities and poor device stability, in contrast to p-type semiconductors, which have been much higher performing. This is due in particular to the n-type semiconductors low doping efficiency, and poor charge carrier mobility. Strategies to enhance the thermoelectric performance of n-type materials include optimizing the electron affinity (EA) with respect to the dopant to improve the doping process and increasing the charge carrier mobility through enhanced molecular packing. Here, we report the design, synthesis and characterization of fused electron-deficient n-type copolymers incorporating the electron withdrawing lactone unit along the backbone. The polymers were synthesized using metal-free aldol condensation conditions to explore the effect of enlarging the central phenyl ring to a naphthalene ring, on the electrical conductivity. When n-doped with N-DMBI, electrical conductivities of up to 0.28 S cm(-1), Seebeck coefficients of -75 mu V K-1 and maximum Power factors of 0.16 mu W m(-1) K-2 were observed from the polymer with the largest electron affinity of -4.68 eV. Extending the aromatic ring reduced the electron affinity, due to reducing the density of electron withdrawing groups and subsequently the electrical conductivity reduced by almost two orders of magnitude.

    Download full text (pdf)
    fulltext
  • 2.
    Xu, Kai
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. Yanshan Univ, Peoples R China.
    Ruoko, Tero-Petri
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. Tampere Univ, Finland.
    Shokrani, Morteza
    Heidelberg Univ, Germany.
    Scheunemann, Dorothea
    Heidelberg Univ, Germany.
    Abdalla, Hassan
    Linköping University, Department of Physics, Chemistry and Biology, Electronic and photonic materials. Linköping University, Faculty of Science & Engineering.
    Sun, Hengda
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. Donghua Univ, Peoples R China.
    Yang, Chiyuan
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Puttisong, Yuttapoom
    Linköping University, Department of Physics, Chemistry and Biology, Electronic and photonic materials. Linköping University, Faculty of Science & Engineering.
    Kolhe, Nagesh B.
    Univ Washington, WA 98195 USA; Univ Washington, WA 98195 USA.
    Mendoza Figueroa, Silvestre
    Linköping University, Department of Physics, Chemistry and Biology, Biophysics and bioengineering. Linköping University, Faculty of Science & Engineering.
    Oshaug Pedersen, Jonas
    Linköping University, Department of Physics, Chemistry and Biology, Biophysics and bioengineering. Linköping University, Faculty of Science & Engineering.
    Ederth, Thomas
    Linköping University, Department of Physics, Chemistry and Biology, Biophysics and bioengineering. Linköping University, Faculty of Science & Engineering.
    Chen, Weimin
    Linköping University, Department of Physics, Chemistry and Biology, Electronic and photonic materials. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. N Ink AB, Teknikringen 7, SE-58330 Linkoping, Sweden.
    Jenekhe, Samson A.
    Univ Washington, WA 98195 USA; Univ Washington, WA 98195 USA.
    Fazzi, Daniele
    Univ Bologna, Italy; Univ Cologne, Germany.
    Kemerink, Martijn
    Linköping University, Department of Physics, Chemistry and Biology, Electronic and photonic materials. Linköping University, Faculty of Science & Engineering. Heidelberg Univ, Germany.
    Fabiano, Simone
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. N Ink AB, Teknikringen 7, SE-58330 Linkoping, Sweden.
    On the Origin of Seebeck Coefficient Inversion in Highly Doped Conducting Polymers2022In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 32, no 20, article id 2112276Article in journal (Refereed)
    Abstract [en]

    A common way of determining the majority charge carriers of pristine and doped semiconducting polymers is to measure the sign of the Seebeck coefficient. However, a polarity change of the Seebeck coefficient has recently been observed to occur in highly doped polymers. Here, it is shown that the Seebeck coefficient inversion is the result of the density of states filling and opening of a hard Coulomb gap around the Fermi energy at high doping levels. Electrochemical n-doping is used to induce high carrier density (>1 charge/monomer) in the model system poly(benzimidazobenzophenanthroline) (BBL). By combining conductivity and Seebeck coefficient measurements with in situ electron paramagnetic resonance, UV-vis-NIR, Raman spectroelectrochemistry, density functional theory calculations, and kinetic Monte Carlo simulations, the formation of multiply charged species and the opening of a hard Coulomb gap in the density of states, which is responsible for the Seebeck coefficient inversion and drop in electrical conductivity, are uncovered. The findings provide a simple picture that clarifies the roles of energetic disorder and Coulomb interactions in highly doped polymers and have implications for the molecular design of next-generation conjugated polymers.

    Download full text (pdf)
    fulltext
  • 3.
    Xu, Kai
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Sun, Hengda
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Ruoko, Tero-Petri
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Wang, Gang
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Kroon, Renee
    Chalmers Univ Technol, Sweden.
    Kolhe, Nagesh B.
    Univ Washington, WA 98195 USA.
    Puttisong, Yuttapoom
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Liu, Xianjie
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Fazzi, Daniele
    Univ Cologne, Germany.
    Shibata, Koki
    Chiba Univ, Japan.
    Yang, Chiyuan
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Sun, Ning
    Yunnan Univ, Peoples R China.
    Persson, Gustav
    Chalmers Univ Technol, Sweden.
    Yankovich, Andrew B.
    Chalmers Univ Technol, Sweden.
    Olsson, Eva
    Chalmers Univ Technol, Sweden.
    Yoshida, Hiroyuki
    Chiba Univ, Japan; Chiba Univ, Japan.
    Chen, Weimin
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Fahlman, Mats
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Kemerink, Martijn
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Jenekhe, Samson A.
    Univ Washington, WA 98195 USA.
    Mueller, Christian
    Chalmers Univ Technol, Sweden.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Fabiano, Simone
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Ground-state electron transfer in all-polymer donor-acceptor heterojunctions2020In: Nature Materials, ISSN 1476-1122, E-ISSN 1476-4660, Vol. 19, no 7, p. 738-744Article in journal (Refereed)
    Abstract [en]

    Doping of organic semiconductors is crucial for the operation of organic (opto)electronic and electrochemical devices. Typically, this is achieved by adding heterogeneous dopant molecules to the polymer bulk, often resulting in poor stability and performance due to dopant sublimation or aggregation. In small-molecule donor-acceptor systems, charge transfer can yield high and stable electrical conductivities, an approach not yet explored in all-conjugated polymer systems. Here, we report ground-state electron transfer in all-polymer donor-acceptor heterojunctions. Combining low-ionization-energy polymers with high-electron-affinity counterparts yields conducting interfaces with resistivity values five to six orders of magnitude lower than the separate single-layer polymers. The large decrease in resistivity originates from two parallel quasi-two-dimensional electron and hole distributions reaching a concentration of similar to 10(13) cm(-2). Furthermore, we transfer the concept to three-dimensional bulk heterojunctions, displaying exceptional thermal stability due to the absence of molecular dopants. Our findings hold promise for electro-active composites of potential use in, for example, thermoelectrics and wearable electronics. Doping through spontaneous electron transfer between donor and acceptor polymers is obtained by selecting organic semiconductors with suitable electron affinity and ionization energy, achieving high conductivity in blends and bilayer configuration.

  • 4.
    Yang, Chiyuan
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Stoeckel, Marc-Antoine
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Ruoko, Tero-Petri
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Wu, Hanyan
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Liu, Xianjie
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Kolhe, Nagesh B.
    Univ Washington, WA 98195 USA; Univ Washington, WA 98195 USA.
    Wu, Ziang
    Korea Univ, South Korea.
    Puttisong, Yuttapoom
    Linköping University, Department of Physics, Chemistry and Biology, Electronic and photonic materials. Linköping University, Faculty of Science & Engineering.
    Musumeci, Chiara
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Massetti, Matteo
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Sun, Hengda
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Xu, Kai
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Tu, Deyu
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Chen, Weimin
    Linköping University, Department of Physics, Chemistry and Biology, Electronic and photonic materials. Linköping University, Faculty of Science & Engineering.
    Woo, Han Young
    Korea Univ, South Korea.
    Fahlman, Mats
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Jenekhe, Samson A.
    Univ Washington, WA 98195 USA; Univ Washington, WA 98195 USA.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. N Ink AB, S-58330 Linkoping, Sweden.
    Fabiano, Simone
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. N Ink AB, S-58330 Linkoping, Sweden.
    A high-conductivity n-type polymeric ink for printed electronics2021In: Nature Communications, E-ISSN 2041-1723, Vol. 12, no 1, article id 2354Article in journal (Refereed)
    Abstract [en]

    Conducting polymers, such as the p-doped poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), have enabled the development of an array of opto- and bio-electronics devices. However, to make these technologies truly pervasive, stable and easily processable, n-doped conducting polymers are also needed. Despite major efforts, no n-type equivalents to the benchmark PEDOT:PSS exist to date. Here, we report on the development of poly(benzimidazobenzophenanthroline):poly(ethyleneimine) (BBL:PEI) as an ethanol-based n-type conductive ink. BBL:PEI thin films yield an n-type electrical conductivity reaching 8Scm(-1), along with excellent thermal, ambient, and solvent stability. This printable n-type mixed ion-electron conductor has several technological implications for realizing high-performance organic electronic devices, as demonstrated for organic thermoelectric generators with record high power output and n-type organic electrochemical transistors with a unique depletion mode of operation. BBL:PEI inks hold promise for the development of next-generation bioelectronics and wearable devices, in particular targeting novel functionality, efficiency, and power performance. The development of n-type conductive polymer inks is critical for the development of next-generation opto-electronic devices that rely on efficient hole and electron transport. Here, the authors report an alcohol-based, high performance and stable n-type conductive ink for printed electronics.

    Download full text (pdf)
    fulltext
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf