liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Jufvas, Åsa
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Rajan, Meenu Rohini
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Jönsson, Cecilia
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Strålfors, Peter
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Turkina, Maria
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Scaffolding protein IQGAP1: an insulin-dependent link between caveolae and the cytoskeleton in primary human adipocytes?2016In: Biochemical Journal, ISSN 0264-6021, E-ISSN 1470-8728, Vol. 473, no 19, p. 3177-3188Article in journal (Refereed)
    Abstract [en]

    The ubiquitously expressed IQ motif-containing GTPase activating protein-1 (IQGAP1) is a scaffolding protein implicated in an array of cellular functions, in particular by binding to cytoskeletal elements and signaling proteins. A role of IQGAP1 in adipocytes has not been reported. We therefore investigated the cellular IQGAP1 interactome in primary human adipocytes. Immunoprecipitation and quantitative mass spectrometry identified caveolae and caveolae-associated proteins as the major IQGAP1 interactors alongside cytoskeletal proteins. We confirmed co-localization of IQGAP1 with the defining caveolar marker protein caveolin-1 by confocal microscopy and proximity ligation assay. Most interestingly, insulin enhanced the number of IQGAP1 interactions with caveolin-1 by five-fold. Moreover, we found a significantly reduced abundance of IQGAP1 in adipocytes from patients with type 2 diabetes compared with cells from nondiabetic control subjects. Both the abundance of IQGAP1 protein and mRNA were reduced, indicating a transcriptional defect in diabetes. Our findings suggest a novel role of IQGAP1 in insulin-regulated interaction between caveolae and cytoskeletal elements of the adipocyte, and that this is quelled in the diabetic state.

  • 2.
    Jullesson, David
    et al.
    Linköping University, Department of Biomedical Engineering. Linköping University, The Institute of Technology. Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Johansson, Rikard
    Linköping University, Department of Biomedical Engineering. Linköping University, The Institute of Technology. Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Rohini Rajan, Meenu
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Strålfors, Peter
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Cedersund, Gunnar
    Linköping University, Department of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Dominant negative inhibition data should be analyzed using mathematical modeling - re-interpreting data from insulin signaling.2015In: The FEBS Journal, ISSN 1742-464X, E-ISSN 1742-4658, Vol. 282, no 4, p. 788-802Article in journal (Refereed)
    Abstract [en]

    As our ability to measure the complexity of intracellular networks has evolved, it has become increasingly clear that we need new methods for data analysis: methods involving mathematical modeling. Nevertheless, it is still uncontroversial to publish and interpret experimental results without a model-based proof that the reasoning is correct. In the present study, we argue that this attitude probably needs to change in the future. We illustrate this need for modeling by considering the common experimental technique of using dominant-negative constructs. More specifically, we consider published time-series and dose-response data which previously have been used to argue that the protein S6 kinase does not phosphorylate insulin receptor substrate-1 at a specific serine residue. Using a presented general approach to interpret such data, we now demonstrate that the given dominant-negative data are not conclusive (i.e. that in the absence of other proofs, S6 kinase still may be the kinase). Using simulations with uncertainty analysis and analytical solutions, we show that an alternative explanation is centered around depletion of substrate, which can be tested experimentally. This analysis thus illustrates both the necessity and the benefits of using mathematical modeling to fully understand the implications of biological data, even for a small system and relatively simple data.

  • 3.
    Nyman, Elin
    et al.
    Linköping University, Department of Biomedical Engineering. Linköping University, Faculty of Health Sciences.
    Rohini Rajan, Meenu
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Fagerholm, Siri
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Brännmark, Cecilia
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Cedersund, Gunnar
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences. Linköping University, Department of Biomedical Engineering.
    Strålfors, Peter
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    A Single Mechanism Can Explain Network-wide Insulin Resistance in Adipocytes from Obese Patients with Type 2 Diabetes2014In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 289, no 48, p. 33215-33230Article in journal (Refereed)
    Abstract [en]

    The response to insulin is impaired in type 2 diabetes. Much information is available about insulin signaling, but understanding of the cellular mechanisms causing impaired signaling and insulin resistance is hampered by fragmented data, mainly obtained from different cell lines and animals. We have collected quantitative and systems-wide dynamic data on insulin signaling in primary adipocytes and compared cells isolated from healthy and diabetic individuals. Mathematical modeling and experimental verification identified mechanisms of insulin control of the MAPKs ERK1/2. We found that in human adipocytes, insulin stimulates phosphorylation of the ribosomal protein S6 and hence protein synthesis about equally via ERK1/2 and mTORC1. Using mathematical modeling, we examined the signaling network as a whole and show that a single mechanism can explain the insulin resistance of type 2 diabetes throughout the network, involving signaling both through IRS1, PKB, and mTOR and via ERK1/2 to the nuclear transcription factor Elk1. The most important part of the insulin resistance mechanism is an attenuated feedback from the protein kinase mTORC1 to IRS1, which spreads signal attenuation to all parts of the insulin signaling network. Experimental inhibition of mTORC1 using rapamycin in adipocytes from non-diabetic individuals induced and thus confirmed the predicted network-wide insulin resistance.

  • 4.
    Nyman, Elin
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Rohini Rajan, Meenu
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Fagerholm, Siri
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Brännmark, Cecilia
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Cedersund, Gunnar
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Strålfors, Peter
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    The insulin-signaling network in human adipocytes, normally and in diabetes: role of signaling through ERK1/22014Manuscript (preprint) (Other academic)
    Abstract [en]

    Insulin acutely controls metabolism in adipocytes, but also nuclear transcription through the “mitogenic” signaling pathway mediated by Map-kinases ERK1/2 (ERK). The cellular metabolic response to insulin is attenuated in insulin resistance and type 2 diabetes, but whether this involves also signaling through ERK is unclear. Based on experimental data from primary mature human adipocytes from diabetic and nondiabetic individuals, we demonstrate a network-wide, model-based analysis of insulin signaling through ERK to phosphorylation of transcription factor Elk1 integrated with signaling for “metabolic” control. We use minimal modeling to analyze the idiosyncratic phosphorylation dynamics of ERK, i.e. a slow phosphorylation response that returns to basal in response to insulin, and conclude that sequestration of ERK is the simplest explanation to data. We also demonstrate a significant cross-talk between ERK and mTORC1 signaling to ribosomal protein S6 for control of protein synthesis. A reduced sensitivity and reduced maximal phosphorylation of ERK in response to insulin in the diabetic state can be explained by the same mechanisms that generate insulin resistance in the control of metabolism.

  • 5.
    Rajan, Meenu Rohini
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Nyman, Elin
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Brannmark, Cecilia
    Univ Gothenburg, Sweden.
    Olofsson, Charlotta S.
    Univ Gothenburg, Sweden.
    Strålfors, Peter
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Inhibition of FOXO1 transcription factor in primary human adipocytes mimics the insulin-resistant state of type 2 diabetes2018In: Biochemical Journal, ISSN 0264-6021, E-ISSN 1470-8728, Vol. 475, p. 1807-1820Article in journal (Refereed)
    Abstract [en]

    Type 2 diabetes is characterized by insulin resistance in the expanding adipose tissue of obesity. The insulin resistance manifests in human adipocytes as system-wide impairment of insulin signalling. An exception is the regulation of transcription factor FOXO1 (forkhead box protein O1), which is phosphorylated downstream of mTORC2 (mammalian/mechanistic target of rapamycin in complex with raptor) and is therefore not exhibiting impaired response to insulin. However, the abundance, and activity, of FOXO1 is reduced by half in adipocytes from patients with diabetes. To elucidate the effect of reduced FOXO1 activity, we here transduced human adipocytes with a dominant-negative construct of FOXO1 (DN-FOXO1). Inhibition of FOXO1 reduced the abundance of insulin receptor, glucose transporter-4, ribosomal protein S6, mTOR and raptor. Functionally, inhibition of FOXO1 induced an insulin-resistant state network-wide, a state that qualitatively and quantitatively mimicked adipocytes from patients with type 2 diabetes. In contrast, and in accordance with these effects of DN-FOXO1, overexpression of wild-type FOXO1 appeared to augment insulin signalling. We combined experimental data with mathematical modelling to show that the impaired insulin signalling in FOXO1-inhibited cells to a large extent can be explained by reduced mTORC1 activity - a mechanism that defines much of the diabetic state in human adipocytes. Our findings demonstrate that FOXO1 is critical for maintaining normal insulin signalling of human adipocytes.

  • 6.
    Rajan, Meenu Rohini
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Nyman, Elin
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Faculty of Science & Engineering. Cardiovascular and Metabolic Diseases, Innovative Medicines, and Drug Metabolism and Pharmacokinetics, AstraZeneca Research and Development, Gothenburg, Sweden .
    Kjölhede, Preben
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center of Paediatrics and Gynaecology and Obstetrics, Department of Gynaecology and Obstetrics in Linköping.
    Cedersund, Gunnar
    Linköping University, Department of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology.
    Strålfors, Peter
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Systems-wide Experimental and Modeling Analysis of Insulin Signaling through Forkhead Box Protein O1 (FOXO1) in Human Adipocytes, Normally and in Type 2 Diabetes2016In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 291, no 30, p. 15806-15819Article in journal (Refereed)
    Abstract [en]

    Insulin resistance is a major aspect of type 2 diabetes (T2D), which results from impaired insulin signaling in target cells. Signaling to regulate forkhead box protein O1 (FOXO1) may be the most important mechanism for insulin to control transcription. Despite this, little is known about how insulin regulates FOXO1 and how FOXO1 may contribute to insulin resistance in adipocytes, which are the most critical cell type in the development of insulin resistance. We report a detailed mechanistic analysis of insulin control of FOXO1 in human adipocytes obtained from non-diabetic subjects and from patients with T2D. We show that FOXO1 is mainly phosphorylated through mTORC2-mediated phosphorylation of protein kinase B at Ser(473) and that this mechanism is unperturbed in T2D. We also demonstrate a cross-talk from the MAPK branch of insulin signaling to stimulate phosphorylation of FOXO1. The cellular abundance and consequently activity of FOXO1 are halved in T2D. Interestingly, inhibition of mTORC1 with rapamycin reduces the abundance of FOXO1 to the levels in T2D. This suggests that the reduction of the concentration of FOXO1 is a consequence of attenuation of mTORC1, which defines much of the diabetic state in human adipocytes. We integrate insulin control of FOXO1 in a network-wide mathematical model of insulin signaling dynamics based on compatible data from human adipocytes. The diabetic state is network-wide explained by attenuation of an mTORC1-to-insulin receptor substrate-1 (IRS1) feedback and reduced abundances of insulin receptor, GLUT4, AS160, ribosomal protein S6, and FOXO1. The model demonstrates that attenuation of the mTORC1-to-IRS1 feedback is a major mechanism of insulin resistance in the diabetic state.

    Download full text (pdf)
    fulltext
  • 7. Order onlineBuy this publication >>
    Rohini Rajan, Meenu
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Unraveling Mechanisms of Insulin Resistance in Type 2 Diabetes in Human Adipocytes: Role of extracellular signal regulated kinase 1/2 (ERK1/2) and forkhead box protein 01 (FOX01)2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Type 2 Diabetes is characterized by hyperglycemia primarily caused due to insulin resistance in insulin responsive tissues and insufficient production of insulin by the β-cells. Insulin resistance appears to develop first in the expanding adipose tissue during caloric surplus and affects other tissues like liver and muscle by ectopic fat accumulation. In spite of significant research in field of insulin signaling, very little has been known about the mechanisms that lead to insulin resistance and T2D.

    We aim for network-wide knowledge of insulin signaling in human adipocytes and to identify mechanisms that can induce insulin resistance in diabetic individuals. We have herein focused on the transcriptional control of insulin via ERK and FOXO1, and have used mathematical modelling to gain a systems-level understanding of insulin signaling network.

    Through the work in this thesis, we present for the first time a dynamic comprehensive model for insulin signaling for the adipocytes, for both metabolic and transcriptional control, and that can simulate data from both normal and diabetic individuals. We described insulin regulation of ERK phosphorylation and showed that both its insulin sensitivity and maxima  response to insulin was curtailed in adipocytes from diabetic individuals (Paper I). Our findings indicate that insulin regulated ERK pathway exerts control on transcription not only through phosphorylation of Elk-1 but also through phosphorylation of FOXO1 and exerts translational control via phosphorylation of ribosomal protein S6 (Paper I, II). Furthermore, we showed that insulin-induced FOXO1 phosphorylation or its insulin sensitivity was not impaired in diabetic individuals, although FOXO1 protein level was reduced by 45% in adipocytes from patients with type 2 diabetes. Comprehensive analysis of the detailed insulin signaling model showed that attenuation of the feedback from mTORC1 to IRS1-Ser307 explained dominant part of the insulin resistance seen in adipocytes from diabetic individuals (Paper II). More interestingly, inhibition of FOXO1 with a dominant negative construct of FOXO1, mimicked the diabetic state in the adipocytes, with the similarity extending to both insulin signaling as well as the reduced protein levels, as seen in the diabetic adipocytes. We also show that mTORC1 and FOXO1 maintain each other’s expression/activity in the human adipocytes (Paper II, III). Our findings thus demonstrate that the interplay between mTORC1 and FOXO1 maintains normal insulin signaling in the human adipocytes.

    List of papers
    1. A Single Mechanism Can Explain Network-wide Insulin Resistance in Adipocytes from Obese Patients with Type 2 Diabetes
    Open this publication in new window or tab >>A Single Mechanism Can Explain Network-wide Insulin Resistance in Adipocytes from Obese Patients with Type 2 Diabetes
    Show others...
    2014 (English)In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 289, no 48, p. 33215-33230Article in journal (Refereed) Published
    Abstract [en]

    The response to insulin is impaired in type 2 diabetes. Much information is available about insulin signaling, but understanding of the cellular mechanisms causing impaired signaling and insulin resistance is hampered by fragmented data, mainly obtained from different cell lines and animals. We have collected quantitative and systems-wide dynamic data on insulin signaling in primary adipocytes and compared cells isolated from healthy and diabetic individuals. Mathematical modeling and experimental verification identified mechanisms of insulin control of the MAPKs ERK1/2. We found that in human adipocytes, insulin stimulates phosphorylation of the ribosomal protein S6 and hence protein synthesis about equally via ERK1/2 and mTORC1. Using mathematical modeling, we examined the signaling network as a whole and show that a single mechanism can explain the insulin resistance of type 2 diabetes throughout the network, involving signaling both through IRS1, PKB, and mTOR and via ERK1/2 to the nuclear transcription factor Elk1. The most important part of the insulin resistance mechanism is an attenuated feedback from the protein kinase mTORC1 to IRS1, which spreads signal attenuation to all parts of the insulin signaling network. Experimental inhibition of mTORC1 using rapamycin in adipocytes from non-diabetic individuals induced and thus confirmed the predicted network-wide insulin resistance.

    Place, publisher, year, edition, pages
    American Society for Biochemistry and Molecular Biology, 2014
    National Category
    Clinical Medicine
    Identifiers
    urn:nbn:se:liu:diva-113198 (URN)10.1074/jbc.M114.608927 (DOI)000345636600015 ()25320095 (PubMedID)
    Note

    Funding Agencies|Swedish Diabetes Fund; University of Linkoping; Swedish Research Council

    Available from: 2015-01-13 Created: 2015-01-12 Last updated: 2017-12-05
    2. Systems-wide Experimental and Modeling Analysis of Insulin Signaling through Forkhead Box Protein O1 (FOXO1) in Human Adipocytes, Normally and in Type 2 Diabetes
    Open this publication in new window or tab >>Systems-wide Experimental and Modeling Analysis of Insulin Signaling through Forkhead Box Protein O1 (FOXO1) in Human Adipocytes, Normally and in Type 2 Diabetes
    Show others...
    2016 (English)In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 291, no 30, p. 15806-15819Article in journal (Refereed) Published
    Abstract [en]

    Insulin resistance is a major aspect of type 2 diabetes (T2D), which results from impaired insulin signaling in target cells. Signaling to regulate forkhead box protein O1 (FOXO1) may be the most important mechanism for insulin to control transcription. Despite this, little is known about how insulin regulates FOXO1 and how FOXO1 may contribute to insulin resistance in adipocytes, which are the most critical cell type in the development of insulin resistance. We report a detailed mechanistic analysis of insulin control of FOXO1 in human adipocytes obtained from non-diabetic subjects and from patients with T2D. We show that FOXO1 is mainly phosphorylated through mTORC2-mediated phosphorylation of protein kinase B at Ser(473) and that this mechanism is unperturbed in T2D. We also demonstrate a cross-talk from the MAPK branch of insulin signaling to stimulate phosphorylation of FOXO1. The cellular abundance and consequently activity of FOXO1 are halved in T2D. Interestingly, inhibition of mTORC1 with rapamycin reduces the abundance of FOXO1 to the levels in T2D. This suggests that the reduction of the concentration of FOXO1 is a consequence of attenuation of mTORC1, which defines much of the diabetic state in human adipocytes. We integrate insulin control of FOXO1 in a network-wide mathematical model of insulin signaling dynamics based on compatible data from human adipocytes. The diabetic state is network-wide explained by attenuation of an mTORC1-to-insulin receptor substrate-1 (IRS1) feedback and reduced abundances of insulin receptor, GLUT4, AS160, ribosomal protein S6, and FOXO1. The model demonstrates that attenuation of the mTORC1-to-IRS1 feedback is a major mechanism of insulin resistance in the diabetic state.

    Place, publisher, year, edition, pages
    Rockville, Maryland: American Society for Biochemistry and Molecular Biology, 2016
    National Category
    Endocrinology and Diabetes
    Identifiers
    urn:nbn:se:liu:diva-130998 (URN)10.1074/jbc.M116.715763 (DOI)000380584200033 ()27226562 (PubMedID)
    Note

    Funding agencies|Swedish Diabetes Fund, University of Linköping; Swedish Research Council; AstraZeneca

    Available from: 2016-09-02 Created: 2016-09-02 Last updated: 2019-06-28Bibliographically approved
    Download full text (pdf)
    Unraveling Mechanisms of Insulin Resistance in Type 2 Diabetes in Human Adipocytes : Role of extracellular signal regulated kinase 1/2 (ERK1/2) and forkhead box protein 01 (FOX01)
    Download (pdf)
    omslag
    Download (jpg)
    presentationsbild
  • 8.
    Rohini Rajan, Meenu
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Fagerholm, Siri
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Jonsson, Cecilia
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Kjölhede, Preben
    Linköping University, Department of Clinical and Experimental Medicine, Obstetrics and gynecology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Paediatrics and Gynecology and Obstetrics, Department of Gynecology and Obstetrics in Linköping.
    Turkina, Maria
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Strålfors, Peter
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Phosphorylation of IRS1 at Serine 307 in Response to Insulin in Human Adipocytes Is Not Likely to be Catalyzed by p70 Ribosomal S6 Kinase2013In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 8, no 4Article in journal (Refereed)
    Abstract [en]

    The insulin receptor substrate-1 (IRS1) is phosphorylated on serine 307 (human sequence, corresponding to murine serine 302) in response to insulin as part of a feedback loop that controls IRS1 phosphorylation on tyrosine residues by the insulin receptor. This in turn directly affects downstream signaling and is in human adipocytes implicated in the pathogenesis of insulin resistance and type 2 diabetes. The phosphorylation is inhibited by rapamycin, a specific inhibitor of mammalian target of rapamycin (mTOR) in complex with raptor (mTORC1). The mTORC1-downstream p70 ribosomal protein S6 kinase (S6K1), which is activated by insulin, can phosphorylate IRS1 at serine 307 in vitro and is considered the physiological protein kinase. Because the IRS1 serine 307-kinase catalyzes a critical step in the control of insulin signaling and constitutes a potential target for treatment of insulin resistance, it is important to know whether S6K1 is the physiological serine 307-kinase or not. We report that, by several criteria, S6K1 does not phosphorylate IRS1 at serine 307 in response to insulin in intact human primary adipocytes: (i) The time-courses for phosphorylation of S6K1 and its phosphorylation of S6 are not compatible with the phosphorylation of IRS1 at serine 307; (ii) A dominant-negative construct of S6K1 inhibits the phosphorylation of S6, without effect on the phosphorylation of IRS1 at serine 307; (iii) The specific inhibitor of S6K1 PF-4708671 inhibits the phosphorylation of S6, without effect on phosphorylation of IRS1 at serine 307. mTOR-immunoprecipitates from insulin-stimulated adipocytes contains an unidentified protein kinase specific for phosphorylation of IRS1 at serine 307, but it is not mTOR or S6K1.

    Download full text (pdf)
    fulltext
1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf