liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Adam, Rania Elhadi
    et al.
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Chalangar, Ebrahim
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering. School of Information Technology, Halmstad University, Halmstad, Sweden.
    Pirhashemi, Mahsa
    Department of Chemistry, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.
    Pozina, Galia
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Liu, Xianjie
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Palisaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Pettersson, Håkan
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering. School of Information Technology, Halmstad University, Halmstad, Sweden; Solid State Physics and NanoLund, Lund University, Lund, Sweden.
    Willander, Magnus
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics.
    Nur, Omer
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Graphene-based plasmonic nanocomposites for highly enhanced solar-driven photocatalytic activities2019In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 9, no 52, p. 30585-30598Article in journal (Refereed)
    Abstract [en]

    High-efficiency photocatalysts are crucial for the removal of organic pollutants and environmental sustainability. In the present work, we report on a new low-temperature hydrothermal chemical method, assisted by ultrasonication, to synthesize disruptive plasmonic ZnO/graphene/Ag/AgI nanocomposites for solar-driven photocatalysis. The plasmonic nanocomposites were investigated by a wide range of characterization techniques, confirming successful formation of photocatalysts with excellent degradation efficiency. Using Congo red as a model dye molecule, our experimental results demonstrated a photocatalytic reactivity exceeding 90% efficiency after one hour simulated solar irradiation. The significantly enhanced degradation efficiency is attributed to improved electronic properties of the nanocomposites by hybridization of the graphene and to the addition of Ag/AgI which generates a strong surface plasmon resonance effect in the metallic silver further improving the photocatalytic activity and stability under solar irradiation. Scavenger experiments suggest that superoxide and hydroxyl radicals are responsible for the photodegradation of Congo red. Our findings are important for the fundamental understanding of the photocatalytic mechanism of ZnO/graphene/Ag/AgI nanocomposites and can lead to further development of novel efficient photocatalyst materials.

  • 2.
    Elhadi Adam, Rania Elhadi
    et al.
    Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering.
    Pozina, Galia
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Willander, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Nur, Omer
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Synthesis of ZnO nanoparticles by co-precipitation method for solar driven photodegradation of Congo red dye at different pH2018In: PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, ISSN 1569-4410, Vol. 32, p. 11-18Article in journal (Refereed)
    Abstract [en]

    Solar driven photocatalytic processes to remove organic pollutants from wastewater and other aqueous solutions is very important and useful due to its environmental benefits regarding sustainability aspect. In this article, we report a study on the use of bare zinc oxide (ZnO) nanoparticles (NPs) prepared by the chemical low temperature co-precipitation method and used as a catalyst to degrade the Congo red dye from aqueous solution using solar radiation. We performed the photocatalytic experiments for degradation of Congo red dye under solar radiation at different pH values. The results showed that the ZnO NPs are effective under solar radiation for degradation of Congo red dye. Even when the pH was varied down to 4 or raised to 10, the degradation was observed to be slightly improved. This result is due to the excess of radicals species, which enhance the photocatalytic process. In general, the observed degradation efficiency of the ZnO NPs is due to the deep level defects within the band gap that were introduced during the growth process of the ZnO NPs, which enhance the absorption wavelength band towards the visible light region. Recycling of the ZnO NPs for 3 successive runs have indicated the feasibility of reusing the NPs for several times. This implies that by using bare ZnO NPs an efficient approach for degradation of toxic waste can be achieved. Radical scavengers were used to evaluate the role of the radicals in the reaction mechanism.

  • 3.
    Elhadi Adam, Rania
    et al.
    Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering.
    Mustafa, Elfatih
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Elhag, Sami
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Nur, Omer
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Willander, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Photocatalytic properties for different metal-oxide nanomaterials2019In: Oxide-based Materials and Devices X, SPIE , 2019, article id 1091925Conference paper (Refereed)
    Abstract [en]

    We here demonstrate the synthesis of different nanostructures, including nanoparticles, nanorods, core-shell structures,and compound metal oxide nanostructures all synthesized by a low temperature chemical process. We furtherinvestigated their photocatalytic properties for degradation of toxic waste and their photochemical efficiency for watersplitting. All the photocatalytic properties as well as the photochemical properties were utilized using sun radiation. Theresults presented indicate huge potential for the investigated processes with positive impact to energy consumption andbenefits for the environment.

  • 4.
    Elhadi Adam, Rania
    et al.
    Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering.
    Pirhashemi, Mahsa
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering. University of Mohaghegh Ardabili, Ardabil, Iran.
    Elhag, Sami
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Liu, Xianjie
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Habibi-Yangjeh, Aziz
    University of Mohaghegh Ardabili, Ardabil, Iran.
    Willander, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Nur, Omer
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    ZnO/Ag/Ag2WO4 photo-electrodes with plasmonic behavior for enhanced photoelectrochemical water oxidation2019In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 9, no 15, p. 8271-8279Article in journal (Refereed)
    Abstract [en]

    Ag-based compounds are excellent co-catalyst that can enhance harvesting visible light and increase photo-generated charge carrier separation owing to its surface plasmon resonance (SPR) effect in photoelectrochemical (PEC) applications. However, the PEC performance of a ZnO/Ag/Ag2WO4 heterostructure with SPR behavior has not been fully studied so far. Here we report the preparation of a ZnO/Ag/Ag2WO4 photo-electrode with SPR behavior by a low temperature hydrothermal chemical growth method followed by a successive ionic layer adsorption and reaction (SILAR) method. The properties of the prepared samples were investigated by different characterization techniques, which confirm that Ag/Ag2WO4 was deposited on the ZnO NRs. The Ag2WO4/Ag/ZnO photo-electrode showed an enhancement in PEC performance compared to bare ZnO NRs. The observed enhancement is attributed to the red shift of the optical absorption spectrum of the Ag2WO4/Ag/ZnO to the visible region (>400 nm) and to the SPR effect of surface metallic silver (Ag0) particles from the Ag/Ag2WO4 that could generate electron–hole pairs under illumination of low energy visible sun light. Finally, we proposed the PEC mechanism of the Ag2WO4/Ag/ZnO photo-electrode with an energy band structure and possible electron–hole separation and transportation in the ZnO/Ag/Ag2WO4 heterostructure with SPR effect for water oxidation. ER

  • 5.
    Mohammed, Rania Elhadi Adam
    et al.
    Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering.
    Alnoor, Hatim
    Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering.
    Elhag, Sami
    Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering.
    Nur, Omer
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Willander, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Zinc oxide nanostructures and its nano-compounds for efficient visible light photo-catalytic processes2017In: OXIDE-BASED MATERIALS AND DEVICES VIII, SPIE - International Society for Optical Engineering, 2017, Vol. 10105, article id UNSP 101050XConference paper (Refereed)
    Abstract [en]

    Zinc oxide (ZnO) in its nanostructure form is a promising material for visible light emission/absorption and utilization in different energy efficient photocatalytic processes. We will first present our recent results on the effect of varying the molar ratio of the synthesis nutrients on visible light emission. Further we will use the optimized conditions from the molar ration experiments to vary the synthesis processing parameters like stirring time etc. and the effect of all these parameters in order to optimize the efficiency and control the emission spectrum are investigated using different complementary techniques. Cathodoluminescence (CL) is combined with photoluminescence (PL) and electroluminescence (EL) as the techniques to investigate and optimizes visible light emission from ZnO/GaN light emitting diodes. We will then show and discuss our recent finding of the use of high quality ZnO nanoparticles (NPs) for efficient photo-degradation of toxic dyes using the visible spectra, namely with a wavelength up to 800 nm. In the end, we show how ZnO nanorods (NRs) are used as the first template to be transferred to bismuth zinc vanadate (BiZn2VO6). The BiZn2VO6 is then used to demonstrate efficient and cost effective hydrogen production through photo-electrochemical water splitting using solar radiation.

  • 6.
    Mustafa, Elfatih
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Tahira, Aneela
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Adam, Rania Elhadi
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Ibupoto, Zafar Hussain
    Institute of Chemistry, University of Sindh, 76080, Jamshoro, Pakistan.
    Elhag, Sami
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Willander, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Nur, Omer
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Efficient Ni–Fe layered double hydroxides/ZnO nanostructures for photochemical water splitting2019In: Journal of Solid State Chemistry, ISSN 0022-4596, E-ISSN 1095-726X, Vol. 273, p. 186-191Article in journal (Refereed)
    Abstract [en]

    Zinc oxide (ZnO) nanostructures are widely investigated for photocatalytic applications but the functional properties are limited by the fast carrier recombination rate, which is an intrinsic property of ZnO. To optimize the recombination rate of ZnO, a study is carried out in which it is covered with Ni-Fe layered double hydroxides and synergistic effects are created which boosted the photocatalytic activity of ZnO. The nanostructured materials are synthesized by the low temperature aqueous chemical growth and electrodeposition methods. These nanostructures are characterized by scanning electron microscopy (SEM) and powder X-ray diffraction (XRD) technique. SEM study has revealed a Ni–Fe LDH coated ZnO NRs. The powder XRD has showed a cubic phase of the Ni-Fe layered double hydroxide on the ZnO NRs having an excellent crystalline quality. The optical characterization has shown low scattering of light for the Ni–Fe LDH coated ZnO NRs sample. The sample prepared with deposition time of 25 s showed excellent photochemical water splitting properties compared to counter photo-anodes in alkaline media. The photo response was highly stable and fast. The incident photon to current conversion efficiency for the photo-anode of Ni–Fe(LDHs)/ZnO over 25 s was 82% at a maximum absorption of 380 nm compared to the pristine ZnO NRs which has 70% at the same wavelength. This study is providing a simple, cost effective, earth abundant and environment friendly methodology for the fabrication of photo-anodes for diverse applications specifically water oxidation and solar radiation driven water splitting.

  • 7.
    Pirhashemi, Mahsa
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering. University of Mohaghegh Ardabili, Iran.
    Elhag, Sami
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Elhadi Adam, Rania
    Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering.
    Habibi-Yangjeh, Aziz
    University of Mohaghegh Ardabili, Iran.
    Liu, Xianjie
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Willander, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Nur, Omer
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    n–n ZnO–Ag2CrO4 heterojunction photoelectrodes with enhanced visible-light photoelectrochemical properties2019In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 9, no 14, p. 7992-8001Article in journal (Refereed)
    Abstract [en]

    In this study, ZnO nanorods (NRs) were hydrothermally grown on an Au-coated glass substrate at a relatively low temperature (90 °C), followed by the deposition of Ag2CrO4 particles via a successive ionic layer adsorption and reaction (SILAR) route. The content of the Ag2CrO4 particles on ZnO NRs was controlled by changing the number of SILAR cycles. The fabricated ZnO–Ag2CrO4 heterojunction photoelectrodes were subjected to morphological, structural, compositional, and optical property analyses; their photoelectrochemical (PEC) properties were investigated under simulated solar light illumination. The photocurrent responses confirmed that the ability of the ZnO–Ag2CrO4 heterojunction photoelectrodes to separate the photo-generated electron–hole pairs is stronger than that of bare ZnO NRs. Impressively, the maximum photocurrent density of about 2.51 mA cm−2 at 1.23 V (vs. Ag/AgCl) was measured for the prepared ZnO–Ag2CrO4 photoelectrode with 8 SILAR cycles (denoted as ZnO–Ag2CrO4-8), which exhibited about 3-fold photo-enhancement in the current density as compared to bare ZnO NRs (0.87 mA cm−2) under similar conditions. The improvement in photoactivity was attributed to the ideal band gap and high absorption coefficient of the Ag2CrO4 particles, which resulted in improved solar light absorption properties. Furthermore, an appropriate annealing treatment was proven to be an efficient process to increase the crystallinity of Ag2CrO4 particles deposited on ZnO NRs, which improved the charge transport characteristics of the ZnO–Ag2CrO4-8 photoelectrode annealed at 200 °C and increased the performance of the photoelectrode. The results achieved in the present work present new insights for designing n–n heterojunction photoelectrodes for efficient and cost-effective PEC applications and solar-to-fuel energ

  • 8.
    Willander, Magnus
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Alnoor, Hatim
    Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering.
    Savoyant, A.
    Aix Marseille Univ, France.
    Elhadi Adam, Rania Elhadi
    Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering.
    Nur, Omer
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Optical and magneto-optical properties of zinc-oxide nanostructures grown by the low-temperature chemical route2018In: OXIDE-BASED MATERIALS AND DEVICES IX, SPIE-INT SOC OPTICAL ENGINEERING , 2018, Vol. 10533, article id UNSP 105331DConference paper (Refereed)
    Abstract [en]

    We demonstrate that the low temperature synthesis chemical route can be utilized to control the functionality of zinc oxide (ZnO) nanoparticles (NPs) and nanorods (NRs) for optical and magneto-optical performance. Different structural, optical, electro-and magneto-optical results will be displayed and analyzed. In the first part, we show how high quality ZnO NPs can be efficient for photodegradation using ultra-violet radiation. In the second part we will present our recent results on the control of the core defects in cobalt doped ZnO NR. Here and by using electron paramagnetic resonance (EPR) measurements, the substitution of Co2+ ions in the ZnO NRs crystal is shown. The relation between the incorporation and core defects concentration will be discussed. The findings give access to the magnetic anisotropy of ZnO NRs grown by the low temperature chemical route and can lead to demonstrate room temperature ferromagnetism in nanostructures with potential for different device applications.

1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf