liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Le Febvrier, Arnaud
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Tureson, Nina
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Stilkerich, Nina
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Effect of impurities on morphology, growth mode, and thermoelectric properties of (111) and (001) epitaxial-like ScN films2019In: Journal of Physics D: Applied Physics, ISSN 0022-3727, E-ISSN 1361-6463, Vol. 52, no 3, article id 035302Article in journal (Refereed)
    Abstract [en]

    ScN is an emerging semiconductor with an indirect bandgap. It has attracted attention for its thermoelectric properties, use as seed layers, and for alloys for piezoelectric application. ScN and other transition metal nitride semiconductors used for their interesting electrical properties are sensitive to contaminants, such as oxygen or fluorine. In this present article, the influence of depositions conditions on the amount of oxygen contaminants incorporated in ScN films were investigated and their effects on the electrical properties (electrical resistivity and Seebeck coefficient) were studied. Epitaxial-like films of thickness 125 +/- 5 nm to 155 +/- 5 nm were deposited by DC-magnetron sputtering on c-plane Al-2, O-3(111) and r-plane Al2O3 at substrate temperatures ranging from 700 degrees C to 950 degrees C. The amount of oxygen contaminants in the film, dissolved into ScN or as an oxide, was related to the adatom mobility during growth, which is affected by the deposition temperature and the presence of twin domain growth. The lowest values of electrical resistivity of 50 mu Omega cm were obtained on ScN(1 1 1)/ MgO(111) and on ScN(001)/r-plane Al2O3 grown at 950 degrees C with no twin domains and the lowest amount of oxygen contaminant. At the best, the films exhibited an electrical resistivity of 50 mu Omega cm with Seebeck coefficient values maintained at -40 mu V K-1, thus a power factor estimated at 3.2 x 10(-3) W m(-1) K-2 (at room temperature).

    Download full text (pdf)
    fulltext
  • 2.
    Tureson, Nina
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Marteau, Marc
    Univ Poitiers, France.
    Cabioch, Thierry
    Univ Poitiers, France.
    Van Nong, Ngo
    Tech Univ Denmark, Denmark.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Fournier, Daniele
    Sorbonne Univ, France.
    Singh, Niraj
    Indian Inst Technol Mandi, India.
    Soni, Ajay
    Indian Inst Technol Mandi, India.
    Belliard, Laurent
    Sorbonne Univ, France.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Le Febvrier, Arnaud
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Effect of ion-implantation-induced defects and Mg dopants on the thermoelectric properties of ScN2018In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 98, no 20, article id 205307Article in journal (Refereed)
    Abstract [en]

    For applications in energy harvesting and environmentally friendly cooling, and for power sources in remote or portable applications, it is desired to enhance the efficiency of thermoelectric materials. One strategy consists of reducing the thermal conductivity while increasing or retaining the thermoelectric power factor. An approach to achieve this is doping to enhance the Seebeck coefficient and electrical conductivity, while simultaneously introducing defects in the materials to increase phonon scattering. Here, we use Mg ion implantation to induce defects in epitaxial ScN (111) films. The films were implanted with Mg+ ions with different concentration profiles along the thickness of the film, incorporating 0.35 to 2.2 at. % of Mg in ScN. Implantation at high temperature (600 degrees C), with few defects due to the temperature, does not substantially affect the thermal conductivity compared to a reference ScN. Samples implanted at room temperature, in contrast, exhibited a reduction of the thermal conductivity by a factor of 3. The sample doped with 2.2 at. % of Mg also showed an increased power factor after implantation. This paper thus shows the effect of ion-induced defects on thermal conductivity of ScN films. High-temperature implantation allows the defects to be annealed out during implantation, while the defects are retained for room-temperature implanted samples, allowing for a drastic reduction in thermal conductivity.

    Download full text (pdf)
    fulltext
  • 3.
    Tureson, Nina
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Van Nong, Ngo
    Tech Univ Denmark, Roskilde, Denmark.
    Fournier, Daniele
    Sorbonne Universites, Paris, France.
    Singh, Niraj
    Indian Institute Technology Mandi, India.
    Acharya, Somnath
    Indian Institute Technology Mandi, India.
    Schmidt, Susann
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Ionbond Switzerland Olten, Switzerland.
    Belliard, Laurent
    University of Paris 06, France.
    Soni, Ajay
    Indian Institute Technology Mandi, India.
    Le Febvrier, Arnaud
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Reduction of the thermal conductivity of the thermoelectric material ScN by Nb alloying2017In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 122, no 2, article id 025116Article in journal (Refereed)
    Abstract [en]

    ScN-rich (Sc,Nb)N solid solution thin films have been studied, motivated by the promising thermoelectric properties of ScN-based materials. Cubic Sc1-xNbxN films for 0 amp;lt;= x amp;lt;= 0.25 were epitaxially grown by DC reactive magnetron sputtering on a c-plane sapphire substrate and oriented along the (111) orientation. The crystal structure, morphology, thermal conductivity, and thermoelectric and electrical properties were investigated. The ScN reference film exhibited a Seebeck coefficient of -45 mu V/K and a power factor of 6 x 10(-4) W/m K-2 at 750K. Estimated from room temperature Hall measurements, all samples exhibit a high carrier density of the order of 10(21) cm(-3). Inclusion of heavy transition metals into ScN enables the reduction in thermal conductivity by an increase in phonon scattering. The Nb inserted ScN thin films exhibited a thermal conductivity lower than the value of the ScN reference (10.5W m(-1) K-1) down to a minimum value of 2.2 Wm(-1) K-1. Insertion of Nb into ScN thus resulted in a reduction in thermal conductivity by a factor of similar to 5 due to the mass contrast in ScN, which increases the phonon scattering in the material. Published by AIP Publishing.

    Download full text (pdf)
    fulltext
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf