liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Order onlineBuy this publication >>
    Bubnova, Olga
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Thermoelectric properties of conducting polymers2013Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    According to different sources, from forty to sixty percent of the overall energy generated in the world today is squandered in waste heat. The existing energy conversion technologies are either close to their efficiency limits or too costly to justify their implementation. Therefore, the development of new technological approaches for waste heat recovery is highly demanded. The field of thermoelectrics can potentially provide an inexpensive, clean and efficient solution to waste heat underutilization, given that a new type of thermoelectric materials capable of meeting those requirements are available.

    This thesis reports on strategies to optimize a thermoelectric efficiency (ZT) of conducting polymers, more specifically poly(3,4-ethylenedioxythiophene) (Pedot). Conducting polymers constitute a special class of semiconductors characterized by low thermal conductivity as well as electrical conductivity and thermopower that can be readily modified by doping in order to achieve the best combination of thermoelectric parameters. Conducting polymers that have never previously been regarded as hypothetically compatible for thermoelectric energy conversion, can exhibit promising thermoelectric performance at moderate temperatures, which is a sought-after quality for waste heat recovery. A rather substandard thermoelectric efficiency of Pedot-Pss can be markedly improved by various secondary dopants whose addition usually improves polymer’s morphology accompanied by a drastic increase in electrical conductivity and, consequently, in ZT. In order to enable further enhancement in thermoelectric properties, the optimization of the charge carrier concentration is commonly used. The oxidation level of Pedot-Pss can be precisely controlled by electrochemical doping resulting in a tenfold increase of ZT. In contrast to Pedot-Pss, another conducting polymer Pedot-Tos exhibits superior thermoelectric performance even without secondary doping owning to its partially crystalline nature that allows for an improved electronic conduction. With the aid of a strong electron donor, positively doped Pedot-Tos gets partially reduced reaching the optimum oxidation state at which its thermoelectric efficiency is just four times smaller than that of Be2Te3 and the highest among all stable conducting polymers. The downsides associated with chemical doping of Pedot-Tos such as doping inhomogeneity or chemical dopants air sensitivity can be surmounted if the doping level of Pedot-Tos is controlled by acidity/basicity of the polymer. This approach yields similar maximum thermoelectric efficiency but does not necessitate inert conditions for sample preparation. Optimized Pedot-Tos/Pedot-Pss can be functionalized as a p-type material in organic thermogenerators (OTEG) to power low energy electronic devices. If printed on large areas, OTEGs could be used as an alternative technique for capturing heat discarded by industrial processes, households, transportation sector or any natural heat sources for electricity production.

    List of papers
    1. Towards polymer-based organic thermoelectric generators
    Open this publication in new window or tab >>Towards polymer-based organic thermoelectric generators
    2012 (English)In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 5, no 11, p. 9345-9362Article in journal (Refereed) Published
    Abstract [en]

    In response to the thread of environmental and ecological degradation along with projected fossil fuel depletion the active search for efficient renewable energy conversion technologies has been attempted in various research areas including the field of thermoelectrics. Despite the availability of considerable amounts of waste and natural heat stored in warm fluids (andlt;250 degrees C) a lack of environmentally friendly materials with high natural abundance, low manufacturing cost and high thermoelectric efficiency impedes the widespread use of thermoelectric generators for energy harvesting on a large scale. In this perspective, we examine the possibility of using organic conducting polymers in thermoelectric applications. We provide an overview of the background and the key concepts of organic thermoelectrics and illustrate some of the first prototypes of polymer-based organic thermoelectric generators.

    Place, publisher, year, edition, pages
    Royal Society of Chemistry, 2012
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-85293 (URN)10.1039/c2ee22777k (DOI)000310006200015 ()
    Note

    Funding Agencies|European Research Council||Swedish foundation for strategic research||Knut and Alice Wallenberg foundation||Swedish Energy Agency||Advanced Functional Materials Center at Linkoping University||

    Available from: 2012-11-19 Created: 2012-11-15 Last updated: 2023-12-06
    2. Tuning the Thermoelectric Properties of Conducting Polymers in an Electrochemical Transistor
    Open this publication in new window or tab >>Tuning the Thermoelectric Properties of Conducting Polymers in an Electrochemical Transistor
    2012 (English)In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 134, no 40, p. 16456-16459Article in journal (Refereed) Published
    Abstract [en]

    While organic field-effect transistors allow the investigation of interfacial charge transport at the semiconductor-dielectric interface, an electrochemical transistor truly modifies the oxidation level and conductivity throughout the bulk of an organic semiconductor. In this work, the thermoelectric properties of the bulk of the conducting polymer poly(3,4-ethylenedioxythiophene) -poly(styrene sulfonate) were controlled electrically by varying the gate voltage. In light of the growing interest in conducting polymers as thermoelectric generators, this method provides an easy tool to study the physics behind the thermoelectric properties and to optimize polymer thermoelectrics.

    Place, publisher, year, edition, pages
    American Chemical Society, 2012
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-85195 (URN)10.1021/ja305188r (DOI)000309566400003 ()
    Note

    Funding Agencies|Swedish Foundation for Strategic Research||Knut and Alice Wallenberg Foundation||Swedish Energy Agency||Advanced Functional Materials Center at Linkoping University||ERC Starting Grant||

    Available from: 2012-11-09 Created: 2012-11-09 Last updated: 2023-12-06
    3. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene)
    Open this publication in new window or tab >>Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene)
    Show others...
    2011 (English)In: NATURE MATERIALS, ISSN 1476-1122, Vol. 10, no 6, p. 429-433Article in journal (Refereed) Published
    Abstract [en]

    Thermoelectric generators (TEGs) transform a heat flow into electricity. Thermoelectric materials are being investigated for electricity production from waste heat (co-generation) and natural heat sources. For temperatures below 200 degrees C, the best commercially available inorganic semiconductors are bismuth telluride (Bi2Te3)-based alloys, which possess a figure of merit ZT close to one(1). Most of the recently discovered thermoelectric materials with ZT andgt; 2 exhibit one common property, namely their low lattice thermal conductivities(2,3). Nevertheless, a high ZT value is not enough to create a viable technology platform for energy harvesting. To generate electricity from large volumes of warm fluids, heat exchangers must be functionalized with TEGs. This requires thermoelectric materials that are readily synthesized, air stable, environmentally friendly and solution processable to create patterns on large areas. Here we show that conducting polymers might be capable of meeting these demands. The accurate control of the oxidation level in poly(3,4-ethylenedioxythiophene) (PEDOT) combined with its low intrinsic thermal conductivity (lambda = D 0.37W m(-1) K-1) yields a ZT = 0.25 at room temperature that approaches the values required for efficient devices.

    Place, publisher, year, edition, pages
    Nature Publishing Group, 2011
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-68783 (URN)10.1038/nmat3012 (DOI)000290855100016 ()
    Available from: 2011-06-08 Created: 2011-06-07 Last updated: 2023-12-06
    Download full text (pdf)
    Thermoelectric properties of conducting polymers
    Download (pdf)
    omslag
    Download (jpg)
    presentationsbild
  • 2.
    Bubnova, Olga
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Ph effect on thermoelectric properties of poly-(3,4-ethylenedioxythiophene):tosylateManuscript (preprint) (Other academic)
    Abstract [en]

    Abstract not available.

  • 3.
    Bubnova, Olga
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Tuning the Thermoelectric Properties of Conducting Polymers in an Electrochemical Transistor2012In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 134, no 40, p. 16456-16459Article in journal (Refereed)
    Abstract [en]

    While organic field-effect transistors allow the investigation of interfacial charge transport at the semiconductor-dielectric interface, an electrochemical transistor truly modifies the oxidation level and conductivity throughout the bulk of an organic semiconductor. In this work, the thermoelectric properties of the bulk of the conducting polymer poly(3,4-ethylenedioxythiophene) -poly(styrene sulfonate) were controlled electrically by varying the gate voltage. In light of the growing interest in conducting polymers as thermoelectric generators, this method provides an easy tool to study the physics behind the thermoelectric properties and to optimize polymer thermoelectrics.

  • 4.
    Bubnova, Olga
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Towards polymer-based organic thermoelectric generators2012In: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 5, no 11, p. 9345-9362Article in journal (Refereed)
    Abstract [en]

    In response to the thread of environmental and ecological degradation along with projected fossil fuel depletion the active search for efficient renewable energy conversion technologies has been attempted in various research areas including the field of thermoelectrics. Despite the availability of considerable amounts of waste and natural heat stored in warm fluids (andlt;250 degrees C) a lack of environmentally friendly materials with high natural abundance, low manufacturing cost and high thermoelectric efficiency impedes the widespread use of thermoelectric generators for energy harvesting on a large scale. In this perspective, we examine the possibility of using organic conducting polymers in thermoelectric applications. We provide an overview of the background and the key concepts of organic thermoelectrics and illustrate some of the first prototypes of polymer-based organic thermoelectric generators.

    Download full text (pdf)
    fulltext
  • 5.
    Bubnova, Olga
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Khan, Zia Ullah
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Wang, Hui
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Braun, Slawomir
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
    Evans, Drew R
    University of South Australia, Mawson Institute, Mawson Lakes 5095, Australia.
    Fabretto, Manrico
    University of South Australia, Mawson Institute, Mawson Lakes 5095, Australia.
    Hojati-Talemi, Pejman
    University of South Australia, Mawson Institute, Mawson Lakes 5095, Australia.
    Dagnelund, Daniel
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Arlin, Jean-Baptiste
    Free University of Brussels, Laboratoire de Chimie des Polymères, CP 206/1, Boulevard du Triomphe, 1050 Bruxelles, Belgium.
    Geerts, Yves H.
    Free University of Brussels, Laboratoire de Chimie des Polymères, CP 206/1, Boulevard du Triomphe, 1050 Bruxelles, Belgium.
    Desbief, Simon
    University of Mons, Laboratoire de chimie des materiaux nouveaux, Place du Parc 20, 7000 Mons, Belgium.
    Breiby, Dag W.
    Norwegian University of Science and Technology (NTNU), Department of Physics, Høgskoleringen 5, 7491 Trondheim, Norway.
    Andreasen, Jens W.
    Technical University of Denmark, Department of Energy Conversion and Storage, Frederiksborgvej 399, 4000 Roskilde, Denmark.
    Lazzaroni, Roberto
    University of Mons, Laboratoire de chimie des materiaux nouveaux, Place du Parc 20, 7000 Mons, Belgium.
    Chen, Weimin
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Zozoulenko, Igor
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Fahlman, Mats
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Murphy, Peter J.
    University of South Australia, Mawson Institute, Mawson Lakes 5095, Australia.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Corrigendum: Semi-metallic polymers2014In: Nature Materials, ISSN 1476-1122, E-ISSN 1476-4660, Vol. 13, p. 662-662Article in journal (Refereed)
    Download full text (pdf)
    fulltext
  • 6.
    Bubnova, Olga
    et al.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Ullah Khan, Zia
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Malti, Abdellah
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Braun, Slawomir
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
    Fahlman, Mats
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Crispin, Xavier
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene)2011In: NATURE MATERIALS, ISSN 1476-1122, Vol. 10, no 6, p. 429-433Article in journal (Refereed)
    Abstract [en]

    Thermoelectric generators (TEGs) transform a heat flow into electricity. Thermoelectric materials are being investigated for electricity production from waste heat (co-generation) and natural heat sources. For temperatures below 200 degrees C, the best commercially available inorganic semiconductors are bismuth telluride (Bi2Te3)-based alloys, which possess a figure of merit ZT close to one(1). Most of the recently discovered thermoelectric materials with ZT andgt; 2 exhibit one common property, namely their low lattice thermal conductivities(2,3). Nevertheless, a high ZT value is not enough to create a viable technology platform for energy harvesting. To generate electricity from large volumes of warm fluids, heat exchangers must be functionalized with TEGs. This requires thermoelectric materials that are readily synthesized, air stable, environmentally friendly and solution processable to create patterns on large areas. Here we show that conducting polymers might be capable of meeting these demands. The accurate control of the oxidation level in poly(3,4-ethylenedioxythiophene) (PEDOT) combined with its low intrinsic thermal conductivity (lambda = D 0.37W m(-1) K-1) yields a ZT = 0.25 at room temperature that approaches the values required for efficient devices.

  • 7.
    Bubnova, Olga
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Ullah Khan, Zia
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Wang, Hui
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Braun, Slawomir
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
    Evans, Drew R.
    University of S Australia, Australia .
    Fabretto, Manrico
    University of S Australia, Australia .
    Hojati-Talemi, Pejman
    University of S Australia, Australia .
    Dagnelund, Daniel
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Arlin, Jean-Baptiste
    University of Libre Brussels, Belgium .
    Geerts, Yves H.
    University of Libre Brussels, Belgium .
    Desbief, Simon
    University of Mons, Belgium .
    Breiby, Dag W.
    Norwegian University of Science and Technology NTNU, Norway .
    Andreasen, Jens W.
    Technical University of Denmark, Denmark .
    Lazzaroni, Roberto
    University of Mons, Belgium .
    Chen, Weimin
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Zozoulenko, Igor
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Fahlman, Mats
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
    Murphy, Peter J.
    University of S Australia, Australia .
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Semi-metallic polymers2014In: Nature Materials, ISSN 1476-1122, E-ISSN 1476-4660, Vol. 13, no 2, p. 190-194Article in journal (Refereed)
    Abstract [en]

    Polymers are lightweight, flexible, solution-processable materials that are promising for low-cost printed electronics as well as for mass-produced and large-area applications. Previous studies demonstrated that they can possess insulating, semiconducting or metallic properties; here we report that polymers can also be semi-metallic. Semi-metals, exemplified by bismuth, graphite and telluride alloys, have no energy bandgap and a very low density of states at the Fermi level. Furthermore, they typically have a higher Seebeck coefficient and lower thermal conductivities compared with metals, thus being suitable for thermoelectric applications. We measure the thermoelectric properties of various poly( 3,4-ethylenedioxythiophene) samples, and observe a marked increase in the Seebeck coefficient when the electrical conductivity is enhanced through molecular organization. This initiates the transition from a Fermi glass to a semi-metal. The high Seebeck value, the metallic conductivity at room temperature and the absence of unpaired electron spins makes polymer semi-metals attractive for thermoelectrics and spintronics.

    Download full text (pdf)
    fulltext
  • 8.
    Bubnova, Olga
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Ullah Khan, Zia
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Wang, Hui
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Dagnelund, Daniel
    Linköping University, Department of Physics, Chemistry and Biology, Functional Electronic Materials. Linköping University, The Institute of Technology.
    Arlin, Jean-Baptiste
    Free University of Brussels Laboratoire de Chimie des Polymères, Bruxelles, Belgium.
    Geerts, Yves
    Free University of Brussels Laboratoire de Chimie des Polymères, Bruxelles, Belgium.
    Desbief, Simon
    University of Mons Laboratoire de chimie des materiaux nouveaux, Mons, Belgium.
    Breiby, Dag W.
    Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
    Andreasen, Jens W.
    Imaging and Structural Analysis Programme, Department of Energy Conversion and Storage, Technical University of Denmark, Roskilde, Denmark.
    Lazzaroni, Roberto
    University of Mons Laboratoire de chimie des materiaux nouveaux, Mons, Belgium.
    Zozoulenko, Igor
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Advantageous thermoelectric properties of a semimetallic polymerManuscript (preprint) (Other academic)
    Abstract [en]

    Thermoelectric generation potentially holds a solution for waste heat recovery issues provided that the availability of inexpensive, biodegradable and highly efficient thermoelectric materials is insured in the near future. Plastic thermoelectrics could successfully comply with the said requirements if the thermoelectric efficiency (ZT) of conducting polymers was higher. However, given the novelty of the subject, at present there are no clear guidelines for ZT optimization in this class of materials. The most important piece of information that is currently missing is the description of a specific electronic makeup that conducting polymers must possess in order to enable good thermoelectric performance. In the present study the thermoelectric properties of poly(3,4-ethylenedioxythiophene) derivatives with two types of counterions, i.e. poly(styrenesulfonate) (PSS) and tosylate (Tos) are evaluated. A striking variation in their thermoelectric performance is attributed to structural and morphological differences between two polymers that manifest itself in dissimilar charge transport mechanism. The superior properties of PEDOT-Tos presumably originate from a high degree of crystallinity and structural order that predetermines the tendency for bipolaron band formation. Unlike polaronic PEDOT-PSS with slowly varying density of localized states (DOS) near the Fermi level (EF), the DOS in PEDOT-Tos is characterized by higher asymmetry and higher charge carrier density at EF (similar to semimetals), which allows for higher thermopower and electrical conductivity. Therefore, we conclude that the polymers with semimetallic electronic makeup are expected to exhibit promising thermoelectric properties with bigger variation in thermopower upon doping.

  • 9.
    Ullah Khan, Zia
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Bubnova, Olga
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering. Optoelectronics Group, Cavendish Laboratory, University of Cambridge, Cambridge, UK.
    Jafari, Mohammad Javad
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Brooke, Robert
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering. University of South Australia, Mawson Institute, Mawson Lakes 5095, Australia.
    Liu, Xianjie
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Gabrielsson, Roger
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Ederth, Thomas
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Evans, Drew R.
    University of South Australia, Mawson Institute, Australia.
    Andreasen, Jens W.
    Technical University of Denmark, Department of Energy Conversion and Storage, Roskilde, Denmark.
    Fahlman, Mats
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Acido-basic control of the thermoelectric properties of poly(3,4-ethylenedioxythiophene)tosylate (PEDOT-Tos) thin films2015In: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 3, p. 10616-10623Article in journal (Refereed)
    Abstract [en]

    PEDOT-Tos is one of the conducting polymers that displays the most promising thermoelectric properties. Until now, it has been utterly difficult to control all the synthesis parameters and the morphology governing the thermoelectric properties. To improve our understanding of this material, we study the variation in the thermoelectric properties by a simple acido-basic treatment. The emphasis of this study is to elucidate the chemical changes induced by acid (HCl) or base (NaOH) treatment in PEDOT-Tos thin films using various spectroscopic and structural techniques. We could identify changes in the nanoscale morphology due to anion exchange between tosylate and Cl- or OH-. But, we identified that changing the pH leads to a tuning of the oxidation level of the polymer, which can explain the changes in thermoelectric properties. Hence, a simple acid-base treatment allows finding the optimum for the power factor in PEDOT-Tos thin films.

    Download full text (pdf)
    fulltext
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf