liu.seSearch for publications in DiVA
Endre søk
Begrens søket
12345 1 - 50 of 201
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Abd Nikooie Pour, Mina
    et al.
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik.
    Algergawy, Alsayed
    Friedrich Schiller University Jena, Germany.
    Amardeilh, Florence
    Elzeard.co, Paris, France.
    Amini, Reihaneh
    Data Semantics (DaSe) Laboratory, Kansas State University, USA.
    Fallatah, Omaima
    Information School, The University of Sheffield, Sheffield, UK.
    Faria, Daniel
    LASIGE, Faculdade de Ciencias, Universidade de Lisboa, Portugal .
    Fundulaki, Irini
    Institute of Computer Science-FORTH, Heraklion, Greece.
    Harrow, Ian
    Pistoia Alliance Inc., USA.
    Hertling, Sven
    University of Mannheim, Germany.
    Hitzler, Pascal
    Data Semantics (DaSe) Laboratory, Kansas State University, USA.
    Huschka, Martin
    Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut, EMI, Germany.
    Ibanescu, Liliana
    AgroParisTech, UMR MIA-Paris/INRAE, France.
    Jimenez-Ruiz, Ernesto
    City, University of London, UK and Department of Informatics, University of Oslo, Norway.
    Karam, Naouel
    Fraunhofer FOKUS, Berlin, Germany and Institute for Applied Informatics (InfAI), University of Leipzig, Germany.
    Laadhar, Amir
    Department of Computer Science, Aalborg University, Denmark.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan. University of Gävle, Sweden.
    Li, Huanyu
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Li, Ying
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik.
    Michel, Franck
    University Cote d’Azur, CNRS, Inria, France.
    Nasr, Engy
    Freiburg Galaxy Team, University of Freiburg, Germany.
    Paulheim, Heiko
    University of Mannheim, Germany.
    Pesquita, Catia
    LASIGE, Faculdade de Ciencias, Universidade de Lisboa, Portugal .
    Portisch, Jan
    University of Mannheim, Germany.
    Roussey, Catherine
    INRAE Centre Clermont-ARA, laboratoire TSCF, France.
    Saveta, Tzanina
    Institute of Computer Science-FORTH, Heraklion, Greece.
    Shvaiko, Pavel
    Trentino Digitale SpA, Trento, Italy.
    Splendiani, Andrea
    Pistoia Alliance Inc., USA.
    Trojahn, Cassia
    IRIT & Universite Toulouse II, Toulouse, France .
    Vatascinova, Jana
    Prague University of Economics and Business, Czech Republic.
    Yaman, Beyza
    ADAPT Centre, Dublin City University, Ireland.
    Zamazal, Ondrej
    Prague University of Economics and Business, Czech Republic.
    Zhou, Lu
    Data Semantics (DaSe) Laboratory, Kansas State University, USA.
    Results of theOntology Alignment Evaluation Initiative 20212021Inngår i: Proceedings of the 16th International Workshop on Ontology Matching: co-located with the 20th International Semantic Web Conference (ISWC 2021) / [ed] Pavel Shvaiko, Jérôme Euzenat, Ernesto Jiménez-Ruiz, Oktie Hassanzadeh, Cássia Trojahn, CEUR Workshop proceedings , 2021, s. 62-108Konferansepaper (Fagfellevurdert)
    Abstract [en]

    The Ontology Alignment Evaluation Initiative (OAEI) aims at comparing ontology matching systems on precisely defined test cases. These test cases can be based on ontologies of different levels of complexity and use different evaluation modalities (e.g., blind evaluation, open evaluation, or consensus). The OAEI 2021 campaign offered 13 tracks and was attended by 21 participants.This paper is an overall presentation of that campaign.

  • 2.
    Abd Nikooie Pour, Mina
    et al.
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik.
    Algergawy, Alsayed
    Friedrich Schiller University Jena, Germany.
    Amini, Reihaneh
    Kansas State University, USA.
    Faria, Daniel
    BioData.pt, INESC-ID, Lisbon, Portugal.
    Fundulaki, Irini
    Institute of Computer Science-FORTH, Heraklion, Greece.
    Harrow, Ian
    Pistoia Alliance Inc., USA.
    Hertling, Sven
    University of Mannheim, Germany.
    Jimenez-Ruiz, Ernesto
    City, University of London, UK, and , University of Oslo, Norway.
    Jonquet, Clement
    LIRMM, University of Montpellier & CNRS, France.
    Karam, Naouel
    Fraunhofer FOKUS, Berlin, Germany.
    Khiat, Abderrahmane
    Fraunhofer IAIS, Sankt Augustin, Germany.
    Laadhar, Amir
    LIRMM, University of Montpellier & CNRS, France.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Li, Huanyu
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Li, Ying
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik.
    Hitzler, Pascal
    Kansas State University, USA.
    Paulheim, Heiko
    University of Mannheim, Germany.
    Pesquita, Catia
    Universidade de Lisboa, Portugal.
    Saveta, Tzanina
    Institute of Computer Science-FORTH, Heraklion, Greece.
    Shvaiko, Pavel
    TasLab, Trentino Digitale SpA, Trento, Italy.
    Splendiani, Andrea
    Pistoia Alliance Inc., USA.
    Thieblin, Elodie
    Logilab, France.
    Trojahn, Cassia
    IRIT & Universite Toulouse II, Toulouse, France.
    Vatascinova, Jana
    University of Economics, Prague, Czech Republic.
    Yaman, Beyza
    Dublin City University, Ireland.
    Zamazal, Ondrej
    University of Economics, Prague, Czech Republic.
    Zhou, Lu
    Kansas State University, USA.
    Results of theOntology Alignment Evaluation Initiative 20202020Inngår i: Proceedings of the 15th International Workshop on Ontology Matching: co-located with the 19th International Semantic Web Conference (ISWC 2020) / [ed] Pavel Shvaiko, Jérôme Euzenat, Ernesto Jiménez-Ruiz, Oktie Hassanzadeh, Cássia Trojahn, Aachen, Germany: CEUR Workshop proceedings , 2020, s. 92-138Konferansepaper (Fagfellevurdert)
    Abstract [en]

    The Ontology Alignment Evaluation Initiative (OAEI) aims at comparing ontology matching systems on precisely defined test cases. These test cases can be based on ontologies of different levels of complexity and use different evaluation modalities (e.g., blind evaluation, open evaluation, or consensus).The OAEI 2020 campaign offered 12 tracks with 36 test cases, and was attended by 19 participants. This paper is an overall presentation of that campaign. 

  • 3.
    Abd Nikooie Pour, Mina
    et al.
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Algergawy, Alsayed
    Heinz Nixdorf Chair for Distributed Information Systems, Friedrich Schiller University Jena, Germany; Chair of Data and Knowledge Engineering, University of Passau, Germany.
    Buche, Patrice
    UMR IATE, INRAE, University of Montpellier, France.
    Castro, Leyla J.
    ZB MED Information Centre for Life Sciences, Germany.
    Chen, Jiaoyan
    Department of Computer Science, The University of Manchester, UK.
    Coulet, Adrien
    Inria Paris, France; Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, France.
    Cufi, Julien
    UMR IATE, INRAE, University of Montpellier, France.
    Dong, Hang
    Department of Computer Science, University of Oxford, UK.
    Fallatah, Omaima
    Department of Data Science, Umm Al-Qura University, Saudi Arabia.
    Faria, Daniel
    INESC-ID / IST, University of Lisbon, Portugal.
    Fundulaki, Irini
    Institute of Computer Science-FORTH, Heraklion, Greece.
    Hertling, Sven
    Data and Web Science Group, University of Mannheim, Germany.
    He, Yuan
    Department of Computer Science, University of Oxford, UK.
    Horrocks, Ian
    Department of Computer Science, University of Oxford, UK.
    Huschka, Martin
    Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut, EMI, Germany.
    Ibanescu, Liliana
    Université Paris-Saclay, INRAE, AgroParisTech, UMR MIA Paris-Saclay, France.
    Jain, Sarika
    National Institute of Technology Kurukshetra, India.
    Jiménez-Ruiz, Ernesto
    City, University of London, UK; SIRIUS, University of Oslo, Norway.
    Karam, Naouel
    Institute for Applied Informatics, University of Leipzig, Germany.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Li, Huanyu
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Li, Ying
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Monnin, Pierre
    University Côte d’Azur, Inria, CNRS, I3S, France.
    Nasr, Engy
    Albert Ludwig University of Freiburg, Germany.
    Paulheim, Heiko
    Data and Web Science Group, University of Mannheim, Germany.
    Pesquita, Catia
    LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal.
    Saveta, Tzanina
    Institute of Computer Science-FORTH, Heraklion, Greece.
    Shvaiko, Pavel
    Trentino Digitale SpA, Trento, Italy.
    Sousa, Guilherme
    Institut de Recherche en Informatique de Toulouse, France.
    Trojahn, Cássia
    Institut de Recherche en Informatique de Toulouse, France.
    Vatascinova, Jana
    Prague University of Economics and Business, Czech Republic.
    Wu, Mingfang
    Australian Research Data Commons.
    Yaman, Beyza
    ADAPT Centre, Trinity College Dublin.
    Zamazal, Ondřej
    Prague University of Economics and Business, Czech Republic.
    Zhou, Lu
    Flatfee Corp, USA.
    Results of the Ontology Alignment Evaluation Initiative 20232023Inngår i: Proceedings of the 18th International Workshop on Ontology Matching co-located with the 22nd International Semantic Web Conference (ISWC 2023), Athens, Greece, November 7, 2023. / [ed] Pavel Shvaiko, Jérôme Euzenat, Ernesto Jiménez-Ruiz, Oktie Hassanzadeh, Cássia Trojahn, CEUR Workshop Proceedings , 2023, Vol. 3591, s. 97-139Konferansepaper (Fagfellevurdert)
  • 4.
    Abd Nikooie Pour, Mina
    et al.
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik.
    Algergawy, Alsayed
    Heinz Nixdorf Chair for Distributed Information Systems, Friedrich Schiller University Jena, Germany.
    Buche, Patrice
    UMR IATE, INRAE, University of Montpellier, France.
    Castro, Leyla J.
    ZB MED Information Centre for Life Sciences, Germany.
    Chen, Jiaoyan
    Department of Computer Science, The University of Manchester, UK.
    Dong, Hang
    Department of Computer Science, University of Oxford, UK.
    Fallatah, Omaima
    Information School, The University of Sheffield, Sheffield, UK.
    Faria, Daniel
    University of Lisbon, Portugal.
    Fundulaki, Irini
    Institute of Computer Science-FORTH, Heraklion, Greece.
    Hertling, Sven
    Data and Web Science Group, University of Mannheim, Germany.
    He, Yuan
    Department of Computer Science, University of Oxford, UK.
    Horrocks, Ian
    Department of Computer Science, University of Oxford, UK.
    Huschka, Martin
    Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut, EMI, Germany.
    Ibanescu, Liliana
    Universite Paris-Saclay, INRAE, AgroParisTech, UMR MIA Paris-Saclay, France.
    Jimenez-Ruiz, Ernesto
    City, University of London, UK & SIRIUS, University of Oslo, Norway.
    Karam, Naouel
    Fraunhofer FOKUS & Institute for Applied Informatics, University of Leipzig, Germany.
    Laadhar, Amir
    University of Stuttgart, Germany.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan. Högskolan i Gävle.
    Li, Huanyu
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Li, Ying
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik.
    Michel, Franck
    University Cote d’Azur, CNRS, Inria.
    Nasr, Engy
    Albert Ludwig University of Freiburg, Germany.
    Paulheim, Heiko
    Data and Web Science Group, University of Mannheim, Germany.
    Pesquita, Catia
    LASIGE, Faculdade de Ciencias, Universidade de Lisboa, Portugal.
    Saveta, Tzanina
    Institute of Computer Science-FORTH, Heraklion, Greece.
    Shvaiko, Pavel
    Trentino Digitale SpA, Trento, Italy.
    Trojahn, Cassia
    Institut de Recherche en Informatique de Toulouse, France.
    Verhey, Chantelle
    World Data System, International Technology Office, USA.
    Wu, Mingfang
    Australian Research Data Commons.
    Yaman, Beyza
    ADAPT Centre, Trinity College Dublin.
    Zamazal, Ondrej
    Prague University of Economics and Business, Czech Republic.
    Zhou, Lu
    TigerGraph, Inc. USA.
    Results of the Ontology Alignment EvaluationInitiative 20222022Inngår i: Proceedings of the 17th International Workshop on Ontology Matching (OM 2022): co-located with the 21th International Semantic Web Conference (ISWC 2022) / [ed] Pavel Shvaiko, Jerome Euzenat, Ernesto Jimenez-Ruiz, Oktie Hassanzadeh, Cassia Trojahn, CEUR Workshop Proceedings , 2022, s. 84-128Konferansepaper (Fagfellevurdert)
    Abstract [en]

    The Ontology Alignment Evaluation Initiative (OAEI) aims at comparing ontology matching systems on precisely defined test cases. These test cases can be based on ontologies of different levels of complexity and use different evaluation modalities. The OAEI 2022 campaign offered 14 tracks and was attended by18 participants. This paper is an overall presentation of that campaign

  • 5.
    Abd Nikooie Pour, Mina
    et al.
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Li, Huanyu
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Armiento, Rickard
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska fakulteten. Högskolan i Gävle, Gävle, Sweden.
    A First Step towards a Tool for Extending Ontologies2021Inngår i: Proceedings of the Sixth International Workshop on the Visualization and Interaction for Ontologies and Linked Data: co-located with the 20th International Semantic Web Conference (ISWC 2021) / [ed] Patrick Lambrix, Catia Pesquita, Vitalis Wiens, CEUR Workshop proceedings , 2021, s. 1-12Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Ontologies have been proposed as a means towards making data FAIR (Findable, Accessible, Interoperable, Reusable). This has attracted much interest in several communities and ontologies are being developed. However, to obtain good results when using ontologies in semantically-enabled applications, the ontologies need to be of high quality. One of the quality aspects is that the ontologies should be as complete as possible. In this paper we propose a first version of a tool that supports users in extending ontologies using a phrase-based approach.  To demonstrate the usefulness of our proposed tool, we exemplify the use by extending the Materials Design Ontology.

  • 6.
    Abd Nikooie Pour, Mina
    et al.
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik.
    Li, Huanyu
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Armiento, Rickard
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    A First Step towards Extending the Materials Design Ontology2021Inngår i: Workshop on Domain Ontologies for Research Data Management in Industry Commons of Materials and Manufacturing - DORIC-MM 2021 / [ed] S Chiacchiera, MT Horsch, J Francisco Morgado, G Goldbeck, 2021, s. 1-11Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Ontologies have been proposed as a means towards making data FAIR (Findable, Accessible, Interoperable, Reusable) and has recently attracted much interest in the materials science community. Ontologies for this domain are being developed and one such effort is the Materials Design Ontology. However, to obtain good results when using ontologies in semantically-enabled applications, the ontologies need to be of high quality. One of the quality aspects is that the ontologies should be as complete as possible. In this paper we show preliminary results regarding extending the Materials Design Ontology using a phrase-based topic model.

    Fulltekst (pdf)
    fulltext
  • 7.
    Abd Nikooie Pour, Mina
    et al.
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Swedish e-Science Research Centre, Sweden.
    Li, Huanyu
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska fakulteten. Swedish e-Science Research Centre, Sweden.
    Armiento, Rickard
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Swedish e-Science Research Centre, Sweden.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska fakulteten. Swedish e-Science Research Centre, Sweden; University of Gävle, Sweden.
    Phrase2Onto: A Tool to Support Ontology Extension2023Inngår i: 27th International Conference on Knowledge Based and Intelligent Information and Engineering Sytems (KES 2023) / [ed] Robert Howlett, Elsevier, 2023, s. 1415-1424Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Due to importance of data FAIRness (Findable, Accessible, Interoperable, Reusable), ontologies as a means to make data FAIR have attracted more and more attention in different communities and are being used in semantically-enabled applications. However, to obtain good results while using ontologies in these applications, high quality ontologies are needed of which completeness is one of the important aspects. An ontology lacking information can lead to missing results. In this paper we present a tool, Phrase2Onto, that supports users in extending ontologies to make the ontologies more complete. It is particularly suited for ontology extension using a phrase-based topic model approach, but the tool can support any extension approach where a user needs to make decisions regarding the appropriateness of using phrases to define new concepts. We describe the functionality of the tool and a user study using Pizza Ontology. The user study showed  a good usability of the system and high task completion. Further, we report on a real application where we extend the Materials Design Ontology.

  • 8.
    Achichi, Manel
    et al.
    Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM), France; University of Montpellier, France.
    Cheatham, Michelle
    Wright State University, USA.
    Dragisic, Zlatan
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Euzenat, Jerome
    INRIA, France; University Grenoble Alpes, Grenoble, France.
    Faria, Daniel
    Instituto Gulbenkian de Ciencia, Lisbon, Portugal.
    Ferrara, Alfio
    Universita degli studi di Milano, Italy.
    Flouris, Giorgos
    Institute of Computer Science-FORTH, Heraklion, Greece.
    Fundulaki, Irini
    Institute of Computer Science-FORTH, Heraklion, Greece.
    Harrow, Ian
    Pistoia Alliance Inc., USA.
    Ivanova, Valentina
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Jimenez-Ruiz, Ernesto
    University of Oslo, Norway.
    Kolthoff, Kristian
    University of Mannheim, Germany.
    Kuss, Elena
    University of Mannheim, Germany.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Leopold, Henrik
    Vrije Universiteit Amsterdam, Netherlands.
    Li, Huanyu
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Meilicke, Christian
    University of Mannheim, Germany.
    Mohammadi, Majid
    Technical University of Delft, Netherlands.
    Montanelli, Stefano
    Universita degli studi di Milano, Italy.
    Pesquita, Catia
    Universidade de Lisboa, Portugal.
    Saveta, Tzanina
    Institute of Computer Science-FORTH, Heraklion, Greece.
    Shvaiko, Pavel
    Informatica Trentina, Trento, Italy.
    Splendiani, Andrea
    Pistoia Alliance Inc., USA.
    Stuckenschmidt, Heiner
    University of Mannheim, Germany.
    Thieblin, Elodie
    Institut de Recherche en Informatique de Toulouse (IRIT), France; Universite Toulouse II, Toulouse, France.
    Todorov, Konstantin
    Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM), France; University of Montpellier, France.
    Trojahn, Cassia
    Institut de Recherche en Informatique de Toulouse (IRIT); Universite Toulouse II, Toulouse, France.
    Zamazal, Ondrej
    University of Economics, Prague, Czech Republic.
    Results of the Ontology Alignment Evaluation Initiative 20172017Inngår i: Proceedings of the 12th International Workshop on Ontology Matching co-located with the 16th International Semantic Web Conference (ISWC 2017) / [ed] Pavel Shvaiko, Jerome Euzenat, Ernesto Jimenez-Ruiz, Michelle Cheatham, Oktie Hassanzadeh, Aachen, Germany: CEUR Workshop Proceedings , 2017, s. 61-113Konferansepaper (Fagfellevurdert)
  • 9.
    Achichi, Manel
    et al.
    LIRMM, University of Montpellier, France.
    Cheatham, Michelle
    Wright State University, USA.
    Dragisic, Zlatan
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Euzenat, Jerome
    INRIA, France; Univ. Grenoble Alpes, Grenoble, France.
    Faria, Daniel
    Instituto Gulbenkian de Ciencia, Lisbon, Portugal.
    Ferrara, Alfio
    Universita degli studi di Milano, Italy.
    Flouris, Giorgos
    Institute of Computer Science-FORTH, Heraklion, Greece.
    Fundulaki, Irini
    Institute of Computer Science-FORTH, Heraklion, Greece.
    Harrow, Ian
    Pistoia Alliance Inc., USA.
    Ivanova, Valentina
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Jiménez-Ruiz, Ernesto
    University of Oslo, Norway; University of Oxford, UK.
    Kuss, Elena
    University of Mannheim, Germany.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Leopold, Henrik
    Vrije Universiteit Amsterdam, The Netherlands.
    Li, Huanyu
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Meilicke, Christian
    University of Mannheim, Germany.
    Montanelli, Stefano
    Universita degli studi di Milano, Italy.
    Pesquita, Catia
    Universidade de Lisboa, Portugal.
    Saveta, Tzanina
    Institute of Computer Science-FORTH, Heraklion, Greece.
    Shvaiko, Pavel
    TasLab, Informatica Trentina, Trento, Italy.
    Splendiani, Andrea
    Novartis Institutes for Biomedical Research, Basel, Switzerland.
    Stuckenschmidt, Heiner
    University of Mannheim, Germany.
    Todorov, Konstantin
    LIRMM, University of Montpellier, France.
    Trojahn, Cassia
    IRIT, Toulouse, France; Université Toulouse II, Toulouse, France.
    Zamazal, Ondřej
    University of Economics, Prague, Czech Republic.
    Results of the Ontology Alignment Evaluation Initiative 20162016Inngår i: Proceedings of the 11th International Workshop on Ontology Matching, Aachen, Germany: CEUR Workshop Proceedings , 2016, s. 73-129Konferansepaper (Fagfellevurdert)
  • 10.
    Algergawy, Alsayed
    et al.
    Friedrich Schiller University Jena, Germany.
    Cheatham, Michelle
    Wright State University, USA.
    Faria, Daniel
    Instituto Gulbenkian de Ciencia, Lisbon, Portugal.
    Ferrara, Alfio
    Universita degli studi di Milano, Italy.
    Fundulaki, Irina
    FORTH, Greece.
    Harrow, Ian
    Pistoia Alliance Inc., USA.
    Hertling, Sven
    University of Mannheim, Germany.
    Jimenez-Ruiz, Ernesto
    Alan Turing Institute, London, UK; University of Oslo, Norway.
    Karam, Naouel
    Fraunhofer FOKUS, Berlin, Germany.
    Khiat, Abderrahman
    Freie Universität Berlin, Germany.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Li, Huanyu
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Montanelli, Stefano
    Universita degli studi di Milano, Italy.
    Paulheim, Heiko
    University of Mannheim, Germany.
    Pesquita, Catia
    Universidade de Lisboa, Portugal.
    Saveta, Tzanina
    FORTH, Greece.
    Schmidt, Daniela
    Pontifical Catholic University of Rio Grande do Sul, Brazil.
    Shvaiko, Pavel
    Trentino Digitale SpA, Trento, Italy.
    Splendiani, Andrea
    Pistoia Alliance Inc., USA.
    Thiéblin, Elodie
    IRIT, France; Université Toulouse II, Toulouse, France.
    Trojahn, Cassia
    IRIT, France; Université Toulouse II, Toulouse, France.
    Vatascinova, Jana
    University of Economics, Prague, Czech Republic.
    Zamazal, Ondrej
    University of Economics, Prague, Czech Republic.
    Zhou, Lu
    Wright State University, USA.
    Results of the Ontology Alignment Evaluation Initiative 20182018Inngår i: Proceedings of the 13th International Workshop on Ontology Matching: co-located with the 17th International Semantic Web Conference (ISWC 2018) / [ed] Pavel Shvaiko, Jérôme Euzenat, Ernesto Jiménez-Ruiz, Michelle Cheatham, Oktie Hassanzadeh, Aachen, Germany: CEUR Workshop Proceedings , 2018, Vol. 2288, s. 76-116Konferansepaper (Fagfellevurdert)
    Abstract [en]

    The Ontology Alignment Evaluation Initiative (OAEI) aims at comparing ontology matching systems on precisely defined test cases. These test cases can be based on ontologies of different levels of complexity (from simple thesauri to expressive OWL ontologies) and use different evaluation modalities (e.g., blind evaluation, open evaluation, or consensus). The OAEI 2018 campaign offered 12 tracks with 23 test cases, and was attended by 19 participants. This paper is an overall presentation of that campaign.

  • 11.
    Algergawy, Alsayed
    et al.
    Friedrich Schiller University Jena, Germany .
    Faria, Daniel
    BioData.pt, INESC-ID, Lisbon, Portugal .
    Ferrara, Alfio
    Universita degli studi di Milano, Italy .
    Fundulaki, Irini
    Institute of Computer Science-FORTH, Heraklion, Greece .
    Harrow, Ian
    Pistoia Alliance Inc., USA .
    Hertling, Sven
    University of Mannheim, Germany .
    Jimenez-Ruiz, Ernesto
    City University of London, UK and University of Oslo, Norway .
    Karam, Naouel
    Fraunhofer FOKUS, Berlin, Germany .
    Khiat, Abderrahmane
    Fraunhofer IAIS, Sankt Augustin, Bonn, Germany.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Li, Huanyu
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Montanelli, Stefano
    Universita degli studi di Milano, Italy .
    Paulheim, Heiko
    University of Mannheim, Germany.
    Pesquita, Catia
    LASIGE, Faculdade de Ciencias, Universidade de Lisboa, Portugal .
    Saveta, Tzanina
    Institute of Computer Science-FORTH, Heraklion, Greece .
    Shvaiko, Pavel
    TasLab, Trentino Digitale SpA, Trento, Italy .
    Splendiani, Andrea
    Pistoia Alliance Inc., USA.
    Thieblin, Elodie
    IRIT & Universite Toulouse II, Toulouse, France .
    Trojahn, Cassia
    IRIT & Universite Toulouse II, Toulouse, France .
    Vatascinova, Jana
    University of Economics, Prague, Czech Republic .
    Zamazal, Ondrej
    University of Economics, Prague, Czech Republic .
    Zhou, Lu
    Kansas State University, USA .
    Results of the Ontology Alignment Evaluation Initiative 20192019Inngår i: Proceedings of the 14th International Workshop on Ontology Matchingco-located with the 18th International Semantic Web Conference (ISWC 2019) / [ed] Pavel Shvaiko, Jérôme Euzenat, Ernesto Jiménez-Ruiz, Oktie Hassanzadeh, Cássia Trojahn,, Aachen: CEUR Workshop Proceedings , 2019, s. 46-85Konferansepaper (Fagfellevurdert)
    Abstract [en]

    The Ontology Alignment Evaluation Initiative (OAEI) aims at comparing ontology matching systems on precisely defined test cases. These test cases can be based on ontologies of different levels of complexity (from simple thesauri to expressive OWL ontologies) and use different evaluation modalities (e.g., blind evaluation,open evaluation, or consensus). The OAEI2019 campaign offered 11 tracks with 29 test cases, and was attended by 20 participants. This paper is an overall presentation of that campaign.

  • 12.
    Backofen, Rolf
    et al.
    Friedrich-Schiller-Universität Jena, Germany.
    Badea, Liviu
    National Institute for Research and Development in Informatics, Bucharest, Romania.
    Barahona, Pedro
    Universidade Nova de Lisboa, Portugal.
    Berndtsson, Mikael
    University of Skövde, Sweden.
    Burger, Albert
    Heriot-Watt University/MRC Human GeneticsUnit, Edinburgh, UK.
    Dawelbait, Gihan
    Technische Universität Dresden, Germany.
    Doms, Andreas
    Technische Universität Dresden, Germany.
    Fages, Francois
    INRIA Rocquencourt, Paris, France.
    Hotaran, Anca
    National Institute for Research and Development in Informatics, Bucharest, Romania.
    Jakoniené, Vaida
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för datavetenskap, IISLAB - Laboratoriet för intelligenta informationssystem.
    Krippahl, Ludwig
    Universidade Nova de Lisboa, Portugal.
    Lambrix, Patrick
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för datavetenskap, IISLAB - Laboratoriet för intelligenta informationssystem.
    McLeod, Kenneth
    Heriot-Watt University/MRC Human GeneticsUnit, Edinburgh, UK.
    Nutt, Werner
    Heriot-Watt University/MRC Human GeneticsUnit, Edinburgh, UK.
    Olsson, Bjorn
    University of Skövde, Sweden.
    Schroeder, Michael
    Technische Universität Dresden, Germany.
    Schroiff, Anna
    University of Skövde, Sweden.
    Royer, Luc
    Technische Universität Dresden, Germany.
    Soliman, Sylvain
    INRIA Rocquencourt, Paris, France.
    Tan, He
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för datavetenskap, IISLAB - Laboratoriet för intelligenta informationssystem.
    Tilivea, Doina
    National Institute for Research and Development in Informatics, Bucharest, Romania.
    Will, Sebastian
    Friedrich-Schiller-Universit¨at Jena, Germany.
    Requirements and specification of bioinformatics use cases2005Rapport (Annet vitenskapelig)
  • 13.
    Backofen, Rolf
    et al.
    Friedrich-Schiller-Universität Jena, Germany.
    Badea, Mike
    Victoria University of Manchester, UK.
    Barahona, Pedro
    Universidade Nova de Lisboa, Portugal.
    Badea, Liviu
    National Institute for Research and Development in Informatics, Bucarest, Romania.
    Bry, Francois
    Ludwig-Maximilians-Universität Munchen, Germany.
    Dawelbait, Gihan
    Technical University of Dresden, Germany.
    Doms, Andreas
    Technical University of Dresden, Germany.
    Fages, Francois
    INRIA Rocquencourt, France.
    Goble, Carol
    Victoria University of Manchester, UK.
    Henschel, Andreas
    Technical University of Dresden, Germany.
    Hotaran, Anca
    National Institute for Research and Development in Informatics, Bucarest, Romania.
    Huang, Bingding
    Technical University of Dresden, Germany.
    Krippahl, Ludwig
    Universidade Nova de Lisboa, Portugal.
    Lambrix, Patrick
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för datavetenskap, IISLAB - Laboratoriet för intelligenta informationssystem.
    Nutt, Werner
    Heriot-Watt University, Edinburgh, UK.
    Schroeder, Michael
    Technical University of Dresden, Germany.
    Soliman, Sylvain
    INRIA Rocquencourt, France.
    Will, Sebastian
    Friedrich-Schiller-Universität Jena, Germany.
    Towards a Semantic Web for Bioinformatics2004Inngår i: Bioinformatics 2004,2004, 2004, s. 26-26Konferansepaper (Annet vitenskapelig)
  • 14.
    Backofen, Rolf
    et al.
    Friedrich-Schiller-Universität Jena, Germany.
    Badea, Mike
    Victoria University of Manchester, UK.
    Burger, Albert
    Harriot-Watt University, Edinburgh, UK.
    Fages, Francois
    INRIA Rocquencourt, France.
    Lambrix, Patrick
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för datavetenskap, IISLAB - Laboratoriet för intelligenta informationssystem.
    Nutt, Werner
    Harriot-Watt University, Edinburgh, UK.
    Schroeder, Michael
    Technical University of Dresden, Germany.
    Soliman, Sylvain
    NRIA Rocquencourt, France.
    Will, Sebastian
    Friedrich-Schiller-Universität Jena, Germany.
    State-of-the-art in Bioinformatics2004Rapport (Annet vitenskapelig)
  • 15.
    Backofen, Rolf
    et al.
    Albert-Ludwigs-universität Freiburg, Germany.
    Burger, Albert
    Heriot-Watt university Edinburgh, UK.
    Busch, Anke
    Albert-Ludwigs-universität Freiburg, Germany.
    Dawelbait, Gihan
    TU Dresden, Germany.
    Fages, Francois
    INRIA Rocquencourt Paris, France.
    Jakoniené, Vaida
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    McLeod, Kenneth
    Heriot-Watt university Edinburgh, UK.
    Soliman, Sylvain
    INRIA Rocquencourt Paris, France.
    Tan, He
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Will, Sebastian
    Albert-Ludwigs-universität Freiburg, Germany.
    Implementation of prototypes2007Rapport (Annet vitenskapelig)
  • 16.
    Backofen, Rolf
    et al.
    Friedrich-Schiller-Universität Jena, Germany.
    Mike, Badea
    Victoria University of Manchester, UK.
    Barahona, Pedro
    FCT-UNL, Lisbon.
    Burger, Albert
    Harriot-Watt University, Edinburgh, UK.
    Dawelbait, Gihan
    Technical University of Dresden, Germany.
    Doms, Andreas
    Technical University of Dresden, Germany.
    Fages, Francois
    INRIA Rocquencourt, France.
    Hotaran, Anca
    National Institute for Research and Development in Informatics, Romania.
    Jakoniené, Vaida
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för datavetenskap, IISLAB - Laboratoriet för intelligenta informationssystem.
    Krippahl, Ludwig
    FCT-UNL, Lisbon.
    Lambrix, Patrick
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för datavetenskap, IISLAB - Laboratoriet för intelligenta informationssystem.
    McLeod, Kenneth
    Harriot-Watt University, Edinburgh, UK.
    Möller, Steffen
    Universität Rostock, Germany.
    Nutt, Werner
    Harriot-Watt University, Edinburgh, UK.
    Olsson, Björn
    University of Skövde, Sweden.
    Schroeder, Michael
    Technical University of Dresden, Germany.
    Soliman, Sylvain
    INRIA Rocquencourt, France.
    Tan, He
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för datavetenskap, IISLAB - Laboratoriet för intelligenta informationssystem.
    Tilivea, Doina
    National Institute for Research and Development in Informatics, Romania.
    Will, Sebastian
    Friedrich-Schiller-Universität Jena, Germany.
    Usage of bioinformatics tools and identification of information sources2005Rapport (Annet vitenskapelig)
  • 17.
    Baker, Christopher
    et al.
    University of New Brunswick, Canada.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Laurila Bergman, Jonas
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik.
    Kanagasabai, Rajamaran
    ASTAR, Singapore.
    Ang, Wee Tiong
    ASTAR, Singapore.
    Slicing through the scientific literature2009Inngår i: DILS: International Workshop on Data Integration in the Life Sciences Data Integration in the Life Sciences 6th International Workshop, DILS 2009, Manchester, UK, July 20-22, 2009. Proceedings / [ed] Norman W. Paton, Paolo Missier and Cornelia Hedeler, Springer, 2009, 1, s. 127-140Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Success in the life sciences depends on access to information in knowlegde bases and literature. Finding and extracting the relevant information depends on a user’s domain knowledge and the knowledge of the search technology. In this paper we present a system that helps users formulate queries and search the scientific literature. The system coordinates ontologies, knowledge representation, text mining and NLP techniques to generate relevant queries in response to keyword input from the user. Queries are presented in natural language, translated to formal query syntax and issued to a knowledge base of scientific literature, documents or aligned document segments. We describe the components of the system and exemplify using real-world examples.

    Fulltekst (pdf)
    fulltext
  • 18.
    Blomqvist, Eva
    et al.
    Linköpings universitet, Institutionen för datavetenskap, Interaktiva och kognitiva system. Linköpings universitet, Tekniska fakulteten.
    Li, Huanyu
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska fakulteten. Swedish e-Science Research Centre.
    Keskisärkkä, Robin
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för datavetenskap, Interaktiva och kognitiva system.
    Lindecrantz, Mikael
    Ragn-Sells AB, Sweden.
    Abd Nikooie Pour, Mina
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Swedish e-Science Research Centre.
    Li, Ying
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Swedish e-Science Research Centre.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska fakulteten. Swedish e-Science Research Centre.
    Cross-domain Modelling - A Network of Core Ontologies for the Circular Economy2023Inngår i: Proceedings of the 14th Workshop on Ontology Design and Patterns (WOP 2023): co-located with the 22nd International Semantic Web Conference (ISWC 2023) / [ed] Raghava Mutharaju, Agnieszka Ławrynowicz, Pramit Bhattacharyya, Eva Blomqvist, Luigi Asprino, Gunjan Singh, Aachen, Germany: CEUR Workshop Proceedings , 2023Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Circular Economy (CE) aims to reduce value loss and avoid waste by extending the life of products,components, and materials. Circular value networks (CVN), i.e. networks of actors realising partsof the CE, are often complex and involving a multitude of actors, such as suppliers, manufacturers,recyclers, and end-users, from different industry sectors. In addition, the networks enable and managevarious flows of resources, energy, information and value. To set up and operate such networks, datasharing is essential, however, one of the main challenges is semantic interoperability, and as a resultdata are difficult to understand, integrate, and use. Ontologies support semantic interoperability, andcan represent domain knowledge and enable stakeholders to communicate. However, the knowledgedomains involved are many, including sustainability, materials, products, manufacturing, and logistics,where well-established ontologies already exist. In addition, these domains need to be connected torelevant industry sectors. In order to bridge these domains we propose a set of core ontology modules,allowing to express links between existing ontologies as well as filling gaps related to core CE concepts.

  • 19.
    Blomqvist, Eva
    et al.
    Linköpings universitet, Institutionen för datavetenskap, Interaktiva och kognitiva system. Linköpings universitet, Tekniska fakulteten.
    Lindecrantz, Mikael
    Linköpings universitet, Institutionen för datavetenskap, Interaktiva och kognitiva system. Linköpings universitet, Tekniska fakulteten.
    Blomsma, Fenna
    Universität Hamburg, Germany.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska fakulteten. Högskolan i Gävle.
    De Meester, Ben
    IMEC - Ghent University, Belgium.
    Decentralized Digital Twins of Circular Value Networks - A Position Paper2022Inngår i: Proceedings of the Third International Workshop on Semantic Digital Twins: co-located with the 19th Extended Semantic Web Conference (ESWC 2022) / [ed] Raúl García-Castro and John Davies, CEUR-WS , 2022, Vol. 3291Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Circular economy aims at reducing value loss and avoiding waste, by circulating material or productparts before they become waste. Today, lack of support for sharing data in a secure, quality assured, andautomated way is one of the main obstacles that industry actors point to when attempting to create newcircular value networks. Together with using different terminologies and not having explicit definitions ofthe concepts that appear in data, this makes it very difficult to create new ecosystems of actors in Europetoday. A solution to these challenges needs to leverage open standards for semantic data interoperabilityin establishing a shared vocabulary (ontology network) for data documentation, as well as create adecentralized digital platform that enables collaboration in a secure and confidentiality-preservingmanner. This vocabulary can then be used to construct digital twins of circular value networks to furtherenable open collaboration. Once defined, the blueprints of these digital twins will be reusable as templatesand can be reused with a different set of actors, or used within a different industry domain. This visionincludes a number of open research problems, including the development of ontologies that need to modela wide range of different materials and products, not only providing vertical interoperability but alsohorizontal interoperability, for cross-industry value networks. As well as transdisciplinary research onmethods to find, analyse and assess new circular value chain configurations, and form their decentralizeddigital twins. The solutions will allow for automation of planning, management, and execution of circularvalue networks, at a European scale, and beyond. Thereby supporting the acceleration of the digitaland green transitions, automating the discovery and formation of new collaborations in the circulareconomy.

  • 20.
    Brecht, Tim
    et al.
    University of Waterloo, Canada.
    Carlsson, NiklasLinköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska fakulteten.Vernblom, MikaelLinköping Hockey Club.Lambrix, PatrickLinköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Proceedings of the Linköping Hockey Analytics Conference LINHAC 2023 Research Track2023Konferanseproceedings (Fagfellevurdert)
    Abstract [en]

    LINHAC 2023 took place June 7-9, 2023, and was organized by Linköping University (Patrick Lambrix and Niklas Carlsson) and Linköping Hockey Club (Mikael Vernblom). LINHAC brought together professionals and academics with an interest in hockey analytics. It featured the latest research in hockey analytics in academia and companies, discussions with analysts and coaches, industry sessions with the latest hockey analytics products, and an analytics competition for students.

  • 21.
    Brecht, Tim
    et al.
    University of Waterloo, Canada.
    Carlsson, NiklasLinköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska fakulteten.Vernblom, MikaelLinköping Hockey Club.Lambrix, PatrickLinköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Proceedings of the Linköping Hockey Analytics Conference LINHAC 2024 Research Track2024Konferanseproceedings (Fagfellevurdert)
    Abstract [en]

    LINHAC 2024 took place June 3-5, 2024, and was organized by Linköping University and Linköping Hockey Club. LINHAC brought together professionals and academics with an interest in hockey analytics. It featured the latest research in hockey analytics in academia and companies, discussions with analysts and coaches, industry sessions with the latest hockey analytics products, and an analytics competition for students.

  • 22.
    Cheatham, Michelle
    et al.
    Wright State University, USA.
    Dragisic, Zlatan
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Euzenat, Jerome
    INRIA, France; Univ. Grenoble Alpes, Grenoble, France.
    Faria, Daniel
    Instituto Gulbenkian de Ciencia, Lisbon, Portugal.
    Ferrara, Alfio
    Universita degli studi di Milano, Italy.
    Flouris, Giorgios
    Institute of Computer Science-FORTH, Heraklion, Greece.
    Fundulaki, Irini
    Institute of Computer Science-FORTH, Heraklion, Greece.
    Granada, Roger
    IRIT, France; Universite Toulouse II, Toulouse, France.
    Ivanova, Valentina
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Jimenez-Ruiz, Ernesto
    University of Oxford, UK.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Montanelli, Stefano
    Universita degli studi di Milano, Italy.
    Pesquita, Catia
    LASIGE, Faculdade de Ciencias, Universidade de Lisboa, Portugal .
    Saveta, Tzanina
    Institute of Computer Science-FORTH, Heraklion, Greece.
    Shvaiko, Pavel
    TasLab, Informatica Trentina, Trento, Italy.
    Solimando, Allesandro
    INRIA-Saclay, France; Univ. Paris-Sud, Orsay, France.
    Trojahn, Cassia
    IRIT, France; Universite Toulouse II, Toulouse, France.
    Zamazal, Ondrej
    University of Economics, Prague, Czech Republic.
    Results of the Ontology Alignment Evaluation Initiative 20152015Inngår i: Ontology Matching, 2015, s. 60-115Konferansepaper (Fagfellevurdert)
  • 23.
    Chen, Bi
    et al.
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Tan, He
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Structure-Based Filtering for Ontology Alignment2006Inngår i: Proceedings of the IEEE WETICE Workshop on Semantic Technologies in Collaborative Applications, Institute of Electrical and Electronics Engineers (IEEE), 2006, s. 364-369Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Ontologies are an important technology for the Semantic Web and many ontologies have already been developed. Many ontologies also contain overlapping information and to be able to use them together effectively, we need to align them. Some of the current alignment techniques use information about the structure of the ontologies, but they have not produced good results in evaluations. We propose an approach where, in contrast to the other approaches, structural information is used as a filtering method in the alignment process. We evaluate the approach in terms of quality and performance.

  • 24.
    Chiatti, Agnese
    et al.
    Politecnico di Torino, Italy.
    Dragisic, Zlatan
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Cerquitelli, Tania
    Politecnico di Torino, Italy.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Reducing the search space in ontology alignment using clustering techniques and topic identification2015Inngår i: Proceedings of the 8th International Conference on Knowledge Capture, New York: ACM Digital Library, 2015, s. 21-Konferansepaper (Fagfellevurdert)
    Abstract [en]

    One of the current challenges in ontology alignment is scalability and one technique to deal with this issue is to reduce the search space for the generation of mapping suggestions. In this paper we develop a method to prune that search space by using clustering techniques and topic identification. Further, we provide experiments showing that we are able to generate partitions that allow for high quality alignments with a highly reduced effort for computation and validation of mapping suggestions for the parts of the ontologies in the partition. Other techniques will still be needed for finding mappings that are not in the partition.

  • 25.
    Chisalita, Ioan
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för datavetenskap, IISLAB - Laboratoriet för intelligenta informationssystem.
    Shahmehri, Nahid
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för datavetenskap, IISLAB - Laboratoriet för intelligenta informationssystem.
    Lambrix, Patrick
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för datavetenskap, IISLAB - Laboratoriet för intelligenta informationssystem.
    Traffic accidents modeling and analysis using temporal reasonin2004Inngår i: ITSC 2004: 7TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, PROCEEDINGS, Institute of Electrical and Electronics Engineers (IEEE), 2004, s. 378-383Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Traffic accidents account for more than half a million casualties every year. The analysis of accidents helps identifying the elements that affect traffic conditions, the relationships between them, and how they may contribute to the occurrence of dangerous situations. In this paper we present a temporal reasoning system for modeling and analyzing various types of accident scenarios. The system is based on Event Calculus and was implemented using Prolog. We exemplify the use of the system by applying it for modeling and analyzing a rear-end accident scenario.

  • 26.
    Cuenca Grau, Bernardo
    et al.
    University of Oxford, UK.
    Dragisic, Zlatan
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Eckert, Kai
    University of Mannheim, Germany.
    Euzenat, Jerome
    INRIA, France.
    Ferrara, Alfio
    Universita degli studi di Milano, Italy.
    Granada, Roger
    Pontifıcia Universidade Catolica do Rio Grande do Sul, Porto Alegre, Brazil.
    Ivanova, Valentina
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Jimenez-Ruiz, Ernesto
    University of Oxford, UK.
    Kempf, Oscar Alexander
    Leibniz Institute for the Social Sciences, Cologne, Germany.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Nikolov, Andriy
    Fluid operations, Walldorf, Germany.
    Paulheim, Heiko
    University of Mannheim, Germany.
    Ritze, Dominique
    University of Mannheim, Germany.
    Scharffe, Francois
    LIRMM, Montpellier, France.
    Shvaiko, Pavel
    Informatica Trentina, Trento, Italy.
    Trojahn, Cassia
    Universite Toulouse II, Toulouse, France.
    Zamazal, Ondrej
    University of Economics, Prague, Czech Republic.
    Results of the Ontology Alignment Evaluation Initiative 20132013Inngår i: International Workshop on Ontology Matching, 2013, s. 61-100Konferansepaper (Fagfellevurdert)
  • 27.
    Dawelbait, Gihan
    et al.
    Technische Universität Dresden, Germany.
    Doms, Andreas
    Technische Universität Dresden, Germany.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Royer, Loic
    Technische Universität Dresden, Germany.
    Schroeder, Michael
    Technische Universität Dresden, Germany.
    Bioinformatics Demonstrators2006Rapport (Annet vitenskapelig)
  • 28.
    Doms, Andreas
    et al.
    Technische Universität Dresden, Germany.
    Jakoniené, Vaida
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Schroeder, Michael
    Technische Universität Dresden, Germany.
    Wächter, Thomas
    Technische Universität Dresden, Germany.
    Ontologies and Text Mining as a Basis for a Semantic Web for the Life Sciences2006Inngår i: Reasoning Web, Second International Summer School: Summer School 2006, Lisbon, Portugal, September 4-8, 2006, Tutorial Lectures / [ed] Pedro BarahonaFrançois Bry, Enrico Franconi, Nicola Henze et, Springer Berlin/Heidelberg, 2006, s. 164-183Kapittel i bok, del av antologi (Fagfellevurdert)
    Abstract [en]

    This book presents thoroughly arranged tutorial papers corresponding to lectures given by leading researchers at the Second International Summer School on Reasoning Web in Lisbon, Portugal, in September 2006. Building on the predessor school held in 2005 and published as LNCS 3564, the ten tutorial lectures presented provide competent coverage of current topics in semantic Web research and development.

  • 29.
    Dragisic, Zlatan
    et al.
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Eckert, Kai
    University of Mannheim, Mannheim, Germany.
    Euzenat, Jerome
    INRIA, France; University of Grenoble-Alpes, Grenoble, France.
    Faria, Daniel
    Universidade de Lisboa, Portugal.
    Ferrara, Alfio
    Universita degli studi di Milano, Italy.
    Granada, Roger
    Pontifıcia Universidade Catolica do Rio Grande do Sul, Porto Alegre, Brazil; IRIT & Universite Toulouse II, Toulouse, France.
    Ivanova, Valentina
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Jimenez-Ruiz, Ernesto
    University of Oxford, UK.
    Kempf, Andreas
    Leibniz Institute for the Social Sciences, Cologne, Germany.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Montanelli, Stefano
    Universita degli studi di Milano, Italy.
    Paulheim, Heiko
    University of Mannheim, Mannheim, Germany.
    Ritze, Dominique
    University of Mannheim, Mannheim, Germany.
    Shvaiko, Pavel
    Informatica Trentina, Trento, Italy.
    Solimando, Alessandro
    University of Genova, Italy.
    Trojahn, Cassia
    IRIT, France; Universite Toulouse II, Toulouse, France.
    Zamazal, Ondrej
    University of Economics, Prague, Czech Republic.
    Cuenca Grau, Bernardo
    University of Oxford, UK.
    Results of the Ontology Alignment Evaluation Initiative 20142014Inngår i: International Workshop on Ontology Matching, 2014, s. 61-104Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Ontology matching consists of finding correspondences between se-mantically related entities of two ontologies. OAEI campaigns aim at comparingontology matching systems on precisely defined test cases. These test cases canuse ontologies of different nature (from simple thesauri to expressive OWL on-tologies) and use different modalities, e.g., blind evaluation, open evaluation andconsensus. OAEI 2014 offered 7 tracks with 9 test cases followed by 14 partici-pants. Since 2010, the campaign has been using a new evaluation modality which provides more automation to the evaluation. This paper is an overall presentationof the OAEI 2014 campaign.

  • 30.
    Dragisic, Zlatan
    et al.
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Ivanova, Valentina
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Faria, Daniel
    Gulbenkian Science Institute, Oeiras, Portugal.
    Jimenez-Ruiz, Ernesto
    University of Oxford, Oxford, UK.
    Pesquita, Catia
    LaSIGE, Faculdade de Ciencias, Universidade de Lisboa, Lisboa, Portugal.
    User validation in ontology alignment2016Inngår i: The Semantic Web - ISWC 2016: 15th International Semantic Web Conference, Kobe, Japan, October 17–21, 2016, Proceedings, Part I / [ed] Paul Groth, Elena Simperl, Alasdair Gray, Marta Sabou, Markus Krötzsch, Freddy Lecue, Fabian Flöck and Yolanda Gil, Cham, Switzerland: Springer Publishing Company, 2016, s. 200-217Konferansepaper (Fagfellevurdert)
    Abstract [en]

    User validation is one of the challenges facing the ontology alignment community, as there are limits to the quality of automated alignment algorithms. In this paper we present a broad study on user validation of ontology alignments that encompasses three distinct but interrelated aspects: the profile of the user, the services of the alignment system, and its user interface. We discuss key issues pertaining to the alignment validation process under each of these aspects, and provide an overview of how current systems address them. Finally, we use experiments from the Interactive Matching track of the Ontology Alignment Evaluation Initiative (OAEI) 2015 to assess the impact of errors in alignment validation, and how systems cope with them as function of their services.

    Fulltekst (pdf)
    User validation in ontology alignment
  • 31.
    Dragisic, Zlatan
    et al.
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Ivanova, Valentina
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Li, Huanyu
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Experiences from the Anatomy track in the Ontology Alignment Evaluation Initiative2017Inngår i: Journal of Biomedical Semantics, E-ISSN 2041-1480, Vol. 8, artikkel-id 56Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    Background: One of the longest running tracks in the Ontology Alignment Evaluation Initiative is the Anatomy track which focuses on aligning two anatomy ontologies. The Anatomy track was started in 2005. In 2005 and 2006 the task in this track was to align the Foundational Model of Anatomy and the OpenGalen Anatomy Model. Since 2007 the ontologies used in the track are the Adult Mouse Anatomy and a part of the NCI Thesaurus. Since 2015 the data in the Anatomy track is also used in the Interactive track of the Ontology Alignment Evaluation Initiative.

    Results: In this paper we focus on the Anatomy track in the years 2007-2016 and the Anatomy part of the Interactive track in 2015-2016. We describe the data set and the changes it went through during the years. Further, we give an overview of all systems that participated in the track and the techniques they have used. We discuss the performance results of the systems and summarize the general trends.

    Conclusions: About 50 systems have participated in the Anatomy track. Many different techniques were used. The most popular matching techniques are string-based strategies and structure-based techniques. Many systems also use auxiliary information. The quality of the alignment has increased for the best performing systems since the beginning of the track and more and more systems check the coherence of the proposed alignment and implement a repair strategy.Further, interacting with an oracle is beneficial.

    Fulltekst (pdf)
    fulltext
  • 32.
    Dragisic, Zlatan
    et al.
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Blomqvist, Eva
    Linköpings universitet, Institutionen för datavetenskap, Interaktiva och kognitiva system. Linköpings universitet, Tekniska fakulteten.
    Integrating Ontology Debugging and Matching into the eXtreme Design Methodology2015Inngår i: Proceedings of the 6th Workshop on Ontology and Semantic Web Patterns (WOP 2015) / [ed] Eva Blomqvist; Pascal Hitzler; Adila Krisnadhi; Tom Narock; Monika Solanki, Rheinisch-Westfaelische Technische Hochschule Aachen University , 2015Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Ontology design patterns (ODPs) and related ontology development methodologies were designed as ways of sharing and reusing best practices in ontology engineering. However, while the use of these reduces the number of issues in the resulting ontologies defects can still be introduced into the ontology due to improper use or misinterpretation of the patterns. Thus, the quality of the developed ontologies is still a major concern. In this paper we address this issue by describing how ontology debugging and matching can be integrated in a state-of-the-art ontology development methodology based on ontology design patterns- the eXtreme Design methodology, and show the advantages in a case study based on a real world ontology.

    Fulltekst (pdf)
    fulltext
  • 33.
    Dragisic, Zlatan
    et al.
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Wei-Kleiner, Fang
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    A System for Debugging Missing Is-a Structure in EL Ontologies2014Inngår i: Proceedings of the Third International Workshop on Debugging Ontologies and Ontology Mappings - WoDOOM14, 2014, s. 51-58Konferansepaper (Fagfellevurdert)
  • 34.
    Dragisic, Zlatan
    et al.
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Wei-Kleiner, Fang
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Completing the is-a structure of biomedical ontologies2014Inngår i: Data Integration in the Life Sciences 10th International Conference, DILS 2014, Lisbon, Portugal, July 17-18, 2014. Proceedings / [ed] Helena Galhardas, Erhard Rahm, Berlin: Springer Science+Business Media B.V., 2014, s. 66-80Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Ontologies in the biomedical domain are becoming a key element for data integration and search. The usefulness of the applications which use ontologies is often directly influenced by the quality of ontologies, as incorrect or incomplete ontologies might lead to wrong or incomplete results for the applications. Therefore, there is an increasing need for repairing defects in ontologies. In this paper we focus on completing ontologies. We provide an algorithm for completing the is-a structure in TeX ontologies which covers many biomedical ontologies. Further, we present an implemented system based on the algorithm as well as an evaluation using three biomedical ontologies.

    Fulltekst (pdf)
    fulltext
  • 35.
    Dragisic, Zlatan
    et al.
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Li, Ying
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan. Högskolan i Gävle.
    RepOSE-CTab - A Protégé Plugin for Completing Ontologies2021Inngår i: Proceedings of the Sixth International Workshop on the Visualization and Interaction for Ontologies and Linked Data: co-located with the 20th International Semantic Web Conference (ISWC 2021) / [ed] Patrick Lambrix, Catia Pesquita, Vitalis Wiens, CEUR Workshop proceedings , 2021, s. 56-62Konferansepaper (Fagfellevurdert)
    Abstract [en]

    As the quality of ontologies plays an important role in supporting semantically-enabled applications, defining concepts as well as their relations correctly and completely is crucial when developing an ontology. In this paper we introduce a Protégé plugin for extending ontologies, which guides Protégé users through the addition of new concepts as well as their instances and axioms in which they participate in a semi-automatic way. Furthermore, the tool suggests additional subsumption axioms that a user can validate and, if appropriate, add to the ontology to make the ontology more complete.

  • 36.
    Duma, Claudiu
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik.
    Shahmehri, Nahid
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    A flexible category-based collusion-resistant key management scheme for multicast2003Inngår i: Security and privacy in the age of uncertainty: IFIP TC11 18th International Conference on Information Security (SEC2003) May 26-28, 2003, Athens, Greece / [ed] Dimitris Gritzalis; Sabrina De Capitani di Vimercati; Pierangela Samarati; Sokratis Katsikas, Kluwer Academic Publishers, 2003, s. 133-144Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Current key management schemes for multicast provide either no resistance to collusion or perfect resistance to collusion. However, resistance to collusion is achieved at the expense of efficiency in terms of the number of transmissions and the number of keys that are used. We argue that applications may have certain assumptions regarding the users and their access to the multicast channel that may be used to provide a broader range of choices for balancing efficiency against resistance to collusion.

    We formalize the collusion requirement based upon the users' access to the multicast channel. Different user categorizations give different degrees of collusion resistance and we show that the existing work has focused on special cases of user categorizations. Further, we go on to propose and evaluate a flexible key management strategy for the general case where the accessibility relation defines the order of exclusion of the categories. The theoretical and experimental results show that our scheme has good performance regarding transmissions and keys per controller.

  • 37.
    Duma, Claudiu
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik.
    Shahmehri, Nahid
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    A hybrid key tree scheme for multicast to balance security and efficiency requirement2003Inngår i: Proceedings of the Twelfth IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE '03), Institute of Electrical and Electronics Engineers (IEEE), 2003, s. 208-213Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Security and efficiency of rekeying are crucial requirements for multicast key management. However, the two requirements pull in different directions and balancing them to meet the application needs is still an open issue. In this paper we introduce a hybrid key tree scheme to balance security, namely the resistance to collusion, and the efficiency. The resistance to collusion is measured by an integer parameter. The communication and the storage requirements for the controller depend on this parameter too, and they decrease as the resistance to collusion is relaxed. We analytically evaluate the efficiency of our scheme and compare with the previous work. The results show that our scheme allows a fine-tuning of security requirements versus efficiency requirements at run-time, which is not possible with the previous key management schemes.

  • 38.
    Duma, Claudiu
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik.
    Shahmehri, Nahid
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Efficient storage for category-based group key management2004Inngår i: Proceedings of the 5th Conference on Computer Science and Systems Engineering in Linköping, 2004, s. 139-146Konferansepaper (Fagfellevurdert)
    Abstract [en]

    In multicast group communication, efficiency- and security are competing requirements and balancing them is an acknowledged challenge. In particular, the collusion resistance has an impact on the efficiency of any scheme. In this context, the category-based group key management (category-based GKM) scheme balances the collusion resistance constraints against the communication cost and the group controller storage. However, this scheme increases the storage requirements for users. In this paper we address this problem by introducing a novel technique based on spanning hash key tree (SKT). In the worst case, using our t echnique, the storage requirement remains the same as in the original category-based GKM scheme. However, the experimentalresults show that, in general, the SKT technique greatly reduces the key storage for the users as well as for the controller.

  • 39.
    Dórea, Fernanda C.
    et al.
    Department of Disease Control and Epidemiology, National Veterinary Institute, Sweden.
    Vial, Flavie
    Epi-Connect, Skogås, Sweden.
    Hammar, Karl
    Linköpings universitet, Institutionen för datavetenskap, Interaktiva och kognitiva system. Linköpings universitet, Tekniska fakulteten. Department of Computer Science and Informatics, Jönköping University, Sweden.
    Lindberg, Ann
    Department of Disease Control and Epidemiology, National Veterinary Institute, Sweden.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Blomqvist, Eva
    Linköpings universitet, Institutionen för datavetenskap, Interaktiva och kognitiva system. Linköpings universitet, Tekniska fakulteten.
    Revie, Crawford W.
    Atlantic Veterinary College, University of Prince Edward Island, Canada.
    Drivers for the development of an Animal Health Surveillance Ontology (AHSO)2019Inngår i: Preventive Veterinary Medicine, ISSN 0167-5877, E-ISSN 1873-1716, Vol. 166, nr 1, s. 39-48Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Comprehensive reviews of syndromic surveillance in animal health have highlighted the hindrances to integration and interoperability among systems when data emerge from different sources. Discussions with syndromic surveillance experts in the fields of animal and public health, as well as computer scientists from the field of information management, have led to the conclusion that a major component of any solution will involve the adoption of ontologies. Here we describe the advantages of such an approach, and the steps taken to set up the Animal Health Surveillance Ontological (AHSO) framework. The AHSO framework is modelled in OWL, the W3C standard Semantic Web language for representing rich and complex knowledge. We illustrate how the framework can incorporate knowledge directly from domain experts or from data-driven sources, as well as by integrating existing mature ontological components from related disciplines. The development and extent of AHSO will be community driven and the final products in the framework will be open-access.

    Fulltekst (pdf)
    fulltext
  • 40.
    Freire, Sergio Miranda
    et al.
    Linköpings universitet, Institutionen för medicinsk teknik, Medicinsk informatik. Linköpings universitet, Tekniska högskolan.
    Sundvall, Erik
    Linköpings universitet, Institutionen för medicinsk teknik, Medicinsk informatik. Linköpings universitet, Tekniska högskolan.
    Karlsson, Daniel
    Linköpings universitet, Institutionen för medicinsk teknik, Medicinsk informatik. Linköpings universitet, Tekniska högskolan.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Performance of XML Databases for Epidemiological Queries in Archetype-Based EHRs2012Inngår i: Proceedings Scandinavian Conference on Health Informatics 2012, Linköping: Linköping University Electronic Press, 2012, s. 51-57Konferansepaper (Fagfellevurdert)
    Abstract [en]

    There are very few published studies regarding the performance of persistence mechanisms for systems that use the openEHR multi level modelling approach. This paper addresses the performance and size of XML databases that store openEHR compliant documents. Database size and response times to epidemiological queries are described. An anonymized relational epidemiology database and associated epidemiological queries were used to generate openEHR XML documents that were stored and queried in four opensource XML databases. The XML databases were considerably slower and required much more space than the relational database. For population-wide epidemiological queries the response times scaled in order of magnitude at the same rate as the number of records (total database size) but were orders of magnitude slower than the original relational database. For individual focused clinical queries where patient ID was specified the response times were acceptable. This study suggests that the tested XML database configurations without further optimizations are not suitable as persistence mechanisms for openEHR-based systems in production if population-wide ad hoc querying is needed.

  • 41.
    Freire, Sergio Miranda
    et al.
    Linköpings universitet, Institutionen för medicinsk teknik. Linköpings universitet, Tekniska fakulteten. Departamento de Tecnologia da Informação e Educação em Saúde, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
    Teodoro, Douglas
    Departamento de Tecnologia da Informação e Educação em Saúde, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil .
    Wei-Kleiner, Fang
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Sundvall, Erik
    Linköpings universitet, Institutionen för medicinsk teknik, Medicinsk informatik. Linköpings universitet, Tekniska fakulteten. Region Östergötland.
    Karlsson, Daniel
    Linköpings universitet, Institutionen för medicinsk teknik, Medicinsk informatik. Linköpings universitet, Tekniska fakulteten.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Comparing the Performance of NoSQL Approaches for Managing Archetype-Based Electronic Health Record Data2016Inngår i: PLOS ONE, E-ISSN 1932-6203, Vol. 11, nr 3, artikkel-id e0150069Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This study provides an experimental performance evaluation on population-based queries of NoSQL databases storing archetype-based Electronic Health Record (EHR) data. There are few published studies regarding the performance of persistence mechanisms for systems that use multilevel modelling approaches, especially when the focus is on population-based queries. A healthcare dataset with 4.2 million records stored in a relational database (MySQL) was used to generate XML and JSON documents based on the openEHR reference model. Six datasets with different sizes were created from these documents and imported into three single machine XML databases (BaseX, eXistdb and Berkeley DB XML) and into a distributed NoSQL database system based on the MapReduce approach, Couchbase, deployed in different cluster configurations of 1, 2, 4, 8 and 12 machines. Population-based queries were submitted to those databases and to the original relational database. Database size and query response times are presented. The XML databases were considerably slower and required much more space than Couchbase. Overall, Couchbase had better response times than MySQL, especially for larger datasets. However, Couchbase requires indexing for each differently formulated query and the indexing time increases with the size of the datasets. The performances of the clusters with 2, 4, 8 and 12 nodes were not better than the single node cluster in relation to the query response time, but the indexing time was reduced proportionally to the number of nodes. The tested XML databases had acceptable performance for openEHR-based data in some querying use cases and small datasets, but were generally much slower than Couchbase. Couchbase also outperformed the response times of the relational database, but required more disk space and had a much longer indexing time. Systems like Couchbase are thus interesting research targets for scalable storage and querying of archetype-based EHR data when population-based use cases are of interest.

    Fulltekst (pdf)
    fulltext
  • 42.
    Fu, Bo
    et al.
    California State University Long Beach, USA.
    Lambrix, PatrickLinköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.Li, HuanyuLinköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska fakulteten.Nunes, SusanaLASIGE, Faculdade de Ciências, University of Lisbon, Portugal.Pesquita, CatiaLASIGE, Faculdade de Ciências, University of Lisbon, Portugal.
    Proceedings of the 8th International Workshop on the Visualization and Interaction for Ontologies, Linked Data and Knowledge Graphs: co-located with the 22nd International Semantic Web Conference (ISWC 2023)2023Konferanseproceedings (Fagfellevurdert)
  • 43.
    Fu, Bo
    et al.
    California State University Long Beach, USA.
    Lambrix, PatrickLinköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan. Högskolan i Gävle.Pesquita, CatiaLASIGE, Faculdade de Ciências, University of Lisbon, Portugal.
    Proceedings of the Seventh International Workshop on the Visualization and Interaction for Ontologies and Linked Data: co-located with the 21st International Semantic Web Conference (ISWC 2022)2022Konferanseproceedings (Fagfellevurdert)
  • 44.
    Färnqvist, Tommy
    et al.
    Linköpings universitet, Institutionen för datavetenskap, Programvara och system. Linköpings universitet, Tekniska fakulteten.
    Heintz, Fredrik
    Linköpings universitet, Institutionen för datavetenskap, Artificiell intelligens och integrerade datorsystem. Linköpings universitet, Tekniska fakulteten.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Mannila, Linda
    Åbo Academy, Finland.
    Wang, Chunyan
    Linköpings universitet, Institutionen för datavetenskap.
    Supporting Active Learning by Introducing an Interactive Teaching Tool in a Data Structures and Algorithms Course2016Inngår i: Proceedings of the 47th ACM Technical Symposium on Computer Science Education (SIGCSE 2016), ACM Publications, 2016, s. 663-668Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Traditionally, theoretical foundations in data structures and algorithms (DSA) courses have been covered through lectures followed by tutorials, where students practise their understanding on pen-and-paper tasks. In this paper, we present findings from a pilot study on using the interactive e-book OpenDSA as the main material in a DSA course. The goal was to redesign an already existing course by building on active learning and continuous examination through the use of OpenDSA. In addition to presenting the study setting, we describe findings from four data sources: final exam, OpenDSA log data, pre and post questionnaires as well as an observation study. The results indicate that students performed better on the exam than during previous years. Students preferred OpenDSA over traditional textbooks and worked actively with the material, although a large proportion of them put off the work until the due date approaches.

  • 45.
    Färnqvist, Tommy
    et al.
    Linköpings universitet, Institutionen för datavetenskap, Programvara och system. Linköpings universitet, Tekniska fakulteten.
    Heintz, Fredrik
    Linköpings universitet, Institutionen för datavetenskap, Artificiell intelligens och integrerade datorsystem. Linköpings universitet, Tekniska fakulteten.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Mannila, Linda
    Åbo Academy, Finland.
    Wang, Chunyan
    Linköpings universitet, Institutionen för datavetenskap.
    Supporting Active Learning Using an Interactive Teaching Tool in a Data Structures and Algorithms Course2015Inngår i: Proceedings of 5:e Utvecklingskonferensen för Sveriges ingenjörsutbildningar (UtvSvIng), 2015, s. 76-79Konferansepaper (Annet vitenskapelig)
    Abstract [en]

    Traditionally, theoretical foundations in data structuresand algorithms (DSA) courses have been covered throughlectures followed by tutorials, where students practise theirunderstanding on pen-and-paper tasks. In this paper, we presentfindings from a pilot study on using the interactive e-bookOpenDSA as the main material in a DSA course. The goal was toredesign an already existing course by building on active learningand continuous examination through the use of OpenDSA. Inaddition to presenting the study setting, we describe findings fromfour data sources: final exam, OpenDSA log data, pre- and postcourse questionnaires as well as an observation study. The resultsindicate that students performed better on the exam than duringprevious years. Students preferred OpenDSA over traditionaltextbooks and worked actively with the material, although alarge proportion of them put off the work until the due dateapproaches.

  • 46.
    Ghiringhelli, Luca M.
    et al.
    Humboldt Univ, Germany; Max Planck Gesell, Germany; Friedrich Alexander Univ, Germany.
    Baldauf, Carsten
    Max Planck Gesell, Germany.
    Bereau, Tristan
    Univ Amsterdam, Netherlands.
    Brockhauser, Sandor
    Humboldt Univ, Germany; Humboldt Univ, Germany.
    Carbogno, Christian
    Humboldt Univ, Germany; Max Planck Gesell, Germany.
    Chamanara, Javad
    TIB Leibniz Informat Ctr Sci & Technol & Univ Lib, Germany.
    Cozzini, Stefano
    AREA Sci Pk, Italy.
    Curtarolo, Stefano
    Duke Univ, NC 27708 USA.
    Draxl, Claudia
    Humboldt Univ, Germany; Max Planck Gesell, Germany.
    Dwaraknath, Shyam
    Lawrence Berkeley Natl Lab, CA USA.
    Fekete, Ádám
    Humboldt Univ, Germany.
    Kermode, James
    Univ Warwick, England.
    Koch, Christoph T.
    Humboldt Univ, Germany.
    Kühbach, Markus
    Humboldt Univ, Germany.
    Ladines, Alvin Noe
    Humboldt Univ, Germany.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska fakulteten. The Swedish e-Science Research Centre.
    Himmer, Maja-Olivia
    Humboldt Univ, Germany; Max Planck Gesell, Germany.
    Levchenko, Sergey V.
    Skolkovo Inst Sci & Technol, Russia.
    Oliveira, Micael
    Max Planck Inst Struct & Dynam Matter, Germany.
    Michalchuk, Adam
    BAM Fed Inst Mat Res & Testing, Germany; Univ Birmingham, England.
    Miller, Ronald E.
    Carleton Univ, Canada.
    Onat, Berk
    Univ Warwick, England.
    Pavone, Pasquale
    Humboldt Univ, Germany.
    Pizzi, Giovanni
    Ecole Polytech Fed Lausanne, Switzerland; Ecole Polytech Fed Lausanne, Switzerland; Paul Scherrer Inst PSI, Switzerland.
    Regler, Benjamin
    Humboldt Univ, Germany; Max Planck Gesell, Germany.
    Rignanese, Gian-Marco
    UCLouvain, Belgium.
    Schaarschmidt, Jörg
    Karlsruhe Inst Technol KIT, Germany.
    Scheidgen, Markus
    Humboldt Univ, Germany.
    Schneidewind, Astrid
    Forschungszentrum Julich, Germany.
    Sheveleva, Tatyana
    TIB Leibniz Informat Ctr Sci & Technol & Univ Lib, Germany.
    Su, Chuanxun
    Univ Sci & Technol China, Peoples R China.
    Usvyat, Denis
    Humboldt Univ, Germany.
    Valsson, Omar
    Univ North Texas, TX 76201 USA.
    Wöll, Christof
    Karlsruhe Inst Technol KIT, Germany.
    Scheffler, Matthias
    Humboldt Univ, Germany; Max Planck Gesell, Germany.
    Shared metadata for data-centric materials science2023Inngår i: Scientific Data, E-ISSN 2052-4463, Vol. 10, artikkel-id 626Artikkel i tidsskrift (Annet vitenskapelig)
    Abstract [en]

    The expansive production of data in materials science, their widespread sharing and repurposing requires educated support and stewardship. In order to ensure that this need helps rather than hinders scientific work, the implementation of the FAIR-data principles (Findable, Accessible, Interoperable, and Reusable) must not be too narrow. Besides, the wider materials-science community ought to agree on the strategies to tackle the challenges that are specific to its data, both from computations and experiments. In this paper, we present the result of the discussions held at the workshop on “Shared Metadata and Data Formats for Big-Data Driven Materials Science”. We start from an operative definition of metadata, and the features that  a FAIR-compliant metadata schema should have. We will mainly focus on computational materials-science data and propose a constructive approach for the FAIRification of the (meta)data related to ground-state and excited-states calculations, potential-energy sampling, and generalized workflows. Finally, challenges with the FAIRification of experimental (meta)data and materials-science ontologies are presented together with an outlook of how to meet them.

    Fulltekst (pdf)
    fulltext
  • 47.
    González Dos Santos, Teno
    et al.
    Linköpings universitet.
    Wang, Chunyan
    Linköpings universitet, Institutionen för datavetenskap. Linköpings universitet, Tekniska fakulteten.
    Carlsson, Niklas
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska fakulteten. Swedish e-Science Research Centre, Stockholm, Sweden.
    Predicting Season Outcomes for the NBA2022Inngår i: Machine Learning and Data Mining for Sports Analytics: 8th International Workshop, MLSA 2021, Virtual Event, September 13, 2021, Revised Selected Papers / [ed] Ulf Brefeld, Jesse Davis, Jan Van Haaren, Albrecht Zimmermann, Cham, Switzerland: Springer, 2022, s. 129-142Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Predicting game or season outcomes is important for clubs as well as for the betting industry. Understanding the critical factors of winning games and championships gives clubs a competitive advantage when selecting players for the team and implementing winning strategies. In this paper, we work with NBA data from 10 seasons and propose an approach for predicting game outcomes that is then used for predicting which team will be champion and which stages a team will reach in the playoffs. We show that our approach has a similar performance as the odds from betting companies and does better than ELO.

    Fulltekst (pdf)
    fulltext
  • 48.
    Ivanova, Valentina
    et al.
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Bach, Benjamin
    University of Edinburgh, United Kingdom.
    Pietriga, Emmanuel
    INRIA, LRI (Univ Paris-Sud & CNRS), Universit ́ e Paris-Saclay, France.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Alignment Cubes: Interactive Visual Exploration and Evaluation of Multiple Ontology Alignments2017Inngår i: Proceedings of the ISWC 2017 Posters & Demonstrations and Industry Tracks co-located with 16th International Semantic Web Conference (ISWC 2017) / [ed] Nadeschda Nikitina, Dezhao Song, Achille Fokoue, Peter Haase, Aachen, Germany: CEUR Workshop Proceedings , 2017Konferansepaper (Fagfellevurdert)
  • 49.
    Ivanova, Valentina
    et al.
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Bach, Benjamin
    University of Edinburgh, United Kingdom.
    Pietriga, Emmanuel
    INRIA, France.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Alignment Cubes: Towards Interactive Visual Exploration and Evaluation of Multiple Ontology Alignments2017Inngår i: The Semantic Web – ISWC 2017 16th International Semantic Web Conference, Vienna, Austria, October 21–25, 2017, Proceedings, Part I / [ed] Claudia d'Amato, Miriam Fernandez, Valentina Tamma, Freddy Lecue, Philippe Cudré-Mauroux, Juan Sequeda, Christoph Lange and Jeff Heflin, Cham, Switzerland: Springer Publishing Company, 2017, Vol. 10587, s. 400-417Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Ontology alignment is an area of active research where many algorithms and approaches are being developed. Their performance is usually evaluated by comparing the produced alignments to a reference alignment in terms of precision, recall and F-measure. These measures, however, only provide an overall assessment of the quality of the alignments, but do not reveal differences and commonalities between alignments at a finer-grained level such as, e.g., regions or individual mappings. Furthermore, reference alignments are often unavailable, which makes the comparative exploration of alignments at different levels of granularity even more important. Making such comparisons efficient calls for a “human-in-the-loop” approach, best supported through interactive visual representations of alignments. Our approach extends a recent tool, Matrix Cubes, used for visualizing dense dynamic networks. We first identify use cases for ontology alignment evaluation that can benefit from interactive visualization, and then detail how our Alignment Cubes support interactive exploration of multiple ontology alignments. We demonstrate the usefulness of Alignment Cubes by describing visual exploration scenarios, showing how Alignment Cubes support common tasks identified in the use cases.

    Fulltekst (pdf)
    Alignment Cubes: Towards Interactive Visual Exploration and Evaluation of Multiple Ontology Alignments
  • 50.
    Ivanova, Valentina
    et al.
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    Lambrix, Patrick
    Linköpings universitet, Institutionen för datavetenskap, Databas och informationsteknik. Linköpings universitet, Tekniska högskolan.
    A system for aligning taxonomies and debugging taxonomies and their alignments2013Inngår i: The Semantic Web: ESWC 2013 Satellite Events, Montpellier, France, May 26-30, 2013, Revised Selected Papers / [ed] Philipp Cimiano, Miriam Fernández, Vanessa Lopez, Stefan Schlobach, Johanna Völker, Springer Berlin/Heidelberg, 2013, s. 152-156Konferansepaper (Fagfellevurdert)
    Abstract [en]

    With the increased use of ontologies in semantically-enabled applications,the issues of debugging and aligning ontologies have become increasinglyimportant. The quality of the results of such applications is directly dependent onthe quality of the ontologies and mappings between the ontologies they employ. Akey step towards achieving high quality ontologies and mappings is discoveringand resolving modeling defects, e.g., wrong or missing relations and mappings.In this demonstration paper we present a system for aligning taxonomies, the mostused kind of ontologies, and debugging taxonomies and their alignments, whereontology alignment is treated as a special kind of debugging.

    Fulltekst (pdf)
    fulltext
12345 1 - 50 of 201
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf