liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bernhardsson, Magnus
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences.
    Dietrich, Franciele
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences.
    Tätting, Love
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Haematology.
    Eliasson, Pernilla
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences.
    Aspenberg, Per
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Orthopaedics in Linköping.
    Depletion of cytotoxic (CD8+) T cells impairs implant fixation in rat cancellous bone2019In: Journal of Orthopaedic Research, ISSN 0736-0266, E-ISSN 1554-527X, Vol. 37, no 4, p. 805-811Article in journal (Refereed)
    Abstract [en]

    As cytotoxic (CD8(+)) T cells seem to impair shaft fracture healing, we hypothesized that depletion of CD8(+) cells would instead improve healing of cancellous bone. Additionally, we also tested if CD8-depletion would influence the healing of ruptured Achilles tendons. Rats received a single injection of either anti-CD8 antibodies or saline and put through surgery 24 h later. Three different surgical interventions were performed as follows: (1) a drill hole in the proximal tibia with microCT (BV/TV) to assess bone formation; (2) a screw in the proximal tibia with mechanical evaluation (pull-out force) to assess fracture healing; (3) Achilles tendon transection with mechanical evaluation (force-at-failure) to assess tendon healing. Furthermore, CD8-depletion was confirmed with flow cytometry on peripheral blood. Flow cytometric analysis confirmed depletion of CD8(+) cells (p amp;lt; 0.001). Contrary to our hypothesis, depletion of CD8(+) cells reduced the implant pull-out force by 19% (p amp;lt; 0.05) and stiffness by 34% (p amp;lt; 0.01), although the bone formation in the drill holes was the same as in the controls. Tendon healing was unaffected by CD8-depletion. Our results suggest that CD8(+) cells have an important part in cancellous bone healing.

  • 2.
    Bernhardsson, Magnus
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Orthopaedics in Linköping.
    Tätting, Love
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Orthopaedics in Linköping.
    Sandberg, Olof
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Orthopaedics in Linköping.
    Schilcher, Jörg
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Orthopaedics in Linköping.
    Aspenberg, Per
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Orthopaedics in Linköping.
    Marrow compartment contribution to cortical defect healing2018In: Acta Orthopaedica, ISSN 1745-3674, E-ISSN 1745-3682, Vol. 89, no 1, p. 119-123Article in journal (Refereed)
    Abstract [en]

    Background and purpose - Healing of shaft fractures is commonly described as regards external callus. We wanted to clarify the role of the bone marrow compartment in the healing of stable shaft fractures. Patients and methods - A longitudinal furrow was milled along the longitudinal axis of the femoral shaft in mice. The exposed bone marrow under the furrow was scooped out. The mice were then randomized to no further treatment, or to receiving 2 silicone plugs in the medullary canal distal and proximal to the defect. The plugs isolated the remaining marrow from contact with the defect. Results were studied with histology and flow cytometry. Results - Without silicone plugs, the marrow defect was filled with new bone marrow-like tissue by day 5, and new bone was seen already on day 10. The new bone was seen only at the level of the cortical injury, where it seemed to form simultaneously in the entire region of the removed cortex. The new bone seemed not to invade the marrow compartment, and there was a sharp edge between new bone and marrow. The regenerated marrow was similar to uninjured marrow, but contained considerably more cells. In the specimens with plugs, the marrow compartment was either filled with loose scar tissue, or empty, and there was only minimal bone formation, mainly located around the edges of the cortical injury. Interpretation - Marrow regeneration in the defect seemed to be a prerequisite for normal cortical healing. Shaft fracture treatment should perhaps pay more attention to the local bone marrow.

  • 3.
    Dietrich, Franciele
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Minist Educ Brazil, Brazil; Pontificia University of Catolica Rio Grande Sul PUCRS, Brazil.
    Hammerman, Malin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences.
    Blomgran, Parmis
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences.
    Tätting, Love
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences.
    Faccin Bampi, Vinicius
    Pontificia University of Catolica Rio Grande Sul PUCRS, Brazil.
    Braga Silva, Jefferson
    Pontificia University of Catolica Rio Grande Sul PUCRS, Brazil.
    Aspenberg, Per
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Orthopaedics in Linköping.
    Correction: Effect of platelet-rich plasma on rat Achilles tendon healing is related to microbiota (vol 15, pg 1, 2017)2017In: Acta Orthopaedica, ISSN 1745-3674, E-ISSN 1745-3682, Vol. 88, no 4, p. 463-463Article in journal (Other academic)
    Abstract [en]

    n/a

  • 4.
    Dietrich, Franciele
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. CAPES Fdn, Brazil; Pontificia University of Catolica Rio Grande do Sul PUCRS, Brazil.
    Hammerman, Malin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences.
    Blomgran, Parmis
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences.
    Tätting, Love
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences.
    Faccin Bampi, Vinicius
    Pontificia University of Catolica Rio Grande do Sul PUCRS, Brazil.
    Braga Silva, Jefferson
    Pontificia University of Catolica Rio Grande do Sul PUCRS, Brazil.
    Aspenberg, Per
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Orthopaedics in Linköping.
    Effect of platelet-rich plasma on rat Achilles tendon healing is related to microbiota2017In: Acta Orthopaedica, ISSN 1745-3674, E-ISSN 1745-3682, Vol. 88, no 4, p. 416-421Article in journal (Refereed)
    Abstract [en]

    Background and purpose - In 3 papers in Acta Orthopaedica 10 years ago, we described that platelet-rich plasma (PRP) improves tendon healing in a rat Achilles transection model. Later, we found that microtrauma has similar effects, probably acting via inflammation. This raised the suspicion that the effect ascribed to growth factors within PRP could instead be due to unspecific influences on inflammation. While testing this hypothesis, we noted that the effect seemed to be related to the microbiota. Material and methods - We tried to reproduce our old findings with local injection of PRP 6h after tendon transection, followed by mechanical testing after 11 days. This failed. After fruitless variations in PRP production protocols, leukocyte concentration, and physical activity, we finally tried rats carrying potentially pathogenic bacteria. In all, 242 rats were used. Results - In 4 consecutive experiments on pathogen-free rats, no effect of PRP on healing was found. In contrast, apparently healthy rats carrying Staphylococcus aureus showed increased strength of the healing tendon after PRP treatment. These rats had higher levels of cytotoxic T-cells in their spleens. Interpretation - The failure to reproduce older experiments in clean rats was striking, and the difference in response between these and Staphylococcus-carrying rats suggests that the PRP effect is dependent on the immune status. PRP functions may be more complex than just the release of growth factors. Extrapolation from our previous findings with PRP to the situation in humans therefore becomes even more uncertain.1

  • 5.
    Dietrich-Zagonel, Franciele
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Orthopaedics in Linköping.
    Hammerman, Malin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Orthopaedics in Linköping.
    Tätting, Love
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Orthopaedics in Linköping.
    Dietrich, Fabricia
    Linköping University, Department of Clinical and Experimental Medicine, Division of Children's and Women's health. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center of Paediatrics and Gynaecology and Obstetrics, H.K.H. Kronprinsessan Victorias barn- och ungdomssjukhus.
    Kozak Ljunggren, Monika
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Blomgran, Parmis
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Orthopaedics in Linköping.
    Eliasson, Pernilla T.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Orthopaedics in Linköping.
    Aspenberg, Per
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Orthopaedics in Linköping.
    Stimulation of Tendon Healing With Delayed Dexamethasone Treatment Is Modified by the Microbiome2018In: American Journal of Sports Medicine, ISSN 0363-5465, E-ISSN 1552-3365, Vol. 46, no 13, p. 3281-3287Article in journal (Refereed)
    Abstract [en]

    Background:

    The immune system reflects the microbiome (microbiota). Modulation of the immune system during early tendon remodeling by dexamethasone treatment can improve rat Achilles tendon healing. The authors tested whether changes in the microbiota could influence the effect of dexamethasone treatment.

    Hypothesis:

    A change in microbiome would influence the response to dexamethasone on regenerate remodeling, specifically tendon material properties (peak stress).

    Study Design:

    Controlled laboratory study.

    Methods:

    Specific opportunist and pathogen-free female rats were housed separately (n = 41) or together with specific pathogen-free rats carrying opportunistic microbes such as Staphylococcus aureus (n = 41). After 6 weeks, all co-housed rats appeared healthy but now carried S aureus. Changes in the gut bacterial flora were tested by API and RapID biochemical tests. All rats (clean and contaminated) underwent Achilles tendon transection under aseptic conditions. Flow cytometry was performed 8 days postoperatively on tendon tissue. Sixty rats received subcutaneous dexamethasone or saline injections on days 5 through 9 after transection. The tendons were tested mechanically on day 12. The predetermined primary outcome was the interaction between contamination and dexamethasone regarding peak stress, tested by 2-way analysis of variance.

    Results:

    Dexamethasone increased peak stress in all groups but more in contaminated rats (105%) than in clean rats (53%) (interaction, P = .018). A similar interaction was found for an estimate of elastic modulus (P = .021). Furthermore, dexamethasone treatment reduced transverse area but had small effects on peak force and stiffness. In rats treated with saline only, contamination reduced peak stress by 16% (P = .04) and elastic modulus by 35% (P = .004). Contamination led to changes in the gut bacterial flora and higher levels of T cells (CD3+CD4+) in the healing tendon (P < .05).

    Conclusion:

    Changes in the microbiome influence tendon healing and enhance the positive effects of dexamethasone treatment during the early remodeling phase of tendon healing.

    Clinical Relevance:

    The positive effect of dexamethasone on early tendon remodeling in rats is strikingly strong. If similar effects could be shown in humans, immune modulation by a few days of systemic corticosteroids, or more specific compounds, could open new approaches to rehabilitation after tendon injury.

  • 6.
    Sandberg, Olof
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences.
    Tätting, Love
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences.
    Bernhardsson, Magnus
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences.
    Aspenberg, Per
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Orthopaedics in Linköping.
    Temporal role of macrophages in cancellous bone healing2017In: Bone, ISSN 8756-3282, E-ISSN 1873-2763, Vol. 101, p. 129-133Article in journal (Refereed)
    Abstract [en]

    Macrophages are important phagocytosing and cytokine producing cells with effects on fracture healing. We used clodronate-containing liposomes to reduce the number of macrophages, in order to study their role in the early phases of cancellous bone healing. Holes were drilled bilaterally into the cancellous bone of the proximal metaphysis of the tibia of 60 mice. A screw was inserted in the hole in the right tibia. The day of surgery was day 0. Clodronate-containing liposomes were injected intraperitoneally as a single injection either day 4 or 1 (before surgery) or day 1 or 3 (after surgery). A control group underwent surgery as above, but received no clodronate. The mice were killed day 7. The mechanical quality of the new formed cancellous bone holding the screw was evaluated by a pull-out test. The contents of the drill hole in the left tibia was analyzed by microCT. Another set of 20 mice received a drill hole in the metaphysis of the right tibia, and were given either clodronate or saline injections days 3 and 2. The animals were killed day 1 and 3. Flow cytometry was used to analyze the composition of macrophage subpopulations in the regenerating tissue. Flow cytometry showed that clodronate injections day 3 and 2 led to a decrease in mature monocytes day 1 together with an increase in immature monocytes. On day 3 this effect had mostly disappeared, suggesting that the effect of the injections lasted 3 to 5 days. Mechanical testing revealed that the injections prior to surgery decreased the strength of the new formed bone, holding the screw, by about half. Bone density in the drill hole was similarly reduced. In contrast, the injections given day I and 3 had smaller and statistically insignificant effects. Since their depletion at later time points failed to produce a significant effect, it seems that the role of macrophages in cancellous bone is most crucial during the first two days after trauma. (C) 2017 Elsevier Inc. All rights reserved.

  • 7.
    Tätting, Love
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences.
    Inflammation in Cancellous and Cortical Bone Healing2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Fractures in humans most commonly occur near the joints, in the metaphyseal bone area mainly consisting of cancellous bone. Despite this, mainly cortical fractures, located in the diaphyseal bone area, have been studied in experimental models of bone healing. It is known from previous studies that the diaphyseal fracture is sensitive to anti-inflammatory treatment, while metaphyseal bone healing is more resistant. The aim of this thesis is to study the inflammatory response to bone trauma in cancellous and cortical bone. A flow cytometric method was established for the purpose of examining the cellular composition of the inflammatory process in models of bone healing

    In paper I the cellular composition of metaphyseal bone healing was studied with flow cytometry. The proximal tibia was traumatized and then studied at day 1, 3, 5 and 10 afterwards and compared to healthy mice. The contralateral proximal tibia was also studied at the same time points to delineate the trauma site specific inflammation. A few changes could be noted that seemed specific to the trauma site in macrophage phenotype development. However, the cellular composition was similar at the trauma site and in the contralateral proximal tibia. This notion of a general skeletal response was confirmed with analysis of the humerus at day 5.

    In paper II a model of cortical bone healing apt for flow cytometry was developed and compared to cancellous bone healing. A furrow was milled along the femoral cortex and the healing bone tissue analyzed. The earliest time point that enough cells were present for flow cytometry was day 3. The cortical and cancellous model of bone healing was compared at day 3 and 5 to study how they evolve in comparison to each other. It was noted that they were similar in cellular composition at day 3, but had diverged at day 5. The cancellous model increased in neutrophilic granulocytes, whereas the cortical model increased in lymphocytes.

    In paper III the cancellous and cortical model were compared under experimental intervention of indomethacin. It is known that indomethacin leads to weakened biomechanical properties in cortical bone healing, but not in cancellous bone healing. The effect on cellular composition with indomethacin was studied with flow cytometry and the extracellular protein profile in the healing bone tissue with mass spectrometry. Unexpectedly, inflammatory monocytes were increased in the cortical model at day 3 with indomethacin, but otherwise the models were similar in cell composition at day 3 and 5. In mass spectrometry there was a large increase in detected proteins at day 3 in the indomethacin exposed cortical model, but otherwise the models were similar. This points to an early and model specific effect of indomethacin. The observed lack of indomethacin-induced effects in cancellous bone healing is in line with the previously noted lack of indomethacin-induced effects on bone weakening. The apparently increased inflammatory activity in the cortical model with indomethacin exposure at day 3 might indicate the healing process to be disturbed and not able to progress from the early proinflammatory state to a more anabolic, anti-inflammatory state.

    In paper IV the effect of macrophage depletion on healing of metaphyseal bone was studied. Clodronate was given for depletion at different time points prior to surgery and the pull-out force of a screw or tissue phenotyping of macrophages was performed a varying number of days after surgery. It was noted that metaphyseal bone healing was to a large extent inhibited by macrophage depletion up to two days after surgery, but not if depletion was done more than two days after surgery. Thus, macrophages seem to be most important during the first two days after trauma in cancellous bone healing. 

    In summary this thesis provide insight to the natural development of bone healing. The findings emphasise that cancellous and cortical bone healing are different entities with differences in the inflammatory process leading to healing.

    List of papers
    1. Isolated metaphyseal injury influences unrelated bones A flow cytometric study of tibia and humerus in mice
    Open this publication in new window or tab >>Isolated metaphyseal injury influences unrelated bones A flow cytometric study of tibia and humerus in mice
    Show others...
    2017 (English)In: Acta Orthopaedica, ISSN 1745-3674, E-ISSN 1745-3682, Vol. 88, no 2, p. 223-230Article in journal (Refereed) Published
    Abstract [en]

    Background and purpose - Fracture healing involves different inflammatory cells, some of which are not part of the traditional bone field, such as B-cells and cytotoxic T-cells. We wanted to characterize bone healing by flow cytometry using 15 different inflammatory cell markers in a mouse model of metaphyseal injury, and incidentally discovered a previously unknown general skeletal reaction to trauma. Material and methods - A bent needle was inserted and twisted to traumatize the cancellous bone in the proximal tibia of C57/Bl6 female mice. This is known to induce vivid bone formation locally in the marrow compartment. Cells were harvested from the injured region, the uninjured contralateral tibia, and the humerus. The compositions of the immune cell populations were compared to those in untraumatized control animals. Results - Tibial metaphyseal injury led to substantial changes in the cell populations over time. Unexpectedly, similar changes were also seen in the contralateral tibia and in the humerus, despite the lack of local trauma. Most leukocyte subsets were affected by this generalized reaction. Interpretation - A relatively small degree of injury to the proximal tibia led to systemic changes in the immune cell populations in the marrow of unrelated bones, and probably in the entire skeleton. The few changes that were specific for the injury site appeared to relate to modulatory functions.

    Place, publisher, year, edition, pages
    TAYLOR & FRANCIS LTD, 2017
    National Category
    Orthopaedics
    Identifiers
    urn:nbn:se:liu:diva-137410 (URN)10.1080/17453674.2016.1274587 (DOI)000399484400018 ()28128005 (PubMedID)
    Note

    Funding Agencies|Swedish Research Council [VR 02031-47-5]; Linkoping University; Ostergotland County Council; European Communitys Seventh Framework Programme (FP7) [279239]

    Available from: 2017-05-18 Created: 2017-05-18 Last updated: 2019-04-09
    2. Different composition of leucocytes in cortical and cancellous bone healing in a mouse model
    Open this publication in new window or tab >>Different composition of leucocytes in cortical and cancellous bone healing in a mouse model
    Show others...
    2018 (English)In: Bone and Joint Research, ISSN 2046-3758, E-ISSN 2352-1872, Vol. 7, no 12, p. 620-628Article in journal (Refereed) Published
    Abstract [en]

    Objectives Cortical and cancellous bone healing processes appear to be histologically different. They also respond differently to anti-inflammatory agents. We investigated whether the leucocyte composition on days 3 and 5 after cortical and cancellous injuries to bone was different, and compared changes over time using day 3 as the baseline. Methods Ten-week-old male C56/B16J mice were randomized to either cancellous injury in the proximal tibia or cortical injury in the femoral diaphysis. Regenerating tissues were analyzed with flow cytometry at days 3 and 5, using panels with 15 antibodies for common macrophage and lymphocyte markers. The cellular response from day 3 to 5 was compared in order to identify differences in how cancellous and cortical bone healing develop. Results Between day 3 and 5, the granulocytes increased in the cancellous model, whereas the lymphocytes (T cells, B cells, NK cells) and monocytes (CD11b+, 14/80+, CD206+, CD14+ ) increased in the cortical model. Conclusion These results suggest an acute type of inflammation in cancellous bone healing, and a more chronic inflammation in cortical healing. This might explain, in part, why cancellous healing is faster and more resistant to anti-inflammatory drugs than are diaphyseal fractures.

    Place, publisher, year, edition, pages
    BRITISH EDITORIAL SOC BONE JOINT SURGERY, 2018
    Keywords
    Metaphyseal; Diaphyseal; Cortical; Cancellous; Intramembranous; Fracture
    National Category
    Biomaterials Science
    Identifiers
    urn:nbn:se:liu:diva-154731 (URN)10.1302/2046-3758.712.BJR-2017-0366.R2 (DOI)000457234600001 ()30662708 (PubMedID)
    Note

    Funding Agencies|Swedish Research Council [VR 02031-47-5]; European Community [279239]

    Available from: 2019-02-27 Created: 2019-02-27 Last updated: 2019-05-02
    3. Temporal role of macrophages in cancellous bone healing
    Open this publication in new window or tab >>Temporal role of macrophages in cancellous bone healing
    2017 (English)In: Bone, ISSN 8756-3282, E-ISSN 1873-2763, Vol. 101, p. 129-133Article in journal (Refereed) Published
    Abstract [en]

    Macrophages are important phagocytosing and cytokine producing cells with effects on fracture healing. We used clodronate-containing liposomes to reduce the number of macrophages, in order to study their role in the early phases of cancellous bone healing. Holes were drilled bilaterally into the cancellous bone of the proximal metaphysis of the tibia of 60 mice. A screw was inserted in the hole in the right tibia. The day of surgery was day 0. Clodronate-containing liposomes were injected intraperitoneally as a single injection either day 4 or 1 (before surgery) or day 1 or 3 (after surgery). A control group underwent surgery as above, but received no clodronate. The mice were killed day 7. The mechanical quality of the new formed cancellous bone holding the screw was evaluated by a pull-out test. The contents of the drill hole in the left tibia was analyzed by microCT. Another set of 20 mice received a drill hole in the metaphysis of the right tibia, and were given either clodronate or saline injections days 3 and 2. The animals were killed day 1 and 3. Flow cytometry was used to analyze the composition of macrophage subpopulations in the regenerating tissue. Flow cytometry showed that clodronate injections day 3 and 2 led to a decrease in mature monocytes day 1 together with an increase in immature monocytes. On day 3 this effect had mostly disappeared, suggesting that the effect of the injections lasted 3 to 5 days. Mechanical testing revealed that the injections prior to surgery decreased the strength of the new formed bone, holding the screw, by about half. Bone density in the drill hole was similarly reduced. In contrast, the injections given day I and 3 had smaller and statistically insignificant effects. Since their depletion at later time points failed to produce a significant effect, it seems that the role of macrophages in cancellous bone is most crucial during the first two days after trauma. (C) 2017 Elsevier Inc. All rights reserved.

    Place, publisher, year, edition, pages
    ELSEVIER SCIENCE INC, 2017
    Keywords
    Macrophages; Bone healing; Flow cytometry; Cancellous; Metaphysis; Mechanical testing
    National Category
    Orthopaedics
    Identifiers
    urn:nbn:se:liu:diva-139383 (URN)10.1016/j.bone.2017.04.004 (DOI)000404319300016 ()28414141 (PubMedID)
    Note

    Funding Agencies|Swedish Research Council [K2013-52X-02031-47-5]; Linkoping University; Ostergotland County Council [LiO-619221]; European Communitys Seventh Framework Program (FP7) [279239]

    Available from: 2017-08-07 Created: 2017-08-07 Last updated: 2019-04-09
  • 8.
    Tätting, Love
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Orthopaedics in Linköping.
    Sandberg, Olof
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Orthopaedics in Linköping.
    Bernhardsson, Magnus
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Orthopaedics in Linköping.
    Ernerudh, Jan
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Immunology and Transfusion Medicine.
    Aspenberg, Per
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Orthopaedics in Linköping.
    Different composition of leucocytes in cortical and cancellous bone healing in a mouse model2018In: Bone and Joint Research, ISSN 2046-3758, E-ISSN 2352-1872, Vol. 7, no 12, p. 620-628Article in journal (Refereed)
    Abstract [en]

    Objectives Cortical and cancellous bone healing processes appear to be histologically different. They also respond differently to anti-inflammatory agents. We investigated whether the leucocyte composition on days 3 and 5 after cortical and cancellous injuries to bone was different, and compared changes over time using day 3 as the baseline. Methods Ten-week-old male C56/B16J mice were randomized to either cancellous injury in the proximal tibia or cortical injury in the femoral diaphysis. Regenerating tissues were analyzed with flow cytometry at days 3 and 5, using panels with 15 antibodies for common macrophage and lymphocyte markers. The cellular response from day 3 to 5 was compared in order to identify differences in how cancellous and cortical bone healing develop. Results Between day 3 and 5, the granulocytes increased in the cancellous model, whereas the lymphocytes (T cells, B cells, NK cells) and monocytes (CD11b+, 14/80+, CD206+, CD14+ ) increased in the cortical model. Conclusion These results suggest an acute type of inflammation in cancellous bone healing, and a more chronic inflammation in cortical healing. This might explain, in part, why cancellous healing is faster and more resistant to anti-inflammatory drugs than are diaphyseal fractures.

  • 9.
    Tätting, Love
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences.
    Sandberg, Olof
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences.
    Bernhardsson, Magnus
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences.
    Ernerudh, Jan
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Immunology and Transfusion Medicine.
    Aspenberg, Per
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Orthopaedics in Linköping.
    Isolated metaphyseal injury influences unrelated bones A flow cytometric study of tibia and humerus in mice2017In: Acta Orthopaedica, ISSN 1745-3674, E-ISSN 1745-3682, Vol. 88, no 2, p. 223-230Article in journal (Refereed)
    Abstract [en]

    Background and purpose - Fracture healing involves different inflammatory cells, some of which are not part of the traditional bone field, such as B-cells and cytotoxic T-cells. We wanted to characterize bone healing by flow cytometry using 15 different inflammatory cell markers in a mouse model of metaphyseal injury, and incidentally discovered a previously unknown general skeletal reaction to trauma. Material and methods - A bent needle was inserted and twisted to traumatize the cancellous bone in the proximal tibia of C57/Bl6 female mice. This is known to induce vivid bone formation locally in the marrow compartment. Cells were harvested from the injured region, the uninjured contralateral tibia, and the humerus. The compositions of the immune cell populations were compared to those in untraumatized control animals. Results - Tibial metaphyseal injury led to substantial changes in the cell populations over time. Unexpectedly, similar changes were also seen in the contralateral tibia and in the humerus, despite the lack of local trauma. Most leukocyte subsets were affected by this generalized reaction. Interpretation - A relatively small degree of injury to the proximal tibia led to systemic changes in the immune cell populations in the marrow of unrelated bones, and probably in the entire skeleton. The few changes that were specific for the injury site appeared to relate to modulatory functions.

1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf