liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Brooke, Robert
    et al.
    Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering.
    Franco Gonzalez, Felipe
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Wijeratne, Kosala
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Pavlopoulou, Eleni
    Univ Bordeaux, France.
    Galliani, Daniela
    Univ Milano Bicocca, Italy.
    Liu, Xianjie
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Valiollahi Bisheh, Roudabeh
    Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering.
    Zozoulenko, Igor
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Vapor phase synthesized poly(3,4-ethylenedioxy-thiophene)-trifluoromethanesulfonate as a transparent conductor material2018In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 6, no 43, p. 21304-21312Article in journal (Refereed)
    Abstract [en]

    Inorganic transparent conductive oxides have dominated the market as transparent electrodes due to their high conductivity and transparency. Here, we report the fabrication and optimization of the synthesis of poly(3,4-ethylenedioxythiophene) trifluoromethanesulfonate via vapor phase polymerization for the potential replacement of such inorganic materials. The parameters and conditions of the polymerization were investigated and an electrical conductivity of 3800 S cm(-1) and 4500 S cm(-1) after acid treatment were obtained while maintaining an absorbance similar to that of commercial indium tin oxide. This increase in electrical conductivity was rationalized experimentally and theoretically to an increase in the oxidation level and a higher order of crystallinity which does not disrupt the pi-pi stacking of PEDOT chains.

  • 2.
    Che, Canyan
    et al.
    Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering.
    Vagin, Mikhail
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Wijeratne, Kosala
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Zhao, Dan
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Warczak, Magdalena
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Conducting Polymer Electrocatalysts for Proton-Coupled Electron Transfer Reactions: Toward Organic Fuel Cells with Forest Fuels2018In: Advanced Sustainable Systems, ISSN 2366-7486, Vol. 317Article in journal (Refereed)
    Abstract [en]

    Lignin is one of the most abundant biopolymers, constituting 25% of plants. The pulp and paper industries extract lignin in their process and today seek new applications for this by-product. Here, it is reported that the aromatic alcohols obtained from lignin depolymerization can be used as fuel in high power density electrical power sources. This study shows that the conducting polymer poly(3,4-ethylenedioxythiophene), fabricated from abundant ele-ments via low temperature synthesis, enables efficient, direct, and reversible chemical-to-electrical energy conversion of aromatic alcohols such as lignin residues in aqueous media. A material operation principle related to the rela-tively high molecular diffusion and ionic conductivity within the conducting polymer matrix, ensuring efficient uptake of protons in the course of proton-coupled electron transfers between organic molecules is proposed.

  • 3.
    Volkov, Anton
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Wijeratne, Kosala
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Mitraka, Evangelia
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Ail, Ujwala
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Zhao, Dan
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Tybrandt, Klas
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Wenzel Andreasen, Jens
    Technical University of Denmark, Denmark.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering. Stellenbosch University, South Africa.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Zozoulenko, Igor
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Understanding the Capacitance of PEDOT:PSS2017In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 27, no 28, article id 1700329Article in journal (Refereed)
    Abstract [en]

    Poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) is the most studied and explored mixed ion-electron conducting polymer system. PEDOT: PSS is commonly included as an electroactive conductor in various organic devices, e.g., supercapacitors, displays, transistors, and energy-converters. In spite of its long-term use as a material for storage and transport of charges, the fundamentals of its bulk capacitance remain poorly understood. Generally, charge storage in supercapacitors is due to formation of electrical double layers or redox reactions, and it is widely accepted that PEDOT: PSS belongs to the latter category. Herein, experimental evidence and theoretical modeling results are reported that significantly depart from this commonly accepted picture. By applying a two-phase, 2D modeling approach it is demonstrated that the major contribution to the capacitance of the two-phase PEDOT: PSS originates from electrical double layers formed along the interfaces between nanoscaled PEDOT-rich and PSS-rich interconnected grains that comprises two phases of the bulk of PEDOT: PSS. This new insight paves a way for designing materials and devices, based on mixed ion-electron conductors, with improved performance.

  • 4.
    Wijeratne, Kosala
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Conducting Polymer Electrodes for Thermogalvanic Cells2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Fossil fuels are still the dominant (ca. 80%) energy source in our society. A significant fraction is used to generate electricity with a heat engine possessing an efficiency of approximately 35%. Therefore, about 65% of fossil fuel energy is wasted in heat. Other primary heat sources include solar and geothermal energies that can heat up solid and fluids up to 150°C. The growing demand and severe environmental impact of energy systems provide an impetus for effective management and harvesting solutions dealing with waste heat. A promising way to use waste heat is to directly convert thermal energy into electrical energy by thermoelectric generators (TEGs). Solid state TEGs are electronic devices that generate electrical power due to the thermo-diffusion of electronic charge carriers in the semiconductor upon application of the thermal field. However, there is another type of thermoelectric device that has been much less investigated; this is the thermogalvanic cell (TGCs). The TGC is an electrochemical device that consists of the electrolyte solution including a reversible redox couple sandwiched between two electrodes. In our study, we focus on iron-based organometallic molecules in aqueous electrolyte. A temperature difference (Δ𝑇) between the electrodes promotes a difference in the electrode potentials [Δ𝐸(𝑇)]. Since the electrolyte contains a redox couple acting like electronic shuttle between the two electrodes, power can be generated when the two electrodes are submitted to a temperature difference. The focus of this thesis is (i) to investigate the possibility to use conducting polymer electrodes for thermogalvanic cells as an alternative to platinum and carbon-based electrodes, (ii) to investigate the role of viscosity of the electrolyte in order to consider polymer electrolytes, (iii) to understand the mechanisms limiting the electrical power output in TGCs; and (iv) to understand the fundamentals of the electron transfer taking place at the interface between the polymer electrode and the redox molecule in the electrolyte. These findings provide an essential toolbox for further improvement in conducting polymer thermogalvanic cells and various other emerging electrochemical technologies such as fuel cells, redox flow battery, dye-sensitized solar cells and industrial electrochemical synthesis.

    List of papers
    1. Poly(3,4-ethylenedioxythiophene)-Tosylate (PEDOT-Tos) electrode in Thermogalvanic Cells
    Open this publication in new window or tab >>Poly(3,4-ethylenedioxythiophene)-Tosylate (PEDOT-Tos) electrode in Thermogalvanic Cells
    2017 (English)In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 5, no 37, p. 19619-19625Article in journal (Refereed) Published
    Abstract [en]

    The interest in thermogalvanic cells (TGCs) has grown because it is a candidate technology for harvesting electricity from natural and waste heat. However, the cost of TGCs has a major component due to the use of the platinum electrode. Here, we investigate new alternative electrode material based on conducting polymers, more especially poly(3,4-ethylenedioxythiophene)-Tosylate (PEDOT-Tos) together with the Ferro/Ferricyanide redox electrolyte. The power generated by the PEDOT-Tos based TGCs increases with the conducting polymer thickness/multilayer and reaches values similar to the flat platinum electrode based TGCs. The physics and chemistry behind this exciting result as well as the identification of the limiting phenomena are investigated by various electrochemical techniques. Furthermore, a preliminary study is provided for the stability of the PEDOT-Tos based TGCs.

    Place, publisher, year, edition, pages
    Royal Society of Chemistry, 2017
    National Category
    Chemical Sciences
    Identifiers
    urn:nbn:se:liu:diva-140745 (URN)10.1039/C7TA04891B (DOI)000411739700007 ()
    Note

    Funding agencies: European Research Council (ERC) [307596]

    Available from: 2017-09-11 Created: 2017-09-11 Last updated: 2018-11-27
    2. Bulk electronic transport impacts on electron transfer at conducting polymer electrode-electrolyte interfaces.
    Open this publication in new window or tab >>Bulk electronic transport impacts on electron transfer at conducting polymer electrode-electrolyte interfaces.
    Show others...
    2018 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, no 7, p. 11899-11904Article in journal (Refereed) Epub ahead of print
    Abstract [en]

    Electrochemistry is an old but still flourishing field of research due to the importance of the efficiency and kinetics of electrochemical reactions in industrial processes and (bio-)electrochemical devices. The heterogeneous electron transfer from an electrode to a reactant in the solution has been well studied for metal, semiconductor, metal oxide, and carbon electrodes. For those electrode materials, there is little correlation between the electronic transport within the electrode material and the electron transfer occurring at the interface between the electrode and the solution. Here, we investigate the heterogeneous electron transfer between a conducting polymer electrode and a redox couple in an electrolyte. As a benchmark system, we use poly(3,4-ethylenedioxythiophene) (PEDOT) and the Ferro/ferricyanide redox couple in an aqueous electrolyte. We discovered a strong correlation between the electronic transport within the PEDOT electrode and the rate of electron transfer to the organometallic molecules in solution. We attribute this to a percolation-based charge transport within the polymer electrode directly involved in the electron transfer. We show the impact of this finding by optimizing an electrochemical thermogalvanic cell that transforms a heat flux into electrical power. The power generated by the cell increased by four orders of magnitude on changing the morphology and conductivity of the polymer electrode. As all conducting polymers are recognized to have percolation transport, we believe that this is a general phenomenon for this family of conductors.

    Place, publisher, year, edition, pages
    National academy of sciences, 2018
    Keywords
    conducting polymer, electron transfer, thermogalvanic cell
    National Category
    Materials Chemistry
    Identifiers
    urn:nbn:se:liu:diva-152759 (URN)10.1073/pnas.1806087115 (DOI)000450642800036 ()30397110 (PubMedID)
    Note

    Funding agencies: Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University Faculty Grant [SFO-Mat-LiU 2009-00971]

    Available from: 2018-11-20 Created: 2018-11-20 Last updated: 2019-03-21
  • 5.
    Wijeratne, Kosala
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Ail, Ujwala
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Brooke, Robert
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Vagin, Mikhail
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Liu, Xianjie
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Fahlman, Mats
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Bulk electronic transport impacts on electron transfer at conducting polymer electrode-electrolyte interfaces.2018In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, no 7, p. 11899-11904Article in journal (Refereed)
    Abstract [en]

    Electrochemistry is an old but still flourishing field of research due to the importance of the efficiency and kinetics of electrochemical reactions in industrial processes and (bio-)electrochemical devices. The heterogeneous electron transfer from an electrode to a reactant in the solution has been well studied for metal, semiconductor, metal oxide, and carbon electrodes. For those electrode materials, there is little correlation between the electronic transport within the electrode material and the electron transfer occurring at the interface between the electrode and the solution. Here, we investigate the heterogeneous electron transfer between a conducting polymer electrode and a redox couple in an electrolyte. As a benchmark system, we use poly(3,4-ethylenedioxythiophene) (PEDOT) and the Ferro/ferricyanide redox couple in an aqueous electrolyte. We discovered a strong correlation between the electronic transport within the PEDOT electrode and the rate of electron transfer to the organometallic molecules in solution. We attribute this to a percolation-based charge transport within the polymer electrode directly involved in the electron transfer. We show the impact of this finding by optimizing an electrochemical thermogalvanic cell that transforms a heat flux into electrical power. The power generated by the cell increased by four orders of magnitude on changing the morphology and conductivity of the polymer electrode. As all conducting polymers are recognized to have percolation transport, we believe that this is a general phenomenon for this family of conductors.

  • 6.
    Wijeratne, Kosala
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Vagin, Mikhail
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Brooke, Robert
    Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Poly(3,4-ethylenedioxythiophene)-Tosylate (PEDOT-Tos) electrode in Thermogalvanic Cells2017In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 5, no 37, p. 19619-19625Article in journal (Refereed)
    Abstract [en]

    The interest in thermogalvanic cells (TGCs) has grown because it is a candidate technology for harvesting electricity from natural and waste heat. However, the cost of TGCs has a major component due to the use of the platinum electrode. Here, we investigate new alternative electrode material based on conducting polymers, more especially poly(3,4-ethylenedioxythiophene)-Tosylate (PEDOT-Tos) together with the Ferro/Ferricyanide redox electrolyte. The power generated by the PEDOT-Tos based TGCs increases with the conducting polymer thickness/multilayer and reaches values similar to the flat platinum electrode based TGCs. The physics and chemistry behind this exciting result as well as the identification of the limiting phenomena are investigated by various electrochemical techniques. Furthermore, a preliminary study is provided for the stability of the PEDOT-Tos based TGCs.

1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf