liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
123 1 - 50 av 113
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Abdalla, Hassan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Komplexa material och system. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Kemerink, Martijn
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Komplexa material och system. Linköpings universitet, Tekniska fakulteten.
    Investigation of the dimensionality of charge transport in organic field effect transistors2017Ingår i: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 95, nr 8, artikel-id 85301Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Ever since the first experimental investigations of organic field effect transistors (OFETs) the dimensionality of charge transport has alternately been described as two dimensional (2D) and three dimensional (3D). More recently, researchers have turned to an analytical analysis of the temperature-dependent transfer characteristics to classify the dimensionality as either 2D or 3D as well as to determine the disorder of the system, thereby greatly simplifying dimensionality investigations. We applied said analytical analysis to the experimental results of our OFETs comprising molecularly well-defined polymeric layers as the active material as well as to results obtained from kinetic Monte Carlo simulations and found that it was not able to correctly distinguish between 2D and 3D transports or give meaningful values for the disorder and should only be used for quasiquantitative and comparative analysis. We conclude to show that the dimensionality of charge transport in OFETs is a function of the interplay between transistor physics and morphology of the organic material.

    Ladda ner fulltext (pdf)
    fulltext
  • 2.
    Abdollahi Sani, Negar
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Mirbel, Deborah
    Univ Bordeaux, France.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Brochon, Cyril
    Univ Bordeaux, France.
    Cloutet, Eric
    Univ Bordeaux, France.
    Hadziioannou, Georges
    Univ Bordeaux, France.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    A ferroelectric polymer introduces addressability in electrophoretic display cells2019Ingår i: FLEXIBLE AND PRINTED ELECTRONICS, ISSN 2058-8585, Vol. 4, nr 3, artikel-id 035004Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    During the last decades, tremendous efforts have been carried out to develop flexible electronics for a vast array of applications. Among all different applications investigated in this area, flexible displays have gained significant attention, being a vital part of large-area devices, portable systems and electronic labels etc electrophoretic (EP) ink displays have outstanding properties such as a superior optical switch contrast and low power consumption, besides being compatible with flexible electronics. However, the EP ink technology requires an active matrix-addressing scheme to enable exclusive addressing of individual pixels. EP ink pixels cannot be incorporated in low cost and easily manufactured passive matrix circuits due to the lack of threshold voltage and nonlinearity, necessities to provide addressability. Here, we suggest a simple method to introduce nonlinearity and threshold voltage in EP ink display cells in order to make them passively addressable. Our method exploits the nonlinearity of an organic ferroelectric capacitor that introduces passive addressability in display cells. The organic ferroelectric material poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) is here chosen because of its simple manufacturing protocol and good polarizability. We demonstrate that a nonlinear EP cell with bistable states can be produced by depositing a P(VDF-TrFE) film on the bottom electrode of the display cell. The P(VDF-TrFE) capacitor and the EP ink cell are separately characterized in order to match the surface charge at their respective interfaces and to achieve and optimize bistable operation of display pixels.

    Ladda ner fulltext (pdf)
    fulltext
  • 3.
    Alsufyani, Maryam
    et al.
    King Abdullah Univ Sci & Technol KAUST, Saudi Arabia.
    Hallani, Rawad K.
    King Abdullah Univ Sci & Technol KAUST, Saudi Arabia.
    Wang, Suhao
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Xiao, Mingfei
    Univ Cambridge, England.
    Ji, Xudong
    Northwestern Univ, IL 60208 USA.
    Paulsen, Bryan D.
    Northwestern Univ, IL 60208 USA.
    Xu, Kai
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Bristow, Helen
    Univ Cambridge, England.
    Chen, Hu
    King Abdullah Univ Sci & Technol KAUST, Saudi Arabia.
    Chen, Xingxing
    King Abdullah Univ Sci & Technol KAUST, Saudi Arabia.
    Sirringhaus, Henning
    King Abdullah Univ Sci & Technol KAUST, Saudi Arabia.
    Rivnay, Jonathan
    Northwestern Univ, IL 60208 USA.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    McCulloch, Iain
    King Abdullah Univ Sci & Technol KAUST, Saudi Arabia; Univ Oxford, England.
    The effect of aromatic ring size in electron deficient semiconducting polymers for n-type organic thermoelectrics2020Ingår i: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 8, nr 43, s. 15150-15157Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    N-type semiconducting polymers have been recently utilized in thermoelectric devices, however they have typically exhibited low electrical conductivities and poor device stability, in contrast to p-type semiconductors, which have been much higher performing. This is due in particular to the n-type semiconductors low doping efficiency, and poor charge carrier mobility. Strategies to enhance the thermoelectric performance of n-type materials include optimizing the electron affinity (EA) with respect to the dopant to improve the doping process and increasing the charge carrier mobility through enhanced molecular packing. Here, we report the design, synthesis and characterization of fused electron-deficient n-type copolymers incorporating the electron withdrawing lactone unit along the backbone. The polymers were synthesized using metal-free aldol condensation conditions to explore the effect of enlarging the central phenyl ring to a naphthalene ring, on the electrical conductivity. When n-doped with N-DMBI, electrical conductivities of up to 0.28 S cm(-1), Seebeck coefficients of -75 mu V K-1 and maximum Power factors of 0.16 mu W m(-1) K-2 were observed from the polymer with the largest electron affinity of -4.68 eV. Extending the aromatic ring reduced the electron affinity, due to reducing the density of electron withdrawing groups and subsequently the electrical conductivity reduced by almost two orders of magnitude.

    Ladda ner fulltext (pdf)
    fulltext
  • 4.
    Alsufyani, Maryam
    et al.
    Univ Oxford, England.
    Stoeckel, Marc-Antoine
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Chen, Xingxing
    King Abdullah Univ Sci & Technol KAUST, Saudi Arabia.
    Thorley, Karl
    Univ Kentucky, KY 40506 USA.
    Hallani, Rawad K.
    King Abdullah Univ Sci & Technol KAUST, Saudi Arabia.
    Puttisong, Yuttapoom
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Ji, Xudong
    Northwestern Univ, IL 60208 USA.
    Meli, Dilara
    Northwestern Univ, IL 60208 USA.
    Paulsen, Bryan D.
    Northwestern Univ, IL 60208 USA.
    Strzalka, Joseph
    Argonne Natl Lab, IL 60439 USA.
    Regeta, Khrystyna
    King Abdullah Univ Sci & Technol KAUST, Saudi Arabia.
    Combe, Craig
    King Abdullah Univ Sci & Technol KAUST, Saudi Arabia.
    Chen, Hu
    King Abdullah Univ Sci & Technol KAUST, Saudi Arabia.
    Tian, Junfu
    Univ Oxford, England.
    Rivnay, Jonathan
    Northwestern Univ, IL 60208 USA; Northwestern Univ, IL 60611 USA.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    McCulloch, Iain
    Univ Oxford, England; King Abdullah Univ Sci & Technol KAUST, Saudi Arabia.
    Lactone Backbone Density in Rigid Electron-Deficient Semiconducting Polymers Enabling High n-type Organic Thermoelectric Performance2022Ingår i: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 61, nr 7, artikel-id e202113078Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Three lactone-based rigid semiconducting polymers were designed to overcome major limitations in the development of n-type organic thermoelectrics, namely electrical conductivity and air stability. Experimental and theoretical investigations demonstrated that increasing the lactone group density by increasing the benzene content from 0 % benzene (P-0), to 50 % (P-50), and 75 % (P-75) resulted in progressively larger electron affinities (up to 4.37 eV), suggesting a more favorable doping process, when employing (N-DMBI) as the dopant. Larger polaron delocalization was also evident, due to the more planarized conformation, which is proposed to lead to a lower hopping energy barrier. As a consequence, the electrical conductivity increased by three orders of magnitude, to achieve values of up to 12 S cm and Power factors of 13.2 mu Wm(-1) K-2 were thereby enabled. These findings present new insights into material design guidelines for the future development of air stable n-type organic thermoelectrics.

    Ladda ner fulltext (pdf)
    fulltext
  • 5.
    Andersson Ersman, Peter
    et al.
    RISE Acreo, Sweden.
    Lassnig, Roman
    RISE Acreo, Sweden.
    Strandberg, Jan
    RISE Acreo, Sweden.
    Tu, Deyu
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Keshmiri, Vahid
    Linköpings universitet, Institutionen för systemteknik, Informationskodning. Linköpings universitet, Tekniska fakulteten.
    Forchheimer, Robert
    Linköpings universitet, Institutionen för systemteknik, Informationskodning. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gustafsson, Goran
    RISE Acreo, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    All-printed large-scale integrated circuits based on organic electrochemical transistors2019Ingår i: Nature Communications, E-ISSN 2041-1723, Vol. 10, artikel-id 5053Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The communication outposts of the emerging Internet of Things are embodied by ordinary items, which desirably include all-printed flexible sensors, actuators, displays and akin organic electronic interface devices in combination with silicon-based digital signal processing and communication technologies. However, hybrid integration of smart electronic labels is partly hampered due to a lack of technology that (de)multiplex signals between silicon chips and printed electronic devices. Here, we report all-printed 4-to-7 decoders and seven-bit shift registers, including over 100 organic electrochemical transistors each, thus minimizing the number of terminals required to drive monolithically integrated all-printed electrochromic displays. These relatively advanced circuits are enabled by a reduction of the transistor footprint, an effort which includes several further developments of materials and screen printing processes. Our findings demonstrate that digital circuits based on organic electrochemical transistors (OECTs) provide a unique bridge between all-printed organic electronics (OEs) and low-cost silicon chip technology for Internet of Things applications.

    Ladda ner fulltext (pdf)
    fulltext
  • 6.
    Andersson Ersman, Peter
    et al.
    RISE Acreo, Department of Printed Electronics, Bredgatan 33, Norrköping, SE-602 21, Sweden.
    Zabihipour, Marzieh
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Tu, Deyu
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Lassnig, Roman
    RISE Acreo, Department of Printed Electronics, Bredgatan 33, Norrköping, SE-602 21, Sweden.
    Strandberg, Jan
    RISE Acreo, Department of Printed Electronics, Bredgatan 33, Norrköping, SE-602 21, Sweden.
    Åhlin, Jessica
    RISE Acreo, Department of Printed Electronics, Bredgatan 33, Norrköping, SE-602 21, Sweden.
    Nilsson, Marie
    RISE Acreo, Department of Printed Electronics, Bredgatan 33, Norrköping, SE-602 21, Sweden.
    Westerberg, David
    RISE Acreo, Department of Printed Electronics, Bredgatan 33, Norrköping, SE-602 21, Sweden.
    Gustafsson, Göran
    RISE Acreo, Department of Printed Electronics, Bredgatan 33, Norrköping, SE-602 21, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Forchheimer, Robert
    Linköpings universitet, Institutionen för systemteknik, Informationskodning. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Monolithic integration of display driver circuits and displays manufactured by screen printing2020Ingår i: Flexible and Printed Electronics, ISSN 2058-8585, Vol. 5, nr 2, artikel-id 024001Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Here, we report all-screen printed display driver circuits, based on organic electrochemical transistors (OECTs), and their monolithic integration with organic electrochromic displays (OECDs). Both OECTs and OECDs operate at low voltages and have similar device architectures, and, notably, they rely on the very same electroactive material as well as on the same electrochemical switching mechanism. This then allows us to manufacture OECT-OECD circuits in a concurrent manufacturing process entirely based on screen printing methods. By taking advantage of the high current throughput capability of OECTs, we further demonstrate their ability to control the light emission in traditional light-emitting diodes (LEDs), where the actual LED addressing is achieved by an OECT-based decoder circuit. The possibility to monolithically integrate all-screen printed OECTs and OECDs on flexible plastic foils paves the way for distributed smart sensor labels and similar Internet of Things applications. 

    Ladda ner fulltext (pdf)
    fulltext
  • 7.
    Bao, Qinye
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Andersson, Mattias
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Braun, Slawomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Sun, Zhengyi
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Energy Level Bending in Ultrathin Polymer Layers Obtained through Langmuir-Shafer Deposition2016Ingår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 26, nr 7, s. 1077-1084Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The semiconductor-electrode interface impacts the function and the performance of (opto) electronic devices. For printed organic electronics the electrode surface is not atomically clean leading to weakly interacting interfaces. As a result, solution-processed organic ultrathin films on electrodes typically form islands due to dewetting. It has therefore been utterly difficult to achieve homogenous ultrathin conjugated polymer films. This has made the investigation of the correct energetics of the conjugated polymer-electrode interface impossible. Also, this has hampered the development of devices including ultrathin conjugated polymer layers. Here, LangmuirShafer-manufactured homogenous mono-and multilayers of semiconducting polymers on metal electrodes are reported and the energy level bending using photoelectron spectroscopy is tracked. The amorphous films display an abrupt energy level bending that does not extend beyond the first monolayer. These findings provide new insights of the energetics of the polymer-electrode interface and opens up for new high-performing devices based on ultrathin semiconducting polymers.

    Ladda ner fulltext (pdf)
    fulltext
  • 8.
    Bao, Qinye
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Andersson, Mattias
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Braun, Slawomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Sun, Zhengyi
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    The energetics of the semiconducting polymer-electrode interface for solution-processed electronicsManuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    The semiconductor-electrode interface impacts the function and the performance of (opto-)electronic devices. For printed organic electronics the electrode surface is not atomically clean leading to weakly interacting interfaces. As a result, solution-processed organic ultra-thin films on electrodes typically form islands due to de-wetting. It has therefore been utterly difficult to achieve homogenous ultrathin conjugated polymer films. This has made the investigation of the correct energetics of the conjugated polymer-electrode interface impossible. Also, this has hampered the development of devices including ultra-thin conjugated polymer layers. Here, we report Langmuir-Shäfer-manufactured homogenous mono- and multilayers of semiconducting polymers on metal electrodes and track the energy level bending using photoelectron spectroscopy. The amorphous films display an abrupt energy level bending that does not extend beyond the first monolayer. Our findings provide new insights of the energetics of the polymer-electrode interface and opens up for new high-performing devices based on ultra-thin semiconducting polymers.

  • 9.
    Berggren, Elin
    et al.
    Uppsala Univ, Sweden.
    Weng, Yi-Chen
    Uppsala Univ, Sweden.
    Li, Qifan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Yang, Chiyuan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Johansson, Fredrik O. L.
    KTH Royal Inst Technol, Sweden; Sorbonne Univ, France.
    Cappel, Ute B.
    KTH Royal Inst Technol, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Lindblad, Andreas
    Uppsala Univ, Sweden.
    Charge Transfer in the P(g<sub>4</sub>2T-T):BBL Organic Polymer Heterojunction Measured with Core-Hole Clock Spectroscopy2023Ingår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 127, nr 49, s. 23733-23742Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The conductivity of organic polymer heterojunction devices relies on the electron dynamics occurring along interfaces between the acceptor and donor moieties. To investigate these dynamics with chemical specificity, spectroscopic techniques are employed to obtain localized snapshots of the electron behavior at selected interfaces. In this study, charge transfer in blends (by weight 10, 50, 90, and 100%) of p-type polymer P(g(4)2T-T) (bithiophene-thiophene) and n-type polymer BBL (poly(benzimidazo-benzo-phenanthroline)) was measured by resonant Auger spectroscopy. Electron spectra emanating from the decay of core-excited states created upon X-ray absorption in the donor polymer P(g(4)2T-T) were measured in the sulfur KL2,3L2,3 Auger kinetic energy region as a function of the excitation energy. By tuning the photon energy across the sulfur K-absorption edge, it is possible to differentiate between decay paths in which the core-excited electron remained on the atom with the core-hole and those where it tunneled away. Analyzing the competing decay modes of these localized and delocalized (charge-transfer) processes facilitated the computation of charge-transfer times as a function of excitation energy using the core-hole clock method. The electron delocalization times derived from the measurements were found to be in the as/fs regime for all polymer blends, with the fastest charge transfer occurring in the sample with an equal amount of donor and acceptor polymer. These findings highlight the significance of core-hole clock spectroscopy as a chemically specific tool for examining the local charge tunneling propensity, which is fundamental to understanding macroscopic conductivity. Additionally, the X-ray absorption spectra near the sulfur K-edge in the P(g(4)2T-T) polymer for different polymer blends were analyzed to compare molecular structure, orientation, and ordering in the polymer heterojunctions. The 50% donor sample exhibited the most pronounced angular dependence of absorption, indicating a higher level of ordering compared to the other weight blends. Our studies on the electron dynamics of this type of all-polymer donor-acceptor systems, in which spontaneous ground-state electron transfer occurs, provide us with critical insights to further advance the next generation of organic conductors with mixed electron-hole conduction characteristics suitable for highly stable electrodes of relevance for electronic, electrochemical, and optoelectronic applications.

  • 10.
    Berggren, Magnus
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Stavrinidou, Eleni
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ion Electron-Coupled Functionality in Materials and Devices Based on Conjugated Polymers2019Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 31, nr 22, artikel-id 1805813Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    The coupling between charge accumulation in a conjugated polymer and the ionic charge compensation, provided from an electrolyte, defines the mode of operation in a vast array of different organic electrochemical devices. The most explored mixed organic ion-electron conductor, serving as the active electrode in these devices, is poly(3,4-ethyelenedioxythiophene) doped with polystyrelensulfonate (PEDOT:PSS). In this progress report, scientists of the Laboratory of Organic Electronics at Linkoping University review some of the achievements derived over the last two decades in the field of organic electrochemical devices, in particular including PEDOT:PSS as the active material. The recently established understanding of the volumetric capacitance and the mixed ion-electron charge transport properties of PEDOT are described along with examples of various devices and phenomena utilizing this ion-electron coupling, such as the organic electrochemical transistor, ionic-electronic thermodiffusion, electrochromic devices, surface switches, and more. One of the pioneers in this exciting research field is Prof. Olle Inganas and the authors of this progress report wish to celebrate and acknowledge all the fantastic achievements and inspiration accomplished by Prof. Inganas all since 1981.

    Ladda ner fulltext (pdf)
    fulltext
  • 11.
    Chen, Hu
    et al.
    King Abdullah Univ Sci & Technol KAUST, Saudi Arabia.
    Moser, Maximilian
    Imperial Coll London, England; Imperial Coll London, England; Univ Oxford, England.
    Wang, Suhao
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Jellett, Cameron
    Imperial Coll London, England; Imperial Coll London, England.
    Thorley, Karl
    Univ Kentucky, KY 40506 USA.
    Harrison, George T.
    King Abdullah Univ Sci & Technol KAUST, Saudi Arabia.
    Jiao, Xuechen
    Monash Univ, Australia.
    Xiao, Mingfei
    Univ Cambridge, England.
    Purushothaman, Balaji
    King Abdullah Univ Sci & Technol KAUST, Saudi Arabia.
    Alsufyani, Maryam
    King Abdullah Univ Sci & Technol KAUST, Saudi Arabia.
    Bristow, Helen
    Imperial Coll London, England; Imperial Coll London, England; Univ Oxford, England.
    De Wolf, Stefaan
    King Abdullah Univ Sci & Technol KAUST, Saudi Arabia.
    Gasparini, Nicola
    Imperial Coll London, England; Imperial Coll London, England.
    Wadsworth, Andrew
    Imperial Coll London, England; Imperial Coll London, England; Univ Oxford, England.
    McNeill, Christopher R.
    Monash Univ, Australia.
    Sirringhaus, Henning
    Univ Cambridge, England.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    McCulloch, Iain
    King Abdullah Univ Sci & Technol KAUST, Saudi Arabia; Univ Oxford, England.
    Acene Ring Size Optimization in Fused Lactam Polymers Enabling High n-Type Organic Thermoelectric Performance2021Ingår i: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 143, nr 1, s. 260-268Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Three n-type fused lactam semiconducting polymers were synthesized for thermoelectric and transistor applications via a cheap, highly atom-efficient, and nontoxic transition-metal free aldol polycondensation. Energy level analysis of the three polymers demonstrated that reducing the central acene core size from two anthracenes (A-A), to mixed naphthalene-anthracene (A-N), and two naphthalene cores (N-N) resulted in progressively larger electron affinities, thereby suggesting an increasingly more favorable and efficient solution doping process when employing 4-(2,3-dihydro-1,3-dimethyl-1H-benzimidazol-2-yl)-N,N-dimethylbenzenamine (N-DMBI) as the dopant. Meanwhile, organic field effect transistor (OFET) mobility data showed the N-N and A-N polymers to feature the highest charge carrier mobilities, further highlighting the benefits of aryl core contraction to the electronic performance of the materials. Ultimately, the combination of these two factors resulted in N-N, A-N, and A-A to display power factors (PFs) of 3.2 mu W m(-1) K-2, 1.6 mu W m(-1 )K(-2), and 0.3 mu W m(-1) K-2, respectively, when doped with N-DMBI, whereby the PFs recorded for N-N and A-N are among the highest reported in the literature for n-type polymers. Importantly, the results reported in this study highlight that modulating the size of the central acene ring is a highly effective molecular design strategy to optimize the thermoelectric performance of conjugated polymers, thus also providing new insights into the molecular design guidelines for the next generation of high-performance n-type materials for thermoelectric applications.

  • 12.
    Chen, Shangzhi
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Kang, Evan S. H.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Shiran Chaharsoughi, Mina
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Stanishev, Vallery
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Kuhne, Philipp
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Sun, Hengda
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Wang, Chuanfei
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Darakchieva, Vanya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik.
    Conductive polymer nanoantennas for dynamic organic plasmonics2020Ingår i: Nature Nanotechnology, ISSN 1748-3387, E-ISSN 1748-3395, Vol. 15Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Being able to dynamically shape light at the nanoscale is oneof the ultimate goals in nano-optics1. Resonant light–matterinteraction can be achieved using conventional plasmonicsbased on metal nanostructures, but their tunability is highlylimited due to a fixed permittivity2. Materials with switchablestates and methods for dynamic control of light–matterinteraction at the nanoscale are therefore desired. Here weshow that nanodisks of a conductive polymer can supportlocalized surface plasmon resonances in the near-infraredand function as dynamic nano-optical antennas, with their resonancebehaviour tunable by chemical redox reactions. Theseplasmons originate from the mobile polaronic charge carriersof a poly(3,4-ethylenedioxythiophene:sulfate) (PEDOT:Sulf)polymer network. We demonstrate complete and reversibleswitching of the optical response of the nanoantennasby chemical tuning of their redox state, which modulatesthe material permittivity between plasmonic and dielectricregimes via non-volatile changes in the mobile chargecarrier density. Further research may study different conductivepolymers and nanostructures and explore their usein various applications, such as dynamic meta-optics andreflective displays.

    Ladda ner fulltext (pdf)
    fulltext
  • 13.
    Chen, Yongzhen
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Wu, Hanyan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Yang, Chiyuan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Kolhe, Nagesh B.
    Univ Washington, WA 98195 USA; Univ Washington, WA 98195 USA.
    Jenekhe, Samson A.
    Univ Washington, WA 98195 USA; Univ Washington, WA 98195 USA.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Braun, Slawomir
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    In Situ Spectroscopic and Electrical Investigations of Ladder-type Conjugated Polymers Doped with Alkali Metals2022Ingår i: Macromolecules, ISSN 0024-9297, E-ISSN 1520-5835, Vol. 55, nr 16, s. 7294-7302Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Ladder-type conjugated polymers exhibit a remarkable performance in (opto)electronic devices. Their double-stranded planar structure promotes an extended pi-conjugation compared to inter-ring-twisted analogues, providing an excellent basis for exploring the effects of charge localization on polaron formation. Here, we investigated alkali-metal n -doping of the ladder-type conjugated polymer (polybenzimidazobenzophe-nanthroline) (BBL) through detailed in situ spectroscopic and electrical characterizations. Photoelectron spectroscopy and ultraviolet-visible-near-infrared (UV-vis-NIR) spectroscopy indicate polaron formation upon potassium (K) doping, which agrees well with theoretical predictions. The semiladder BBB displays a similar evolution in the valence band with the appearance of two new features below the Fermi level upon K-doping. Compared to BBL, distinct differences appear in the UV-vis-NIR spectra due to more localized polaronic states in BBB. The high conductivity (2 S cm(-1)) and low activation energy (44 meV) measured for K-doped BBL suggest disorder-free polaron transport. An even higher conductivity (37 S cm(-1)) is obtained by changing the dopant from K to lithium (Li). We attribute the enhanced conductivity to a decreased perturbation of the polymer nanostructure induced by the smaller Li ions. These results highlight the importance of polymer chain planarity and dopant size for the polaronic state in conjugated polymers.

    Ladda ner fulltext (pdf)
    fulltext
  • 14.
    Darabi, Sozan
    et al.
    Chalmers Univ Technol, Sweden; Chalmers Univ Technol, Sweden.
    Yang, Chiyuan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. n Ink AB, Sweden.
    Li, Zerui
    Chalmers Univ Technol, Sweden; Sichuan Univ, Peoples R China.
    Huang, Jun-Da
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Hummel, Michael
    Aalto Univ, Finland.
    Sixta, Herbert
    Aalto Univ, Finland.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. n Ink AB, Sweden.
    Mueller, Christian
    Chalmers Univ Technol, Sweden; Chalmers Univ Technol, Sweden.
    Polymer-Based n-Type Yarn for Organic Thermoelectric Textiles2023Ingår i: Advanced Electronic Materials, E-ISSN 2199-160X, Vol. 9, nr 4, artikel-id 2201235Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A conjugated-polymer-based n-type yarn for thermoelectric textiles is presented. Thermoelectric textile devices are intriguing power sources for wearable electronic devices. The use of yarns comprising conjugated polymers is desirable because of their potentially superior mechanical properties compared to other thermoelectric materials. While several examples of p-type conducting yarns exist, there is a lack of polymer-based n-type yarns. Here, a regenerated cellulose yarn is spray-coated with an n-type conducting-polymer-based ink composed of poly(benzimidazobenzophenanthroline) (BBL) and poly(ethyleneimine) (PEI). The n-type yarns display a bulk electrical conductivity of 8 x 10(-3) S cm(-1) and Seebeck coefficient of -79 mu V K-1. A promising level of air-stability for at least 13 days can be achieved by applying an additional thermoplastic elastomer coating. A prototype in-plane thermoelectric textile, produced with the developed n-type yarns and p-type yarns, composed of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-coated regenerated cellulose, displays a stable device performance in air for at least 4 days with an open-circuit voltage per temperature difference of 1 mV degrees C-1. Evidently, polymer-based n-type yarns are a viable component for the construction of thermoelectric textile devices.

    Ladda ner fulltext (pdf)
    fulltext
  • 15.
    del Pozo, Freddy G.
    et al.
    Institute Ciencia Mat Barcelona ICMAB CSIC, Spain; Networking Research Centre Bioengn Biomat and Nanomed CIBER, Spain.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Pfattner, Raphael
    Institute Ciencia Mat Barcelona ICMAB CSIC, Spain; Networking Research Centre Bioengn Biomat and Nanomed CIBER, Spain.
    Georgakopoulos, Stamatis
    Institute Ciencia Mat Barcelona ICMAB CSIC, Spain; Networking Research Centre Bioengn Biomat and Nanomed CIBER, Spain.
    Galindo, Sergi
    Institute Ciencia Mat Barcelona ICMAB CSIC, Spain; Networking Research Centre Bioengn Biomat and Nanomed CIBER, Spain.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Braun, Slawomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Veciana, Jaume
    Institute Ciencia Mat Barcelona ICMAB CSIC, Spain; Networking Research Centre Bioengn Biomat and Nanomed CIBER, Spain.
    Rovira, Concepcio
    Institute Ciencia Mat Barcelona ICMAB CSIC, Spain; Networking Research Centre Bioengn Biomat and Nanomed CIBER, Spain.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Mas-Torrent, Marta
    Institute Ciencia Mat Barcelona ICMAB CSIC, Spain; Networking Research Centre Bioengn Biomat and Nanomed CIBER, Spain.
    Single Crystal-Like Performance in Solution-Coated Thin-Film Organic Field-Effect Transistors2016Ingår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 26, nr 14, s. 2379-2386Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In electronics, the field-effect transistor (FET) is a crucial cornerstone and successful integration of this semiconductor device into circuit applications requires stable and ideal electrical characteristics over a wide range of temperatures and environments. Solution processing, using printing or coating techniques, has been explored to manufacture organic field-effect transistors (OFET) on flexible carriers, enabling radically novel electronics applications. Ideal electrical characteristics, in organic materials, are typically only found in single crystals. Tiresome growth and manipulation of these hamper practical production of flexible OFETs circuits. To date, neither devices nor any circuits, based on solution-processed OFETs, has exhibited an ideal set of characteristics similar or better than todays FET technology based on amorphous silicon. Here, bar-assisted meniscus shearing of dibenzo-tetrathiafulvalene to coat-process self-organized crystalline organic semiconducting domains with high reproducibility is reported. Including these coatings as the channel in OFETs, electric field and temperature-independent charge carrier mobility and no bias stress effects are observed. Furthermore, record-high gain in OFET inverters and exceptional operational stability in both air and water are measured.

    Ladda ner fulltext (pdf)
    fulltext
  • 16.
    DInnocenzo, V.
    et al.
    Ist Italian Tecnol, Italy; Politecn Milan, Italy.
    Luzio, A.
    Ist Italian Tecnol, Italy.
    Abdalla, Hassan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Komplexa material och system. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. University of Groningen, Netherlands.
    Loi, M. A.
    University of Groningen, Netherlands.
    Natali, D.
    Ist Italian Tecnol, Italy; Politecn Milan, Italy.
    Petrozza, A.
    Ist Italian Tecnol, Italy.
    Kemerink, Martijn
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Komplexa material och system. Linköpings universitet, Tekniska fakulteten.
    Caironi, M.
    Ist Italian Tecnol, Italy.
    Two-dimensional charge transport in molecularly ordered polymer field-effect transistors2016Ingår i: JOURNAL OF MATERIALS CHEMISTRY C, ISSN 2050-7526, Vol. 4, nr 47, s. 11135-11142Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Nanometer-thick Langmuir-Schafer monolayers of an electron transporting polymer display charge transport, optical and electro-optical properties that do not depend on the number of layers deposited one above the other. This phenomenon can be rationalized with the micro-structure of the specific multi-layers, which introduces an interlayer hopping penalty confining transport to a neat 2D regime, with a channel not extending beyond a single similar to 3 nm thick polymer strand, as confirmed by kinetic Monte Carlo simulations. Such findings are critical to establish a quantitative structure-property nexus in high mobility polymer semiconductors and in the control of charge transport at a molecular scale.

    Ladda ner fulltext (pdf)
    fulltext
  • 17.
    Dongo, Patrice D.
    et al.
    ATM Univ libre Bruxelles, Belgium.
    Håkansson, Anna
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Stoeckel, Marc-Antoine
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Pavlopolou, Eleni
    Fdn Res & Technol Hellas, Greece.
    Wang, Suhao
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Farina, Dario
    ATM Univ libre Bruxelles, Belgium.
    Queeckers, Patrick
    ATM Univ libre Bruxelles, Belgium.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Iorio, Carlo Saverio
    ATM Univ libre Bruxelles, Belgium.
    Crispin, Reverant
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Detection of Ice Formation With the Polymeric Mixed Ionic-Electronic Conductor PEDOT: PSS for Aeronautics2023Ingår i: Advanced Electronic Materials, E-ISSN 2199-160XArtikel i tidskrift (Refereegranskat)
    Abstract [en]

    Ice formation detection is important in telecommunications and aeronautics, e.g., ice on the wings of an aircraft affects its aerodynamic performance and leads to fatal accidents. While many types of sensors exist, resistive sensors for ice detection have been poorly explored. They are however attractive because of their simplicity and the possibility to install an array of sensors on large areas to map the ice formation on wings. Hygroscopic ionic conductors have been demonstrated for resistive ice sensing but their high resistance prevents the readout of sensor arrays. In this work, mixed ionic-electronic polymer conductors (MIEC) are considered for the first time for ice detection. The polymer blend poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is solution deposited on a pair of electrodes. The sensor displays an abrupt rise in electrical resistance during the transition phase between water liquid to solid. It is proposed that the morphology and electronic transport in PEDOT are affected by the freezing event because the absorbed water in the PSS-rich phase undergoes dilatation upon forming ice crystals. For the aeronautics application, successful tests of integration of sensing layer in pre-preg layers of aeronautical grade and freezing detection are carried out to validate the ice detection principle.

    Ladda ner fulltext (pdf)
    fulltext
  • 18.
    Eckstein, Brian J.
    et al.
    Northwestern University, IL 60208 USA.
    Melkonyan, Ferdinand S.
    Northwestern University, IL 60208 USA.
    Manley, Eric F.
    Northwestern University, IL 60208 USA; Argonne National Lab, IL 60439 USA.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Northwestern University, IL 60208 USA.
    Moua, Aidan R.
    Northwestern University, IL 60208 USA.
    Chen, Lin X.
    Northwestern University, IL 60208 USA; Argonne National Lab, IL 60439 USA.
    Facchetti, Antonio
    Northwestern University, IL 60208 USA; Flexterra Corp, IL 60077 USA.
    Marks, Tobin J.
    Northwestern University, IL 60208 USA.
    Naphthalene Bis(4,8-diamino-1,5-dicarboxyl)amide Building Block for Semiconducting Polymers2017Ingår i: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 139, nr 41, s. 14356-14359Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We report a new naphthalene bis(4,8-diamino-1,5-dicarboxyl)amide (NBA) building block for polymeric semiconductors. Computational modeling suggests that regio-connectivity at the 2,6- or 3,7-NBA positions strongly modulates polymer backbone torsion and, therefore, intramolecular pi-conjugation and aggregation. Optical, electrochemical, and X-ray diffraction characterization of 3,7- and 2,6-dithienyl-substituted NBA molecules and, corresponding isomeric NBA, bithiophene copolymers P1 and P2, respectively, reveals the key role of regio-connectivity. Charge transport measurements demonstrate that while the twisted 3,7-NDA-based P1 is a poor semiconductor, the planar 2,6-functionalized NBA polymers (P2-P4) exhibit ambipolarity, with mu(e) and mu(h) of up to 0.39 and 0.32 cm(2)/(V.s), respectively.

  • 19.
    Eckstein, Brian J.
    et al.
    Northwestern Univ, IL 60208 USA.
    Melkonyan, Ferdinand S.
    Northwestern Univ, IL 60208 USA.
    Wang, Gang
    Northwestern Univ, IL 60208 USA.
    Wang, Binghao
    Northwestern Univ, IL 60208 USA.
    Manley, Eric F.
    Northwestern Univ, IL 60208 USA; Argonne Natl Lab, IL 60439 USA.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Northwestern Univ, IL 60208 USA.
    Harbuzaru, Alexandra
    Univ Malaga, Spain.
    Ortiz, Rocio Ponce
    Univ Malaga, Spain.
    Chen, Lin X.
    Northwestern Univ, IL 60208 USA; Argonne Natl Lab, IL 60439 USA.
    Facchetti, Antonio
    Northwestern Univ, IL 60208 USA; Flexterra Corp, IL 60077 USA.
    Marks, Tobin J.
    Northwestern Univ, IL 60208 USA.
    Processable High Electron Mobility pi-Copolymers via Mesoscale Backbone Conformational Ordering2021Ingår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 31, nr 15, artikel-id 2009359Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The synthesis and experimental/theoretical characterization of a new series of electron-transporting copolymers based on the naphthalene bis(4,8-diamino-1,5-dicarboxyl)amide (NBA) building block are reported. Comonomers are designed to test the emergent effects of manipulating backbone torsional characteristics, and density functional theory (DFT) analysis reveals the key role of backbone conformation in optimizing electronic delocalization and transport. The NBA copolymer conformational and electronic properties are characterized using a broad array of molecular/macromolecular, thermal, optical, electrochemical, and charge transport techniques. All NBA copolymers exhibit strongly aggregated morphologies with significant nanoscale order. Copolymer charge transport properties are investigated in thin-film transistors and exhibit excellent electron mobilities ranging from 0.4 to 4.5 cm(2) V-1 s(-1). Importantly, the electron transport efficiency correlates with the film mesoscale order, which emerges from comonomer-dependent backbone planarity and extension. These results illuminate the key NBA building block structure-morphology-bulk property design relationships essential for processable, electronics-applicable high-performance polymeric semiconductors.

  • 20.
    Erdmann, Tim
    et al.
    Leibniz Institute Polymerforschung Dresden eV, Germany; Technical University of Dresden, Germany; Polyera Corp, IL 60077 USA.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Polyera Corp, IL 60077 USA.
    Milian-Medina, Begona
    University of Valencia, Spain; Ciudad University of Cantoblanco, Spain.
    Hanifi, David
    Stanford University, CA 94305 USA.
    Chen, Zhihua
    Polyera Corp, IL 60077 USA.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Gierschner, Johannes
    Ciudad University of Cantoblanco, Spain.
    Salleo, Alberto
    Stanford University, CA 94305 USA.
    Kiriy, Anton
    Leibniz Institute Polymerforschung Dresden eV, Germany; Technical University of Dresden, Germany.
    Voit, Brigitte
    Leibniz Institute Polymerforschung Dresden eV, Germany; Technical University of Dresden, Germany.
    Facchetti, Antonio
    Polyera Corp, IL 60077 USA; Northwestern University, IL 60208 USA; Northwestern University, IL 60208 USA.
    Naphthalenediimide Polymers with Finely Tuned In-Chain pi-Conjugation: Electronic Structure, Film Microstructure, and Charge Transport Properties2016Ingår i: ADVANCED MATERIALS, ISSN 0935-9648, Vol. 28, nr 41, s. 9169-+Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Naphthalenediimide-based random copolymers (PNDI-TVTx) with different p-conjugated dithienylvinylene (TVT) versus p-nonconjugated dithienylethane (TET) unit ratios (x = 100 -amp;gt; 0%) are investigated. The PNDI-TVTx-transistor electron/hole mobilities are affected differently, a result rationalized by molecular orbital topologies and energies, with hole mobility vanishing but electron mobility decreasing only by approximate to 2.5 times when going from x = 100% to 40%.

  • 21.
    Fabiano, Simone
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Abdollahi Sani, Negar
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten. RISE Acreo, Sweden.
    Kawahara, Jun
    RISE Acreo, Sweden; LINTEC Corp, Japan.
    Kergoat, Loig
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten. Aix Marseille University, France.
    Nissa, Josefin
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ferroelectric polarization induces electronic nonlinearity in ion-doped conducting polymers2017Ingår i: Science Advances, E-ISSN 2375-2548, Vol. 3, nr 6, artikel-id e1700345Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) is an organic mixed ion-electron conducting polymer. The PEDOT phase transports holes and is redox-active, whereas the PSS phase transports ions. When PEDOT is redox-switched between its semiconducting and conducting state, the electronic and optical properties of its bulk are controlled. Therefore, it is appealing to use this transition in electrochemical devices and to integrate those into large-scale circuits, such as display or memory matrices. Addressability and memory functionality of individual devices, within these matrices, are typically achieved by nonlinear current-voltage characteristics and bistability-functions that can potentially be offered by the semiconductor-conductor transition of redox polymers. However, low conductivity of the semiconducting state and poor bistability, due to self-discharge, make fast operation and memory retention impossible. We report that a ferroelectric polymer layer, coated along the counter electrode, can control the redox state of PEDOT. The polarization switching characteristics of the ferroelectric polymer, which take place as the coercive field is overcome, introduce desired nonlinearity and bistability in devices that maintain PEDOT in its highly conducting and fast-operating regime. Memory functionality and addressability are demonstrated in ferro-electrochromic display pixels and ferro-electrochemical transistors.

    Ladda ner fulltext (pdf)
    fulltext
  • 22.
    Fabiano, Simone
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Braun, Slawomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Effect of Gate Electrode Work-Function on Source Charge Injection in Electrolyte-Gated Organic Field-Effect Transistors2014Ingår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 24, nr 5, s. 695-700Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Systematic investigation of the contact resistance in electrolyte-gated organic field-effect transistors (OFETs) demonstrates a dependence of source charge injection versus gate electrode work function. This analysis reveals contact-limitations at the source metal-semiconductor interface and shows that the contact resistance increases as low work function metals are used as the gate electrode. These findings are attributed to the establishment of a built-in potential that is high enough to prevent the Fermi-level pinning at the metal-organic interface. This results in an unfavorable energetic alignment of the source electrode with the valence band of the organic semiconductor. Since the operating voltage in the electrolyte-gated devices is on the same order as the variation of the work functions, it is possible to tune the contact resistance over more than one order of magnitude by varying the gate metal.

    Ladda ner fulltext (pdf)
    fulltext
  • 23.
    Fabiano, Simone
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Braun, Slawomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Weverberghs, Eric
    University of Mons-UMONS, Belgium.
    Gerbaux, Pascal
    University of Mons-UMONS, Belgium.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Poly(ethylene imine) impurities induce n-doping reaction in organic (semi)conductors2014Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 26, nr 34, s. 6000-6006Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Volatile impurities contained in polyethyleneimine (PEI), and identified as ethyleneimine dimers and trimers, are reported. These N-based molecules show a strong reducing character, as demonstrated by the change in electrical conductivity of organic (semi) conductors exposed to the PEI vapor. The results prove that electron transfer rather than a dipole effect at the electrode interface is the origin of the work-function modification by the PEI-based layers.

    Ladda ner fulltext (pdf)
    fulltext
  • 24.
    Fabiano, Simone
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Ferroelectric Polarization Induces Electric Double Layer Bistability in Electrolyte-Gated Field-Effect Transistors2014Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 6, nr 1, s. 438-442Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The dense surface charges expressed by a ferroelectric polymeric thin film induce ion displacement within a polyelectrolyte layer and vice versa. This is because the density of dipoles along the surface of the ferroelectric thin film and its polarization switching time matches that of the (Helmholtz) electric double layers formed at the ferroelectric/polyelectrolyte and polyelectrolyte/semiconductor interfaces. This combination of materials allows for introducing hysteresis effects in the capacitance of an electric double layer capacitor. The latter is advantageously used to control the charge accumulation in the semiconductor channel of an organic field-effect transistor. The resulting memory transistors can be written at a gate voltage of around 7 V and read out at a drain voltage as low as 50 mV. The technological implication of this large. difference between write and read-out voltages lies in the non-destructive reading of this ferroelectric memory.

    Ladda ner fulltext (pdf)
    fulltext
  • 25.
    Fabiano, Simone
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Facchetti, Antonio
    Northwestern Univ, IL USA; Northwestern Univ, IL USA; Flexterra Inc, IL USA.
    Stretchable helix-structured fibre electronics2021Ingår i: NATURE ELECTRONICS, ISSN 2520-1131, Vol. 4, s. 864-865Artikel i tidskrift (Övrigt vetenskapligt)
    Abstract [en]

    Printed thin-film transistors and circuits fabricated on plastic strips can be wrapped around fibres to create stretchable electronics.

  • 26.
    Fabiano, Simone
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Flagg, Lucas
    Natl Inst Stand & Technol, MD 20899 USA.
    Hidalgo Castillo, Tania C.
    King Abdullah Univ Sci & Technol KAUST, Saudi Arabia.
    Inal, Sahika
    King Abdullah Univ Sci & Technol KAUST, Saudi Arabia.
    Kaake, Loren G.
    Simon Fraser Univ, Canada.
    Kayser, Laure V.
    Univ Delaware, DE 19716 USA.
    Keene, Scott T.
    Univ Cambridge, England.
    Ludwigs, Sabine
    Univ Stuttgart, Germany.
    Muller, Christian
    Chalmers Univ Technol, Sweden.
    Savoie, Brett M.
    Purdue Univ, IN 47906 USA.
    Luessem, Bjoern
    Univ Bremen, Germany.
    Lutkenhaus, Jodie L.
    Texas A&M Univ, TX 77845 USA.
    Matta, Micaela
    Kings Coll London, England.
    Meli, Dilara
    Northwestern Univ, IL 60208 USA.
    Patel, Shrayesh N.
    Univ Chicago, IL 60637 USA.
    Paulsen, Bryan D.
    Northwestern Univ, IL 60208 USA.
    Rivnay, Jonathan
    Northwestern Univ, IL 60208 USA.
    Surgailis, Jokubas
    King Abdullah Univ Sci & Technol KAUST, Saudi Arabia.
    On the fundamentals of organic mixed ionic/electronic conductors2023Ingår i: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 11, nr 42, s. 14527-14539Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The first Telluride Science meeting (formerly TSRC) on organic mixed ionic and electronic conductors (OMIECs), Oct 3-7, 2022, brought together researchers across the field to understand the fundamental processes and identify out-standing questions related to this exciting class of materials. OMIECs are organic materials that promote the transport of mobile electronic charge carriers while simultaneously supporting ionic transport and ionic-electronic coupling. These properties open up broad areas of applications from energy to bioelectronics. Devices include batteries, supercapacitors, actuators, electrochromic displays, and organic electrochemical transistors (OECTs). They possess the key strengths of traditional organic electronic materials, such as synthetic tunability and low-temperature processing. Despite the recent advances in devices and applications achieved with such materials, many challenges and gaps in understanding remain. These topics hold the key to designing next-generation materials and devices that continue to push the limits of performance and stability and facilitate novel functionality. This perspective aims to summarize the current understanding, conversations, and debates that made this TSRC particularly engaging, enabling new directions and searching for missing pieces of the OMIEC puzzle. This perspective offers insights from discussions conducted during the Telluride Science meeting on organic mixed ionic and electronic conductors, outlining the challenges associated with understanding the behavior of this intriguing materials class.

    Ladda ner fulltext (pdf)
    fulltext
  • 27.
    Fabiano, Simone
    et al.
    Zernike Institute for Advanced Materials, University of of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands.
    Himmelberger, S.
    Department of Materials Science and Engineering, Stanford University, 476 Lomita Mall, Stanford, CA 94305, United States.
    Drees, M.
    Polyera Corporation, Skokie, IL 60077, United States.
    Chen, Z.
    Polyera Corporation, Skokie, IL 60077, United States.
    Altamimi, R.M.
    Petrochemicals Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia.
    Salleo, A.
    Department of Materials Science and Engineering, Stanford University, 476 Lomita Mall, Stanford, CA 94305, United States.
    Loi, M.A.
    Zernike Institute for Advanced Materials, University of of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands.
    Facchetti, A.
    Polyera Corporation, Skokie, IL 60077, United States.
    Charge transport orthogonality in all-polymer blend transistors, diodes, and solar cells2014Ingår i: Advanced Energy Materials, ISSN 1614-6832, E-ISSN 1614-6840, Vol. 4, nr 6, s. 1301409-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Polymer aggregation and phase separation of polymer-polymer blends are effectively tuned from self-stratified to laterally phase-separated by adjusting the relative solubility of the two polymers in the mixture. This is found to dramatically alter the charge transport characteristics from a preferential in-plane to an out-of-plane direction, revealing the critical dependence of the resulting device performance on the film morphology and structure of the active layer. © 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim.

    Ladda ner fulltext (pdf)
    fulltext
  • 28.
    Fabiano, Simone
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Usta, Hakan
    Polyera Corp, IL 60077 USA; Abdullah Gul University, Turkey.
    Forchheimer, Robert
    Linköpings universitet, Institutionen för systemteknik, Informationskodning. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Facchetti, Antonio
    Polyera Corp, IL 60077 USA.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Selective Remanent Ambipolar Charge Transport in Polymeric Field-Effect Transistors For High-Performance Logic Circuits Fabricated in Ambient2014Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 26, nr 44, s. 7438-7443Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    n/a

    Ladda ner fulltext (pdf)
    fulltext
  • 29.
    Fahlman, Mats
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gueskine, Viktor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel T
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik.
    Interfaces in organic electronics2019Ingår i: Nature Reviews Materials, E-ISSN 2058-8437, Vol. 4, nr 10, s. 627-650Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Undoped, conjugated, organic molecules and polymers possess properties of semiconductors, including the electronic structure and charge transport, which can be readily tuned by chemical design. Moreover, organic semiconductors (OSs) can be n-doped or p-doped to become organic conductors and can exhibit mixed electronic and ionic conductivity. Compared with inorganic semiconductors and metals, organic (semi)conductors possess a unique feature: no insulating oxide forms on their surface when exposed to air. Thus, OSs form clean interfaces with many materials, including metals and other OSs. OS–metal and OS–OS interfaces have been intensely investigated over the past 30 years, from which a consistent theoretical description has emerged. Since the 2000s, increased attention has been paid to interfaces in organic electronics that involve dielectrics, electrolytes, ferroelectrics and even biological organisms. In this Review, we consider the central role of these interfaces in the function of organic electronic devices and discuss how the physico-chemical properties of the interfaces govern the interfacial transport of light, excitons, electrons and ions, as well as the transduction of electrons into the molecular language of cells.

    Ladda ner fulltext (pdf)
    fulltext
  • 30.
    Fazzi, Daniele
    et al.
    Univ Cologne, Germany.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ruoko, Tero-Petri
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Meerholz, Klaus
    Univ Cologne, Germany.
    Negri, Fabrizia
    Univ Bologna, Italy.
    Polarons in pi-conjugated ladder-type polymers: a broken symmetry density functional description2019Ingår i: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 7, nr 41, s. 12876-12885Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electronic charged states (i.e., polarons) play a crucial role in governing charge transfer, spin, thermo-electric and redox mechanisms in organic functional materials. An accurate description at the quantum-chemical level is mandatory to understand their response and transport properties. We report a comprehensive computational investigation concerning the polaron properties of a high electron conductivity (n-type) pi-conjugated ladder-type polymer, namely polybenzimidazobenzophenanthroline (BBL). We show how spin polarized unrestricted Density Functional Theory (UDFT) and restricted (RDFT) methods can lead to solutions of the polaron and bipolaron electronic wavefunctions which are not the most stable ones. This aspect can be traced back to the multiconfigurational character of the electronic charged states wavefunction. We demonstrate how broken symmetry DFT (BS-UDFT) can circumvent this issue, well describing the polaron/bipolaron localization in terms of spin densities and structural deformations, thus providing a correct assessment of the electron transport parameters (e.g., reorganization energy), otherwise incorrectly computed at the UDFT/RDFT levels. Our calculations are further validated by comparing the IR spectra of polaronic species with the experimental one, as measured on doped BBL films. Our study calls for an urgent and careful computational assessment of the electronic charged states (e.g., polaron, bipolaron, etc.), in high performance pi-conjugated materials, such as ladder-type polymers and other donor-acceptor derivatives, for a correct understanding of their charge, heat, and spin transport mechanisms.

  • 31.
    Feng, Kui
    et al.
    Southern Univ Sci & Technol SUSTech, Peoples R China; Southern Univ Sci & Technol SUSTech, Peoples R China.
    Shan, Wentao
    Southern Univ Sci & Technol SUSTech, Peoples R China; Southern Univ Sci & Technol SUSTech, Peoples R China.
    Ma, Suxiang
    Southern Univ Sci & Technol SUSTech, Peoples R China; Southern Univ Sci & Technol SUSTech, Peoples R China.
    Wu, Ziang
    Korea Univ, South Korea.
    Chen, Jianhua
    Southern Univ Sci & Technol SUSTech, Peoples R China; Southern Univ Sci & Technol SUSTech, Peoples R China.
    Guo, Han
    Southern Univ Sci & Technol SUSTech, Peoples R China; Southern Univ Sci & Technol SUSTech, Peoples R China.
    Liu, Bin
    Southern Univ Sci & Technol SUSTech, Peoples R China; Southern Univ Sci & Technol SUSTech, Peoples R China.
    Wang, Junwei
    Southern Univ Sci & Technol SUSTech, Peoples R China; Southern Univ Sci & Technol SUSTech, Peoples R China.
    Li, Bangbang
    Southern Univ Sci & Technol SUSTech, Peoples R China; Southern Univ Sci & Technol SUSTech, Peoples R China.
    Woo, Han Young
    Korea Univ, South Korea.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Huang, Wei
    Univ Elect Sci & Technol China UESTC, Peoples R China.
    Guo, Xugang
    Southern Univ Sci & Technol SUSTech, Peoples R China; Southern Univ Sci & Technol SUSTech, Peoples R China.
    Fused Bithiophene Imide Dimer-Based n-Type Polymers for High-Performance Organic Electrochemical Transistors2021Ingår i: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 60, nr 45, s. 24198-24205Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The development of n-type organic electrochemical transistors (OECTs) lags far behind their p-type counterparts. In order to address this dilemma, we report here two new fused bithiophene imide dimer (f-BTI2)-based n-type polymers with a branched methyl end-capped glycol side chain, which exhibit good solubility, low-lying LUMO energy levels, favorable polymer chain orientation, and efficient ion transport property, thus yielding a remarkable OECT electron mobility (mu(e)) of up to approximate to 10(-2) cm(2) V-1 s(-1) and volumetric capacitance (C*) as high as 443 F cm(-3), simultaneously. As a result, the f-BTI2TEG-FT-based OECTs deliver a record-high maximum geometry-normalized transconductance of 4.60 S cm(-1) and a maximum mu C* product of 15.2 F cm(-1) V-1 s(-1). The mu C* figure of merit is more than one order of magnitude higher than that of the state-of-the-art n-type OECTs. The emergence of f-BTI2TEG-FT brings a new paradigm for developing high-performance n-type polymers for low-power OECT applications.

  • 32.
    Gerasimov, Jennifer
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Karlsson, Roger H
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Forchheimer, Robert
    Linköpings universitet, Institutionen för systemteknik, Informationskodning. Linköpings universitet, Tekniska fakulteten.
    Stavrinidou, Eleni
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel T
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    An Evolvable Organic Electrochemical Transistor for Neuromorphic Applications2019Ingår i: Advanced Science, E-ISSN 2198-3844, Vol. 6, nr 7, artikel-id 1801339Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    An evolvable organic electrochemical transistor (OECT), operating in the hybrid accumulation-depletion mode is reported, which exhibits short-term and long-term memory functionalities. The transistor channel, formed by an electropolymerized conducting polymer, can be formed, modulated, and obliterated in situ and under operation. Enduring changes in channel conductance, analogous to long-term potentiation and depression, are attained by electropolymerization and electrochemical overoxidation of the channel material, respectively. Transient changes in channel conductance, analogous to short-term potentiation and depression, are accomplished by inducing nonequilibrium doping states within the transistor channel. By manipulating the input signal, the strength of the transistor response to a given stimulus can be modulated within a range that spans several orders of magnitude, producing behavior that is directly comparable to short- and long-term neuroplasticity. The evolvable transistor is further incorporated into a simple circuit that mimics classical conditioning. It is forecasted that OECTs that can be physically and electronically modulated under operation will bring about a new paradigm of machine learning based on evolvable organic electronics.

    Ladda ner fulltext (pdf)
    fulltext
  • 33.
    Gerasimov, Jennifer
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Tu, Deyu
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Hitaishi, Vivek
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Padinhare, Harikesh
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Yang, Chiyuan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Abrahamsson, Tobias
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Karami Rad, Meysam
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Donahue, Mary
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Silverå Ejneby, Malin
    Linköpings universitet, Institutionen för medicinsk teknik, Avdelningen för medicinsk teknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Forchheimer, Robert
    Linköpings universitet, Institutionen för systemteknik, Informationskodning. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    A Biologically Interfaced Evolvable Organic Pattern Classifier2023Ingår i: Advanced Science, E-ISSN 2198-3844, Vol. 10, nr 14, artikel-id 2207023Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Future brain-computer interfaces will require local and highly individualized signal processing of fully integrated electronic circuits within the nervous system and other living tissue. New devices will need to be developed that can receive data from a sensor array, process these data into meaningful information, and translate that information into a format that can be interpreted by living systems. Here, the first example of interfacing a hardware-based pattern classifier with a biological nerve is reported. The classifier implements the Widrow-Hoff learning algorithm on an array of evolvable organic electrochemical transistors (EOECTs). The EOECTs channel conductance is modulated in situ by electropolymerizing the semiconductor material within the channel, allowing for low voltage operation, high reproducibility, and an improvement in state retention by two orders of magnitude over state-of-the-art OECT devices. The organic classifier is interfaced with a biological nerve using an organic electrochemical spiking neuron to translate the classifiers output to a simulated action potential. The latter is then used to stimulate muscle contraction selectively based on the input pattern, thus paving the way for the development of adaptive neural interfaces for closed-loop therapeutic systems.

    Ladda ner fulltext (pdf)
    fulltext
  • 34.
    Gerasimov, Jennifer Yevgenia
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Halder, Arnab
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Mousa, Abdelrazek H.
    Univ Gothenburg, Dept Chem & Mol Biol, SE-41296 Gothenburg, Sweden..
    Ghosh, Sarbani
    Birla Inst Technol & Sci BITS, Dept Chem Engn, Pilani 333031, Rajasthan, India..
    Padinhare, Harikesh
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Abrahamsson, Tobias
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Bliman, David
    Univ Gothenburg, Dept Chem & Mol Biol, SE-41296 Gothenburg, Sweden..
    Strandberg, Jan
    Res Inst Sweden, RISE, Printed Elect, SE-60221 Norrkoping, Sweden..
    Massetti, Matteo
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel T
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Olsson, Roger
    Univ Gothenburg, Dept Chem & Mol Biol, SE-41296 Gothenburg, Sweden.;Lund Univ, Chem Biol & Therapeut, Dept Expt Med Sci, SE-22184 Lund, Sweden..
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Rational Materials Design for In Operando Electropolymerization of Evolvable Organic Electrochemical Transistors2022Ingår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 32, nr 32, artikel-id 2202292Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Organic electrochemical transistors formed by in operando electropolymerization of the semiconducting channel are increasingly becoming recognized as a simple and effective implementation of synapses in neuromorphic hardware. However, very few studies have reported the requirements that must be met to ensure that the polymer spreads along the substrate to form a functional conducting channel. The nature of the interface between the substrate and various monomer precursors of conducting polymers through molecular dynamics simulations is investigated, showing that monomer adsorption to the substrate produces an increase in the effective monomer concentration at the surface. By evaluating combinatorial couples of monomers baring various sidechains with differently functionalized substrates, it is shown that the interactions between the substrate and the monomer precursor control the lateral growth of a polymer film along an inert substrate. This effect has implications for fabricating synaptic systems on inexpensive, flexible substrates.

    Ladda ner fulltext (pdf)
    fulltext
  • 35.
    Gerasimov, Jennifer
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zhao, Dan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Sultana, Ayesha
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Abrahamsson, Tobias
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Han, Shaobo
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Bliman, David
    Univ Gothenburg, Sweden.
    Tu, Deyu
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Olsson, Roger
    Univ Gothenburg, Sweden; Lund Univ, Sweden.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    A Biomimetic Evolvable Organic Electrochemical Transistor2021Ingår i: Advanced Electronic Materials, E-ISSN 2199-160X, Vol. 7, nr 11, artikel-id 2001126Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Biomimicry at the hardware level is expected to overcome at least some of the challenges, including high power consumption, large footprint, two-dimensionality, and limited functionality, which arise as the field of artificial intelligence matures. One of the main attributes that allow biological systems to thrive is the successful interpretation of and response to environmental signals. Taking inspiration from these systems, the first demonstration of using multiple environmental inputs to trigger the formation and control the growth of an evolvable synaptic transistor is reported here. The resulting transistor exhibits long-term changes in the channel conductance at a fixed gate voltage. Biomimetic logic circuits are investigated based on this evolvable transistor that implement temperature and pressure inputs to achieve higher order processes like self-regulation of synaptic strength and coincidence detection.

    Ladda ner fulltext (pdf)
    fulltext
  • 36.
    Gkoupidenis, P.
    et al.
    Max Planck Inst Polymer Res, Germany.
    Zhang, Y.
    Xiamen Univ, Peoples R China.
    Kleemann, H.
    Tech Univ Dresden, Germany.
    Ling, H.
    Nanjing Univ Posts & Telecommun, Peoples R China.
    Santoro, F.
    Forschungszentrum Julich, Germany.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Salleo, A.
    Stanford Univ, CA USA.
    van de Burgt, Y.
    Eindhoven Univ Technol, Netherlands.
    Organic mixed conductors for bioinspired electronics2023Ingår i: NATURE REVIEWS MATERIALS, ISSN 2058-8437Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Owing to its close resemblance to biological systems and materials, soft matter has been successfully implemented in numerous bioelectronic and biosensing applications, as well as in bioinspired computing and neuromorphic electronics. Particularly, organic mixed ionic-electronic conductors possess favourable characteristics for their efficient use in organic electrochemical transistors, electrochemical memory and artificial synapses and neurons. Owing to their mixed ionic-electronic conduction, leading to high amplification, these materials are ideal for translating chemical signals, such as ions or neurotransmitters, into electrical signals, as well as for accurately controlling stable conductance states to efficiently emulate synaptic weights in artificial neural networks. Because these mixed conductors operate with ionic charges - similar to signalling in biological neuronal networks - they also exhibit ideal properties to emulate biological spiking neurons. In this Perspective, we consider the potential of soft matter, especially based on organic mixed conductors, for bioinspired systems and their possible applications. We discuss the potential that these materials have in applications in which low power, conformability and tunability are key, such as smart and adaptive biosensors, low-power in-sensor and edge computing, intelligent agents and robotics, and event-driven systems and biohybrid spiking circuits at the interface with biology. We present a comprehensive perspective of the potential of biomimetic and bioinspired electronics based on soft matter to integrate artificial intelligence into everyday life. Current technologies of bioinspired and neuromorphic electronics still lack a universal framework for integration into everyday life. This Perspective highlights how bioinspired electronics with soft electrochemical matter based on organic mixed conductors can potentially enable the integration of diverse forms of intelligence everywhere.

  • 37.
    Guo, Han
    et al.
    Southern Univ Sci & Technol SUSTech, Peoples R China.
    Yang, Chiyuan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Xianhe
    Southern Univ Sci & Technol SUSTech, Peoples R China.
    Motta, Alessandro
    Univ Roma La Sapienza, Italy; UdR Roma, Italy.
    Feng, Kui
    Southern Univ Sci & Technol SUSTech, Peoples R China.
    Xia, Yu
    Flexterra Corp, IL 60077 USA.
    Shi, Yongqiang
    Southern Univ Sci & Technol SUSTech, Peoples R China.
    Wu, Ziang
    Department of Chemistry, Korea University, Seoul, South Korea.
    Yang, Kun
    Southern Univ Sci & Technol SUSTech, Peoples R China.
    Chen, Jianhua
    Southern Univ Sci & Technol SUSTech, Peoples R China.
    Liao, Qiaogan
    Southern Univ Sci & Technol SUSTech, Peoples R China.
    Tang, Yumin
    Southern Univ Sci & Technol SUSTech, Peoples R China.
    Sun, Huiliang
    Southern Univ Sci & Technol SUSTech, Peoples R China.
    Woo, Han Young
    Korea Univ, South Korea.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Facchetti, Antonio
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Flexterra Corp, IL 60077 USA; Northwestern Univ, IL 60208 USA; Northwestern Univ, IL 60208 USA.
    Guo, Xugang
    Southern Univ Sci & Technol SUSTech, Peoples R China.
    Transition metal-catalysed molecular n-doping of organic semiconductors2021Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 599, nr 7883, s. 67-73Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electron doping of organic semiconductors is typically inefficient, but here a precursor molecular dopant is used to deliver higher n-doping efficiency in a much shorter doping time. Chemical doping is a key process for investigating charge transport in organic semiconductors and improving certain (opto)electronic devices(1-9). N(electron)-doping is fundamentally more challenging than p(hole)-doping and typically achieves a very low doping efficiency (eta) of less than 10%(1,10). An efficient molecular n-dopant should simultaneously exhibit a high reducing power and air stability for broad applicability(1,5,6,9,11), which is very challenging. Here we show a general concept of catalysed n-doping of organic semiconductors using air-stable precursor-type molecular dopants. Incorporation of a transition metal (for example, Pt, Au, Pd) as vapour-deposited nanoparticles or solution-processable organometallic complexes (for example, Pd-2(dba)(3)) catalyses the reaction, as assessed by experimental and theoretical evidence, enabling greatly increased eta in a much shorter doping time and high electrical conductivities (above 100 S cm(-1); ref. (12)). This methodology has technological implications for realizing improved semiconductor devices and offers a broad exploration space of ternary systems comprising catalysts, molecular dopants and semiconductors, thus opening new opportunities in n-doping research and applications(12, 13).

    Ladda ner fulltext (pdf)
    fulltext
  • 38.
    Han, Shaobo
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Alvi, Naveed
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Granlof, Lars
    RISE Bioecon, Sweden.
    Granberg, Hjalmar
    RISE Bioecon, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    A Multiparameter Pressure-Temperature-Humidity Sensor Based on Mixed Ionic-Electronic Cellulose Aerogels2019Ingår i: Advanced Science, E-ISSN 2198-3844, Vol. 6, nr 8, artikel-id 1802128Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Pressure (P), temperature (T), and humidity (H) are physical key parameters of great relevance for various applications such as in distributed diagnostics, robotics, electronic skins, functional clothing, and many other Internet-of-Things (IoT) solutions. Previous studies on monitoring and recording these three parameters have focused on the integration of three individual single-parameter sensors into an electronic circuit, also comprising dedicated sense amplifiers, signal processing, and communication interfaces. To limit complexity in, e.g., multifunctional IoT systems, and thus reducing the manufacturing costs of such sensing/communication outposts, it is desirable to achieve one single-sensor device that simultaneously or consecutively measures P-T-H without cross-talks in the sensing functionality. Herein, a novel organic mixed ion-electron conducting aerogel is reported, which can sense P-T-H with minimal cross-talk between the measured parameters. The exclusive read-out of the three individual parameters is performed electronically in one single device configuration and is enabled by the use of a novel strategy that combines electronic and ionic Seebeck effect along with mixed ion-electron conduction in an elastic aerogel. The findings promise for multipurpose IoT technology with reduced complexity and production costs, features that are highly anticipated in distributed diagnostics, monitoring, safety, and security applications.

    Ladda ner fulltext (pdf)
    fulltext
  • 39.
    Han, Shaobo
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Jiao, Fei
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ullah Khan, Zia
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Edberg, Jesper
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Thermoelectric Polymer Aerogels for Pressure-Temperature Sensing Applications2017Ingår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 27, nr 44, artikel-id 1703549Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The evolution of the society is characterized by an increasing flow of information from things to the internet. Sensors have become the cornerstone of the internet-of-everything as they track various parameters in the society and send them to the cloud for analysis, forecast, or learning. With the many parameters to sense, sensors are becoming complex and difficult to manufacture. To reduce the complexity of manufacturing, one can instead create advanced functional materials that react to multiple stimuli. To this end, conducting polymer aerogels are promising materials as they combine elasticity and sensitivity to pressure and temperature. However, the challenge is to read independently pressure and temperature output signals without cross-talk. Here, a strategy to fully decouple temperature and pressure reading in a dual-parameter sensor based on thermoelectric polymer aerogels is demonstrated. It is found that aerogels made of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) can display properties of semiconductors lying at the transition between insulator and semimetal upon exposure to high boiling point polar solvents, such as dimethylsulfoxide (DMSO). Importantly, because of the temperature-independent charge transport observed for DMSO-treated PEDOT-based aerogel, a decoupled pressure and temperature sensing can be achieved without cross-talk in the dual-parameter sensor devices.

    Ladda ner fulltext (pdf)
    fulltext
  • 40.
    Han, Shaobo
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Wuyi Univ, Peoples R China.
    Ruoko, Tero-Petri
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gladisch, Johannes
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Erlandsson, Johan
    KTH Royal Inst Technol, Sweden.
    Wagberg, Lars
    KTH Royal Inst Technol, Sweden.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Cellulose-Conducting Polymer Aerogels for Efficient Solar Steam Generation2020Ingår i: ADVANCED SUSTAINABLE SYSTEMS, ISSN 2366-7486, nr 4, artikel-id 2000004Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Seawater desalination and wastewater purification technologies are the main strategies against the global fresh water shortage. Among these technologies, solar-driven evaporation is effective in extracting fresh water by efficiently exploiting solar energy. However, building a sustainable and low-cost solar steam generator with high conversion efficiency is still a challenge. Here, pure organic aerogels comprising a cellulose scaffold decorated with an organic conducting polymer absorbing in the infrared are employed to establish a high performance solar steam generator. The low density of the aerogel ensures minimal material requirements, while simultaneously satisfying efficient water transport. To localize the absorbed solar energy and make the system floatable, a porous floating and thermal-insulating foam is placed between the water and the aerogel. Thanks to the high absorbance of the aerogel and the thermal-localization performance of the foam, the system exhibits a high water evaporation rate of 1.61 kg m(-2) h(-1) at 1 kW m(-2) under 1 sun irradiation, which is higher than most reported solar steam generation devices.

    Ladda ner fulltext (pdf)
    fulltext
  • 41.
    Holzer, Isabelle
    et al.
    Univ Bern, Switzerland.
    Lemaur, Vincent
    Univ Mons, Belgium.
    Wang, Meng
    Queen Mary Univ London, England; Chinese Acad Sci, Peoples R China.
    Wu, Hanyan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Lu
    Cavendish Lab, England.
    Marcial-Hernandez, Raymundo
    Queen Mary Univ London, England.
    Gilhooly-Finn, Peter
    Queen Mary Univ London, England.
    Cavassin, Priscila
    Univ Bern, Switzerland.
    Hoyas, Sebastien
    Univ Mons, Belgium; Univ Mons UMONS, Belgium.
    Meli, Dilara
    Northwestern Univ, IL 60208 USA.
    Wu, Ruiheng
    Northwestern Univ, IL 60208 USA.
    Paulsen, Bryan D.
    Northwestern Univ, IL 60208 USA.
    Strzalka, Joseph
    X Ray Sci Div, IL 60439 USA.
    Liscio, Andrea
    CNR, Italy.
    Rivnay, Jonathan
    Northwestern Univ, IL 60208 USA; Northwestern Univ, IL 60611 USA.
    Sirringhaus, Henning
    Cavendish Lab, England.
    Banerji, Natalie
    Univ Bern, Switzerland.
    Beljonne, David
    Univ Mons, Belgium.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Nielsen, Christian B.
    Queen Mary Univ London, England.
    Side chain engineering in indacenodithiophene-<i>co</i>-benzothiadiazole and its impact on mixed ionic-electronic transport properties2024Ingår i: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Organic semiconductors are increasingly being decorated with hydrophilic solubilising chains to create materials that can function as mixed ionic-electronic conductors, which are promising candidates for interfacing biological systems with organic electronics. While numerous organic semiconductors, including p- and n-type materials, small molecules and polymers, have been successfully tailored to encompass mixed conduction properties, common to all these systems is that they have been semicrystalline materials. Here, we explore how side chain engineering in the nano-crystalline indacenodithiophene-co-benzothiadiazole (IDTBT) polymer can be used to instil ionic transport properties and how this in turn influences the electronic transport properties. This allows us to ultimately assess the mixed ionic-electronic transport properties of these new IDTBT polymers using the organic electrochemical transistor as the testing platform. Using a complementary experimental and computational approach, we find that polar IDTBT derivatives can be infiltrated by water and solvated ions, they can be electrochemically doped efficiently in aqueous electrolyte with fast doping kinetics, and upon aqueous swelling there is no deterioration of the close interchain contacts that are vital for efficient charge transport in the IDTBT system. Despite these promising attributes, mixed ionic-electronic charge transport properties are surprisingly poor in all the polar IDTBT derivatives. Albeit a "negative" result, this finding clearly contradicts established side chain engineering rules for mixed ionic-electronic conductors, which motivated our continued investigation of this system. We eventually find this anomalous behaviour to be caused by increasing energetic disorder in the polymers with increasing polar side chain content. We have investigated computationally how the polar side chain motifs contribute to this detrimental energetic inhomogeneity and ultimately use the learnings to propose new molecular design criteria for side chains that can facilitate ion transport without impeding electronic transport.

  • 42.
    Hwang, Sunbin
    et al.
    Korea Inst Sci and Technol, South Korea.
    Jang, Sukjae
    Korea Inst Sci and Technol, South Korea.
    Bae, Sukang
    Korea Inst Sci and Technol, South Korea.
    Lee, Seoung-Ki
    Korea Inst Sci and Technol, South Korea.
    Lee, Sang Hyun
    Chonnam Natl Univ, South Korea.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Lee, Takhee
    Seoul Natl Univ, South Korea.
    Kim, Tae-Wook
    Jeonbuk Natl Univ, South Korea.
    All-Solid-State Organic Schmitt Trigger Implemented by Twin Two-in-One Ferroelectric Memory Transistors2020Ingår i: Advanced Electronic Materials, E-ISSN 2199-160X, Vol. 6, artikel-id 1901263Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Although there have been many attempts to replace conventional inorganic electronics with organic materials that can be mass produced at low cost, few organic electronic filters to increase immunity to electrical noise have been reported thus far. Conventional Schmitt triggers or their inverters are used in many electronic circuits as versatile electronic noise filters. However, it is challenging to manufacture organic electronic systems with complex circuitry. In this study, a simple, all-solid-state organic Schmitt trigger consisting of twin two-in-one organic ferroelectric memory transistors with the same chemical compositions and device dimensions but different threshold voltages is introduced. Threshold voltages and hysteresis in the two-in-one devices can be controlled by polarization switching as demonstrated in a previous study. Hysteresis of a ferroelectric p-type depletion load inverter can be achieved using twin two-in-one devices when the sweep voltage is higher than the critical gate voltages. This facilitates inverter characteristics at two different threshold voltages, and realizing a Schmitt trigger. Finally, based on simulation program with integrated circuit emphasis (SPICE) simulation, guidelines are proposed on how to design organic Schmitt triggers with p- or n-type materials and ferroelectric or charge-trapping mechanisms to achieve inverting or non-inverting characteristics.

  • 43.
    Hwang, Sunbin
    et al.
    KIST, South Korea.
    Jang, Sukjae
    KIST, South Korea.
    Kang, Minji
    KIST, South Korea.
    Bae, Sukang
    KIST, South Korea.
    Lee, Seoung-Ki
    KIST, South Korea.
    Hong, Jae-Min
    KIST, South Korea.
    Lee, Sang Hyun
    Chonnam Natl Univ, South Korea.
    Wang, Gunuk
    Korea Univ, South Korea.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Kim, Tae-Wook
    KIST, South Korea.
    Two-in-One Device with Versatile Compatible Electrical Switching or Data Storage Functions Controlled by the Ferroelectricity of P(VDF-TrFE) via Photocrosslinking2019Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 11, nr 28, s. 25358-25368Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Organic electronics demand new platforms that can make integrated circuits and undergo mass production while maintaining diverse functions with high performance. The field-effect transistor has great potential to be a multifunctional device capable of sensing, data processing, data storage, and display. Currently, transistor-based devices cannot be considered intrinsic multifunctional devices because all installed functions are mutually coupled. Such incompatibilities are a crucial barrier to developing an all-in-one multifunctional device capable of driving each function individually. In this study, we focus on the decoupling of electric switching and data storage functions in an organic ferroelectric memory transistor. To overcome the incompatibility of each function, the high permittivity needed for electrical switching and the ferroelectricity needed for data storage become compatible by restricting the motion of poly(vinylidene fluoride-trifluoroethylene) via photocrosslinking with bis-perfluorobenzoazide. The two-in-one device consisting of a photocrosslinked ferroelectric layer exhibits reversible and individual dual-functional operation as a typical transistor with nonvolatile memory. Moreover, a p-MOS depletion load inverter composed of the two transistors with different threshold voltages is also demonstrated by simply changing only one of the threshold voltages by polarization switching. We believe that the two-in-one device will be considered a potential component of integrated organic logic circuits, including memory, in the future.

  • 44.
    Håkansson, Anna
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Han, Shaobo
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Wang, Suhao
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Lu, Jun
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Braun, Slawomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Effect of (3-Glycidyloxypropyl)Trimethoxysilane (GOPS) on the Electrical Properties of PEDOT:PSS Films2017Ingår i: Journal of Polymer Science Part B: Polymer Physics, ISSN 0887-6266, E-ISSN 1099-0488, Vol. 55, nr 10, s. 814-820Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) has been reported as a successful functional material in a broad variety of applications. One of the most important advantages of PEDOT:PSS is its water-solubility, which enables simple and environmental friendly manufacturing processes. Unfortunately, this also implies that pristine PEDOT:PSS films are unsuitable for applications in aqueous environments. To reach stability in polar solvents, (3-glycidyloxypropyl)trimethoxysilane (GOPS) is typically used to cross-link PEDOT:PSS. Although this strategy is widely used, its mechanism and effect on PEDOT:PSS performance have not been articulated yet. Here, we present a broad study that provides a better understanding of the effect of GOPS on the electrical and electronic properties of PEDOT:PSS. We show that the GOPS reacts with the sulfonic acid group of the excess PSS, causing a change in the PEDOT:PSS film morphology, while the oxidation level of PEDOT remains unaffected. This is at the origin of the observed conductivity changes. (c) 2017 Wiley Periodicals, Inc.

    Ladda ner fulltext (pdf)
    fulltext
  • 45.
    Håkansson, Anna
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Shahi, Maryam
    Univ Kentucky, KY 40506 USA.
    Brill, Joseph W.
    Univ Kentucky, KY 40506 USA.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Conducting-Polymer Bolometers for Low-Cost IR-Detection Systems2019Ingår i: Advanced Electronic Materials, E-ISSN 2199-160X, Vol. 5, nr 6, artikel-id 1800975Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Semiconducting polymers are promising materials for manufacturing optoelectronic devices, such as large-area solar cells or small light-emitting diodes, through the use of printing technologies. In their oxidized form, pi-conjugated polymers become good electrical conductors and their optical absorption shifts to the infrared region. It is demonstrated that conducting polymers can be integrated in bolometers for IR detection. A bolometer is a thermally isolated thin device that absorbs IR radiation and translates a temperature change into a change in electrical resistance. While commercial bolometers are usually made of complex architectures comprising several materials (that is, an IR absorbing layer, a conducting layer, and a thermally insulating layer), the first polymer bolometer is demonstrated with a freestanding layer of poly(3,4-ethylene-dioxythiophene) having high IR absorption, low thermal conductivity, and good thermistor action in one single layer. The solution processability of conducting polymers, their compatibility with high-resolution printing technologies, and their unique combination of optoelectronic properties can lead to a breakthrough for low-cost uncooled IR cameras, which are in high demand for security and safety applications.

  • 46.
    James, David Ian
    et al.
    Chalmers, Sweden.
    Wang, Suhao
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ma, Wei
    Xi An Jiao Tong University, Peoples R China.
    Hedstrom, Svante
    Lund University, Sweden.
    Meng, Xiangyi
    Xi An Jiao Tong University, Peoples R China.
    Persson, Petter
    Lund University, Sweden.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Andersson, Mats R.
    Chalmers, Sweden; University of S Australia, Australia.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Wang, Ergang
    Chalmers, Sweden.
    High-Performance Hole Transport and Quasi-Balanced Ambipolar OFETs Based on D-A-A Thieno-benzo-isoindigo Polymers2016Ingår i: Advanced Electronic Materials, E-ISSN 2199-160X, Vol. 2, nr 4, s. 1500313-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Two new conjugated polymers are synthesized based on a novel donor-acceptor-acceptor (D-A-A) design strategy with the intention of attaining lower lowest unoccupied molecular obital levels compared to the normally used D-A strategy. By coupling two thieno-benzo-isoindigo units together via the phenyl position to give a new symmetric benzene-coupled di-thieno-benzo-isoindigo (BdiTBI) monomer as an A-A acceptor and thiophene (T) or bithiophene (2T) as a donor, two new polymers PT-BdiTBI and P2T-BdiTBI are synthesized via Stille coupling. The two polymers are tested in top gate and top contact field effect transistors, which exhibit balanced ambipolar charge transport properties with poly(methyl methacrylate) as dielectric and a high hole mobility up to 1.1 cm(2) V-1 s(-1) with poly(trifluoroethylene) as dielectric. The polymer films are investigated using atomic force microscopy, which shows fibrous features due to their high crystallinity as indicated by grazing incidence wide-angle X-ray scattering. The theoretical calculations agree well with the experimental data on the energy levels. It is demonstrated that the D-A-A strategy is very effective for designing low band gap polymers for organic electronic applications.

  • 47.
    Jia, Yanhua
    et al.
    South China Univ Technol, Peoples R China.
    Jiang, Qinglin
    South China Univ Technol, Peoples R China.
    Sun, Hengda
    Donghua Univ, Peoples R China.
    Liu, Peipei
    South China Univ Technol, Peoples R China.
    Hu, Dehua
    South China Univ Technol, Peoples R China.
    Pei, Yanzhong
    Tongji Univ, Peoples R China.
    Liu, Weishu
    Southern Univ Sci & Technol, Peoples R China.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ma, Yuguang
    South China Univ Technol, Peoples R China.
    Cao, Yong
    South China Univ Technol, Peoples R China.
    Wearable Thermoelectric Materials and Devices for Self-Powered Electronic Systems2021Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 33, nr 42, artikel-id 2102990Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    The emergence of artificial intelligence and the Internet of Things has led to a growing demand for wearable and maintenance-free power sources. The continual push toward lower operating voltages and power consumption in modern integrated circuits has made the development of devices powered by body heat finally feasible. In this context, thermoelectric (TE) materials have emerged as promising candidates for the effective conversion of body heat into electricity to power wearable devices without being limited by environmental conditions. Driven by rapid advances in processing technology and the performance of TE materials over the past two decades, wearable thermoelectric generators (WTEGs) have gradually become more flexible and stretchable so that they can be used on complex and dynamic surfaces. In this review, the functional materials, processing techniques, and strategies for the device design of different types of WTEGs are comprehensively covered. Wearable self-powered systems based on WTEGs are summarized, including multi-function TE modules, hybrid energy harvesting, and all-in-one energy devices. Challenges in organic TE materials, interfacial engineering, and assessments of device performance are discussed, and suggestions for future developments in the area are provided. This review will promote the rapid implementation of wearable TE materials and devices in self-powered electronic systems.

  • 48.
    Jiang, Qinglin
    et al.
    South China Univ Technol, Peoples R China.
    Sun, Hengda
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zhao, Duokai
    South China Univ Technol, Peoples R China.
    Zhang, Fengling
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Hu, Dehua
    South China Univ Technol, Peoples R China.
    Jiao, Fei
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Qin, Leiqiang
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Linseis, Vincent
    Univ Hamburg, Germany.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ma, Yuguang
    South China Univ Technol, Peoples R China.
    Cao, Yong
    South China Univ Technol, Peoples R China.
    High Thermoelectric Performance in n-Type Perylene Bisimide Induced by the Soret Effect2020Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 32, nr 45, artikel-id 2002752Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Low-cost, non-toxic, abundant organic thermoelectric materials are currently under investigation for use as potential alternatives for the production of electricity from waste heat. While organic conductors reach electrical conductivities as high as their inorganic counterparts, they suffer from an overall low thermoelectric figure of merit (ZT) due to their small Seebeck coefficient. Moreover, the lack of efficient n-type organic materials still represents a major challenge when trying to fabricate efficient organic thermoelectric modules. Here, a novel strategy is proposed both to increase the Seebeck coefficient and achieve the highest thermoelectric efficiency for n-type organic thermoelectrics to date. An organic mixed ion-electron n-type conductor based on highly crystalline and reduced perylene bisimide is developed. Quasi-frozen ionic carriers yield a large ionic Seebeck coefficient of -3021 mu V K-1, while the electronic carriers dominate the electrical conductivity which is as high as 0.18 S cm(-1)at 60% relative humidity. The overall power factor is remarkably high (165 mu W m(-1)K(-2)), with aZT= 0.23 at room temperature. The resulting single leg thermoelectric generators display a high quasi-constant power output. This work paves the way for the design and development of efficient organic thermoelectrics by the rational control of the mobility of the electronic and ionic carriers.

  • 49.
    Kang, Minji
    et al.
    Korea Inst Sci and Technol, South Korea.
    Cha, An-Na
    Korea Inst Sci and Technol, South Korea.
    Lee, Sang-A
    Korea Inst Sci and Technol, South Korea.
    Lee, Seoung-Ki
    Korea Inst Sci and Technol, South Korea.
    Bae, Sukang
    Korea Inst Sci and Technol, South Korea.
    Jeon, Dae-Young
    Korea Inst Sci and Technol, South Korea.
    Hong, Jae-Min
    Korea Inst Sci and Technol, South Korea.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Kim, Tae-Wook
    Jeonbuk Natl Univ, South Korea.
    Light-sensitive charge storage medium with spironaphthooxazine molecule-polymer blends for dual-functional organic phototransistor memory2020Ingår i: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 78, artikel-id UNSP 105554Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Organic phototransistor memory is considered as a promising optoelectronic device owing to its multifunctionality. However, due to the poor reliability of each function and the complexity of the device structure, it is necessary to optimize the thin-film process of functional materials when constructing multiple functions into a single device. Here, we demonstrate a dual-functional device that is both a working memory transistor and a phototransistor by incorporating photochromic spironaphthooxazine molecules into an organic insulating layer. The photochmmic molecules in the polymer matrix not only exhibit nonvolatile charge storage properties similar to nano-floating gates but also feature a reversible electronic band structure upon alternating irradiation with ultraviolet and visible light, which makes the device function as both an electrical memory transistor and a phototransistor. Furthermore, the photoresponsive charge trap layer in the demonstrated device leads to excellent memory performance under both dark and light conditions, which includes a large memory window (-56 V), stable endurance cycles (amp;gt;10(2)), and good retention characteristics (amp;gt;10(4) s). Our findings suggest an alternative strategy to realize organic multifunctional nonvolatile memories.

  • 50.
    Kiefer, David
    et al.
    Chalmers Univ Technol, Sweden.
    Giovannitti, Alexander
    Imperial Coll London, England.
    Sun, Hengda
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Biskup, Till
    Albert Ludwigs Univ Freiburg, Germany.
    Hofmann, Anna
    Chalmers Univ Technol, Sweden.
    Koopmans, Marten
    Zernike Inst Adv Mat, Netherlands.
    Cendra, Camila
    Stanford Univ, CA 94304 USA.
    Weber, Stefan
    Albert Ludwigs Univ Freiburg, Germany.
    Koster, L. Jan Anton
    Zernike Inst Adv Mat, Netherlands.
    Olsson, Eva
    Chalmers Univ Technol, Sweden.
    Rivnay, Jonathan
    Northwestern Univ, IL 60035 USA.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    McCulloch, Iain
    Imperial Coll London, England; Imperial Coll London, England; King Abdullah Univ Sci and Technol, Saudi Arabia.
    Muller, Christian
    Chalmers Univ Technol, Sweden.
    Enhanced n-Doping Efficiency of a Naphthalenediimide-Based Copolymer through Polar Side Chains for Organic Thermoelectrics2018Ingår i: ACS Energy Letters, E-ISSN 2380-8195, Vol. 3, nr 2, s. 278-285Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    N-doping of conjugated polymers either requires a high dopant fraction or yields a low electrical conductivity because of their poor compatibility with molecular dopants. We explore n doping of the polar naphthalenediimide-bithiophene copolymer p(gNDI-gT2) that carries oligoethylene glycol-based side chains and show that the polymer displays superior miscibility with the benzimidazole-dimethylbenzenamine-based n-dopant N-DMBI. The good compatibility of p(gNDI-gT2) and N-DMBI results in a relatively high doping efficiency of 13% for n-dopants, which leads to a high electrical conductivity of more than 10(-1) S cm(-1) for a dopant concentration of only 10 mol % when measured in an inert atmosphere. We find that the doped polymer is able to maintain its electrical conductivity for about 20 min when exposed to air and recovers rapidly when returned to a nitrogen atmosphere. Overall, solution coprocessing of p(gNDI-gT2) and N-DMBI results in a larger thermoelectric power factor of up to 0.4 mu W K-2 m(-1) compared to other NDI-based polymers.

123 1 - 50 av 113
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf