liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Eklund, Per
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Kerdsongpanya, Sit
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Max Planck Institute Eisenforsch GmbH, Germany.
    Transition-metal-nitride-based thin films as novel energy harvesting materials2016In: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 4, no 18, p. 3905-3914Article in journal (Refereed)
    Abstract [en]

    The last few years have seen a rise in the interest in early transition-metal and rare-earth nitrides, primarily based on ScN and CrN, for energy harvesting by thermoelectricity and piezoelectricity. This is because of a number of important advances, among those the discoveries of exceptionally high piezoelectric coupling coefficient in (Sc,Al)N alloys and of high thermoelectric power factors of ScN-based and CrN-based thin films. These materials also constitute well-defined model systems for investigating thermodynamics of mixing for alloying and nanostructural design for optimization of phase stability and band structure. These features have implications for and can be used for tailoring of thermoelectric and piezoelectric properties. In this highlight article, we review the ScN-and CrN-based transition-metal nitrides for thermoelectrics, and drawing parallels with piezoelectricity. We further discuss these materials as a models systems for general strategies for tailoring of thermoelectric properties by integrated theoretical-experimental approaches.

    Download full text (pdf)
    fulltext
  • 2.
    Gharavi, Mohammad Amin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Kerdsongpanya, Sit
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Rensselaer Polytech Inst, NY 12180 USA.
    Schmidt, Susann
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eriksson, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Nong, N. V
    Tech Univ Denmark, Denmark.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Balke, B.
    Johannes Gutenberg Univ Mainz, Germany.
    Fournier, D.
    UPMC Univ Paris 06, France.
    Belliard, L.
    UPMC Univ Paris 06, France.
    Le Febvrier, Arnaud
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Pallier, Camille
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Microstructure and thermoelectric properties of CrN and CrN/Cr2N thin films2018In: Journal of Physics D: Applied Physics, ISSN 0022-3727, E-ISSN 1361-6463, Vol. 51, no 35, article id 355302Article in journal (Refereed)
    Abstract [en]

    CrN thin films with an N/Cr ratio of 95% were deposited by reactive magnetron sputtering onto (0001) sapphire substrates. X-ray diffraction and pole figure texture analysis show CrN (111) epitaxial growth in a twin domain fashion. By changing the nitrogen versus argon gas flow mixture and the deposition temperature, thin films with different surface morphologies ranging from grainy rough textures to flat and smooth films were prepared. These parameters can also affect the CrN(x )system, with the film compound changing between semiconducting CrN and metallic Cr2N through the regulation of the nitrogen content of the gas flow and the deposition temperature at a constant deposition pressure. Thermoelectric measurements (electrical resistivity and Seebeck coefficient), scanning electron microscopy, and transmission electron microscopy imaging confirm the changing electrical resistivity between 0.75 and 300 m omega cm, the changing Seebeck coefficient values between 140 and 230 mu VK-1, and the differences in surface morphology and microstructure as higher temperatures result in lower electrical resistivity while gas flow mixtures with higher nitrogen content result in single phase cubic CrN.

    Download full text (pdf)
    fulltext
  • 3. Order onlineBuy this publication >>
    Kerdsongpanya, Sit
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Design of Transition-Metal Nitride Thin Films for Thermoelectrics2015Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Thermoelectric devices are one of the promising energy harvesting technologies, because of their ability to convert heat (temperature gradient) to electricity by the Seebeck effect. Furthermore, thermoelectric devices can be used for cooling or heating by the inverse effect (Peltier effect). Since this conversion process is clean, with no emission of greenhouse gases during the process, this technology is attractive for recovering waste heat in automobiles or industries into usable electricity. However, the conversion efficiency of such devices is rather low due to fundamental materials limitations manifested through the thermoelectric figure of merit (ZT). Thus, there is high demand on finding materials with high ZT or strategies to improve ZT of materials.

    In this thesis, I discuss the basics of thermoelectrics and how to improve ZT of materials, including present-day strategies. Based on these ideas, I propose a new class of materials for thermoelectric applications: transition-metal nitrides, mainly ScN, CrN and their solid solutions. Here, I employed both experimental and theoretical methods to synthesize and study their thermoelectric properties. My study envisages ways for improving the thermoelectric figure of merit of ScN and possible new materials for thermoelectric applications.

    The results of my studies show that ScN is a promising thermoelectric material since it exhibits high thermoelectric power factor 2.5x10-3 Wm-1K-2 at 800 K, due to low metallic-like electrical resistivity while retained relatively large Seebeck coefficient. My studies on thermal conductivity of ScN also suggest a possibility to control thermal conductivity by tailoring the microstructure of ScN thin films. Furthermore, my theoretical studies on effects of impurities and stoichiometry on the electronic structure of ScN suggest the possibly to improve ScN ZT by stoichiometry tuning and doping. For CrN and Cr1-xScxN solid solution thin films, the results show that the power factor of CrN (8x10-4 Wm-1K-2 at 770 K) can be retained for the solid solution Cr0.92Sc0.08N. Finally, density functional theory was used to enable a systematic predictionbased strategy for optimizing ScN thermoelectric properties via phase stability of solid solutions. Sc1-xGdxN and Sc1-xLuxN are stabilized as disordered solid solutions, while in the Sc-Nb-N and Sc-Ta-N systems, the inherently layered ternary structures ScNbN2 and ScTaN2 are stable.

    List of papers
    1. Anomalously high thermoelectric power factor in epitaxial ScN thin films
    Open this publication in new window or tab >>Anomalously high thermoelectric power factor in epitaxial ScN thin films
    Show others...
    2011 (English)In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 99, no 23, p. 232113-Article in journal (Refereed) Published
    Abstract [en]

    Thermoelectric properties of ScN thin films grown by reactive magnetron sputtering on Al2O3(0001) wafers are reported. X-ray diffraction and elastic recoil detection analyses show that the composition of the films is close to stoichiometry with trace amounts (similar to 1 at. % in total) of C, O, and F. We found that the ScN thin-film exhibits a rather low electrical resistivity of similar to 2.94 mu Omega m, while its Seebeck coefficient is approximately similar to-86 mu V/K at 800 K, yielding a power factor of similar to 2.5 x 10(-3) W/mK(2). This value is anomalously high for common transition-metal nitrides.

    Place, publisher, year, edition, pages
    American Institute of Physics (AIP), 2011
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-75290 (URN)10.1063/1.3665945 (DOI)000298006100041 ()
    Note
    Funding Agencies|Swedish Research Council (VR)|621-2009-5258|Available from: 2012-02-27 Created: 2012-02-24 Last updated: 2021-12-29
    2. Effect of point defects on the electronic density of states of ScN studied by first-principles calculations and implications for thermoelectric properties
    Open this publication in new window or tab >>Effect of point defects on the electronic density of states of ScN studied by first-principles calculations and implications for thermoelectric properties
    2012 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 86, no 19Article in journal (Refereed) Published
    Abstract [en]

    We have investigated the effect of defects and impurities on the electronic density of states of scandium nitride using first-principles calculations with the generalized gradient approximation and hybrid functionals for the exchange correlation energy. Our results show that Sc and N vacancies can introduce asymmetric peaks in the density of states close to the Fermi level. We also find that the N vacancy states are sensitive to total electron concentration of the system due to their possibility for spin polarization. Substitutional point defects shift the Fermi level in the electronic band according to their valence but do not introduce sharp features. The energetics and electronic structure of defect pairs are also studied. By using hybrid functional calculations, a correct description of the band gap of scandium nitride is obtained. Our results envisage ways for improving the thermoelectric figure of merit of ScN by electronic structure engineering through stoichiometry tuning and doping.

    Place, publisher, year, edition, pages
    American Physical Society, 2012
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-87213 (URN)10.1103/PhysRevB.86.195140 (DOI)000311694200001 ()
    Available from: 2013-01-14 Created: 2013-01-14 Last updated: 2017-12-06
    3. Phonon Thermal Conductivity of Scandium Nitride for Thermoelectric Applications from First-Principles Calculations
    Open this publication in new window or tab >>Phonon Thermal Conductivity of Scandium Nitride for Thermoelectric Applications from First-Principles Calculations
    Show others...
    (English)Manuscript (preprint) (Other academic)
    Abstract [en]

    The knowledge of lattice thermal conductivity of materials under realistic conditions is vitally important since most technologies either require either high or low thermal conductivity. Here, we propose a theoretical model for determining lattice thermal conductivity with the effect of microstructure. This is based on ab initio description that includes the temperature dependence of the interatomic force constants, and treats anharmonic lattice vibrations. We choose ScN as a model system, comparing the computational predictions with the experimental data by Time Domain Thermoreflectance (TDTR). Our results show a trend of reduction in lattice thermal conductivity with decreasing grain size, with good agreement between the theoretical model and experimental data. There results suggest a possibility to control thermal conductivity by tailoring the microstructure of ScN. More importantly, we provide a predictive tool for the effect of the microstructure on the lattice thermal conductivity of materials based on first-principles calculations.

    Keywords
    Thermal conductivity, Scandium nitride, Thermoelectrics, First-principles calculations, Anharmonic approximation
    National Category
    Physical Sciences
    Identifiers
    urn:nbn:se:liu:diva-117756 (URN)
    Available from: 2015-05-08 Created: 2015-05-08 Last updated: 2015-05-08
    4. Experimental and Theoretical Investigation of Cr1-xScxN Solid Solutions for Thermoelectric Applications
    Open this publication in new window or tab >>Experimental and Theoretical Investigation of Cr1-xScxN Solid Solutions for Thermoelectric Applications
    Show others...
    2016 (English)In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 120, no 21, article id 215103Article in journal (Refereed) Published
    Abstract [en]

    We investigate the trends in mixing thermodynamics of Cr1-xScxN solid solutions in the cubic B1 structure and their electronic density of state by first-principle calculations, and thin-film synthesis of Cr1-xScxN solid solutions by reactive dc magnetron sputtering. Films with the composition Cr0.92Sc0.08N exhibit a thermoelectric power factor of about 8x10-4 Wm-1K-2at 770 K, similar to CrN. The results show that the disordered Cr1-xScxN solid solutions is thermodynamically stable in B1 solid solutions at T = 800°C rather than in the B1- L11 ordered solid solutions stable at 0 K. The calculated electronic density of state (DOS) indicates a positive bowing parameter for the electronic band gap of Cr1-xScxN solid solutions. The calculated DOS suggest possible improvement of power factor due to Sc 3d orbital delocalization on Cr 3d orbital gives decreasing electrical resistivity with retained Seebeck coefficient in Cr-rich regime, consistent with the experimentally observed high power factor for the solid solution.

    Place, publisher, year, edition, pages
    American Institute of Physics (AIP), 2016
    Keywords
    Chromium nitride, Scandium nitride, Thermoelectrics, First-principles calculations, Solid solutions
    National Category
    Physical Sciences
    Identifiers
    urn:nbn:se:liu:diva-117757 (URN)10.1063/1.4968570 (DOI)000390602600026 ()
    Note

    Funding agencies: European Research Council under the European Communitys Seventh Framework Programme [335383]; Swedish Research Council (VR) [621-2012-4430, 621-2011-4417, 330-2014-6336]; Marie Sklodowska Curie Actions [INCA 60098]; Linnaeus Strong Research Environment Li

    Available from: 2015-05-08 Created: 2015-05-08 Last updated: 2017-12-04Bibliographically approved
    5. Phase stability of ScN-based solid solutions for thermoelectric applications from first-principles calculations
    Open this publication in new window or tab >>Phase stability of ScN-based solid solutions for thermoelectric applications from first-principles calculations
    2013 (English)In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 114, no 7Article in journal (Refereed) Published
    Abstract [en]

    We have used first-principles calculations to investigate the trends in mixing thermodynamics of ScN-based solid solutions in the cubic B1 structure. 13 different Sc1−xMxN (M = Y, La, Ti, Zr, Hf, V, Nb, Ta, Gd, Lu, Al, Ga, In) and three different ScN1−xAx (A = P, As, Sb) solid solutions are investigated and their trends for forming disordered or ordered solid solutions or to phase separate are revealed. The results are used to discuss suitable candidate materials for different strategies to reduce the high thermal conductivity in ScN-based systems, a material having otherwise promising thermoelectric properties for medium and high temperature applications. Our results indicate that at a temperature of T = 800 °C, Sc1−xYxN; Sc1−xLaxN; Sc1−xGdxN, Sc1−xGaxN, and Sc1−xInxN; and ScN1−xPx, ScN1−xAsx, and ScN1−xSbx solid solutions have phase separation tendency, and thus, can be used for forming nano-inclusion or superlattices, as they are not intermixing at high temperature. On the other hand, Sc1−xTixN, Sc1−xZrxN, Sc1−xHfxN, and Sc1−xLuxN favor disordered solid solutions at T = 800 °C. Thus, the Sc1−xLuxN system is suggested for a solid solution strategy for phonon scattering as Lu has the same valence as Sc and much larger atomic mass.

    Place, publisher, year, edition, pages
    American Institute of Physics (AIP), 2013
    Keywords
    ab initio calculations, aluminium compounds, gadolinium compounds, gallium compounds, hafnium compounds, indium compounds, lanthanum compounds, lutetium alloys, mixing, niobium compounds, nitrogen compounds, phase separation, scandium compounds, solid solutions, superlattices, tantalum compounds, thermal conductivity, thermoelectricity, titanium compounds, vanadium compounds, yttrium compounds, zirconium compounds
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-97662 (URN)10.1063/1.4818415 (DOI)000323510900021 ()
    Note

    Funding Agencies|Swedish Research Council (VR)|621-2009-5258621-2012-4430621-2011-4417|Linnaeus Strong Research Environment LiLi-NFM||Swedish Foundation for Strategic Research||Linkoping Center in Nanoscience and technology (CeNano)||

    Available from: 2013-09-19 Created: 2013-09-19 Last updated: 2017-12-06
    Download full text (pdf)
    fulltext
    Download (pdf)
    omslag
    Download (jpg)
    presentationsbild
  • 4. Order onlineBuy this publication >>
    Kerdsongpanya, Sit
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Scandium Nitride Thin Films for Thermoelectrics2012Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Thermoelectric devices are one of the promising energy harvesting technologies, since they can convert heat (i.e. a temperature gradient) to electricity. This result leads us to use them to harvest waste heat from heat engines or in power plants to generate usable electricity. Moreover, thermoelectric devices can also perform cooling. The conversion process is clean, with no emission of greenhouse gases during the process. However, the converting efficiency of thermoelectrics is very low because of the materials limitations of the thermoelectric figure of merit (ZTm). Thus, there is high demand to maximize the ZTm.

    I have discovered that ScN has high power factor 2.5 mW/(mK2) at 800 K, due to low metalliclike electrical resistivity (∼3.0 μΩm) with retained relatively large Seebeck coefficient of -86 μV/K. The ScN thin films were grown by reactive dc magnetron sputtering from Sc targets. For ScN, X-ray diffraction, supported by transmission electron microscopy, show that we can obtain epitaxial ScN(111) on Al2O3(0001). We also reported effects on thermoelectric properties of ScN with small changes in the composition with the power factor changing one order of magnitude depending on e.g. oxygen, carbon and fluorine content which were determined by elastic recoil detection analysis. The presence of impurities may influence the electronic density of states or Fermi level (EF) which could yield enhancement of power factor.

    Therefore, the effects of defects and impurities on the electronic density of states of scandium nitride were investigated using first-principles calculations with general gradient approximation and hybrid functionals for the exchange correlation energy. Our results show that for Sc and N vacancies can introduce asymmetric peaks in the density of states close to the Fermi level. We also find that the N vacancy states are sensitive to total electron concentration of the system due to their possibility for spin polarization. Substitutional point defects shift the Fermi level in the electronic band according to their valence but do not introduce sharp features. The energetics and electronic structure of defect pairs are also studied. By using hybrid functionals, a correct description of the open band gap of scandium nitride is obtained, in contrast to regular general gradient approximation. Our results envisage ways for improving the thermoelectric figure of merit of ScN by electronic structure engineering through stoichiometry tuning and doping.

    List of papers
    1. Anomalously high thermoelectric power factor in epitaxial ScN thin films
    Open this publication in new window or tab >>Anomalously high thermoelectric power factor in epitaxial ScN thin films
    Show others...
    2011 (English)In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 99, no 23, p. 232113-Article in journal (Refereed) Published
    Abstract [en]

    Thermoelectric properties of ScN thin films grown by reactive magnetron sputtering on Al2O3(0001) wafers are reported. X-ray diffraction and elastic recoil detection analyses show that the composition of the films is close to stoichiometry with trace amounts (similar to 1 at. % in total) of C, O, and F. We found that the ScN thin-film exhibits a rather low electrical resistivity of similar to 2.94 mu Omega m, while its Seebeck coefficient is approximately similar to-86 mu V/K at 800 K, yielding a power factor of similar to 2.5 x 10(-3) W/mK(2). This value is anomalously high for common transition-metal nitrides.

    Place, publisher, year, edition, pages
    American Institute of Physics (AIP), 2011
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-75290 (URN)10.1063/1.3665945 (DOI)000298006100041 ()
    Note
    Funding Agencies|Swedish Research Council (VR)|621-2009-5258|Available from: 2012-02-27 Created: 2012-02-24 Last updated: 2021-12-29
    2. Effect of point defects on the electronic density of states of ScN studied by first-principles calculations and implications for thermoelectric properties
    Open this publication in new window or tab >>Effect of point defects on the electronic density of states of ScN studied by first-principles calculations and implications for thermoelectric properties
    2012 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 86, no 19Article in journal (Refereed) Published
    Abstract [en]

    We have investigated the effect of defects and impurities on the electronic density of states of scandium nitride using first-principles calculations with the generalized gradient approximation and hybrid functionals for the exchange correlation energy. Our results show that Sc and N vacancies can introduce asymmetric peaks in the density of states close to the Fermi level. We also find that the N vacancy states are sensitive to total electron concentration of the system due to their possibility for spin polarization. Substitutional point defects shift the Fermi level in the electronic band according to their valence but do not introduce sharp features. The energetics and electronic structure of defect pairs are also studied. By using hybrid functional calculations, a correct description of the band gap of scandium nitride is obtained. Our results envisage ways for improving the thermoelectric figure of merit of ScN by electronic structure engineering through stoichiometry tuning and doping.

    Place, publisher, year, edition, pages
    American Physical Society, 2012
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-87213 (URN)10.1103/PhysRevB.86.195140 (DOI)000311694200001 ()
    Available from: 2013-01-14 Created: 2013-01-14 Last updated: 2017-12-06
    Download full text (pdf)
    Scandium Nitride Thin Films for Thermoelectrics
    Download (pdf)
    omslag
  • 5.
    Kerdsongpanya, Sit
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Effect of point defects on the electronic density of states of ScN studied by first-principles calculations and implications for thermoelectric properties2012In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 86, no 19Article in journal (Refereed)
    Abstract [en]

    We have investigated the effect of defects and impurities on the electronic density of states of scandium nitride using first-principles calculations with the generalized gradient approximation and hybrid functionals for the exchange correlation energy. Our results show that Sc and N vacancies can introduce asymmetric peaks in the density of states close to the Fermi level. We also find that the N vacancy states are sensitive to total electron concentration of the system due to their possibility for spin polarization. Substitutional point defects shift the Fermi level in the electronic band according to their valence but do not introduce sharp features. The energetics and electronic structure of defect pairs are also studied. By using hybrid functional calculations, a correct description of the band gap of scandium nitride is obtained. Our results envisage ways for improving the thermoelectric figure of merit of ScN by electronic structure engineering through stoichiometry tuning and doping.

    Download full text (pdf)
    fulltext
  • 6.
    Kerdsongpanya, Sit
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Phase stability of ScN-based solid solutions for thermoelectric applications from first-principles calculations2013In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 114, no 7Article in journal (Refereed)
    Abstract [en]

    We have used first-principles calculations to investigate the trends in mixing thermodynamics of ScN-based solid solutions in the cubic B1 structure. 13 different Sc1−xMxN (M = Y, La, Ti, Zr, Hf, V, Nb, Ta, Gd, Lu, Al, Ga, In) and three different ScN1−xAx (A = P, As, Sb) solid solutions are investigated and their trends for forming disordered or ordered solid solutions or to phase separate are revealed. The results are used to discuss suitable candidate materials for different strategies to reduce the high thermal conductivity in ScN-based systems, a material having otherwise promising thermoelectric properties for medium and high temperature applications. Our results indicate that at a temperature of T = 800 °C, Sc1−xYxN; Sc1−xLaxN; Sc1−xGdxN, Sc1−xGaxN, and Sc1−xInxN; and ScN1−xPx, ScN1−xAsx, and ScN1−xSbx solid solutions have phase separation tendency, and thus, can be used for forming nano-inclusion or superlattices, as they are not intermixing at high temperature. On the other hand, Sc1−xTixN, Sc1−xZrxN, Sc1−xHfxN, and Sc1−xLuxN favor disordered solid solutions at T = 800 °C. Thus, the Sc1−xLuxN system is suggested for a solid solution strategy for phonon scattering as Lu has the same valence as Sc and much larger atomic mass.

    Download full text (pdf)
    fulltext
  • 7.
    Kerdsongpanya, Sit
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Eriksson, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Sun, Bo
    Department of Mechanical Engineering, National University of Singapore, Block EA, Singapore.
    Kan Koh, Yee
    Department of Mechanical Engineering, National University of Singapore, Block EA, Singapore.
    Van Nong, Ngo
    Dept. of Energy Conversion and Storage, Technical University of Denmark, Risø Campus, Denmark.
    Balke, Benjamin
    Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg University, Germany.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Experimental and Theoretical Investigation of Cr1-xScxN Solid Solutions for Thermoelectric Applications2016In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 120, no 21, article id 215103Article in journal (Refereed)
    Abstract [en]

    We investigate the trends in mixing thermodynamics of Cr1-xScxN solid solutions in the cubic B1 structure and their electronic density of state by first-principle calculations, and thin-film synthesis of Cr1-xScxN solid solutions by reactive dc magnetron sputtering. Films with the composition Cr0.92Sc0.08N exhibit a thermoelectric power factor of about 8x10-4 Wm-1K-2at 770 K, similar to CrN. The results show that the disordered Cr1-xScxN solid solutions is thermodynamically stable in B1 solid solutions at T = 800°C rather than in the B1- L11 ordered solid solutions stable at 0 K. The calculated electronic density of state (DOS) indicates a positive bowing parameter for the electronic band gap of Cr1-xScxN solid solutions. The calculated DOS suggest possible improvement of power factor due to Sc 3d orbital delocalization on Cr 3d orbital gives decreasing electrical resistivity with retained Seebeck coefficient in Cr-rich regime, consistent with the experimentally observed high power factor for the solid solution.

  • 8.
    Kerdsongpanya, Sit
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Rensselaer Polytech Institute, NY 12180 USA.
    Hellman, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering. CALTECH, CA 91125 USA.
    Sun, Bo
    National University of Singapore, Singapore.
    Kan Koh, Yee
    National University of Singapore, Singapore.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Van Nong, Ngo
    Department of Energy Conversion and Storage, Technical University of Denmark, Risø Campus, Roskilde, Denmark.
    Simak, Sergei I.
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering. Max Planck Institute Eisenforsch GmbH, Germany.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Phonon thermal conductivity of scandium nitride for thermoelectrics from first-principles calculations and thin-film growth2017In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 96, no 19, article id 195417Article in journal (Refereed)
    Abstract [en]

    The knowledge of lattice thermal conductivity of materials under realistic conditions is vitally important since many modern technologies require either high or low thermal conductivity. Here, we propose a theoretical model for determining lattice thermal conductivity, which takes into account the effect of microstructure. It is based on ab initio description that includes the temperature dependence of the interatomic force constants and treats anharmonic lattice vibrations. We choose ScN as a model system, comparing the computational predictions to the experimental data by time-domain thermoreflectance. Our experimental results show a trend of reduction in lattice thermal conductivity with decreasing domain size predicted by the theoretical model. These results suggest a possibility to control thermal conductivity by microstructural tailoring and provide a predictive tool for the effect of the microstructure on the lattice thermal conductivity of materials based on ab initio calculations.

    Download full text (pdf)
    fulltext
  • 9.
    Kerdsongpanya, Sit
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hellman, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology. Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, USA.
    Sun, Bo
    Department of Mechanical Engineering, National University of Singapore, Block EA, Singapore..
    Koh, Yee Kan
    Department of Mechanical Engineering, National University of Singapore, Block EA, Singapore..
    Van Nong, Ngo
    Dept. of Energy Conversion and Storage, Technical University of Denmark, Risø Campus, Denmark.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Simak, Sergei I.
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Phonon Thermal Conductivity of Scandium Nitride for Thermoelectric Applications from First-Principles CalculationsManuscript (preprint) (Other academic)
    Abstract [en]

    The knowledge of lattice thermal conductivity of materials under realistic conditions is vitally important since most technologies either require either high or low thermal conductivity. Here, we propose a theoretical model for determining lattice thermal conductivity with the effect of microstructure. This is based on ab initio description that includes the temperature dependence of the interatomic force constants, and treats anharmonic lattice vibrations. We choose ScN as a model system, comparing the computational predictions with the experimental data by Time Domain Thermoreflectance (TDTR). Our results show a trend of reduction in lattice thermal conductivity with decreasing grain size, with good agreement between the theoretical model and experimental data. There results suggest a possibility to control thermal conductivity by tailoring the microstructure of ScN. More importantly, we provide a predictive tool for the effect of the microstructure on the lattice thermal conductivity of materials based on first-principles calculations.

  • 10.
    Lunca Popa, Petru
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. LIST, Luxembourg.
    Sønderby, Steffen
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering. Tribol Centre, Denmark; National Oilwell Varco Denmark IS, Denmark.
    Kerdsongpanya, Sit
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Rensselaer Polytech Institute, NY 12180 USA.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Arwin, Hans
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, Faculty of Science & Engineering.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Structural, morphological, and optical properties of Bi2O3 thin films grown by reactive sputtering2017In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 624, p. 41-48Article in journal (Refereed)
    Abstract [en]

    Bi2O3 thin films were grown using reactive RF sputtering from a metallic Bi target. The influence of various deposition parameters (substrate temperature, applied power on target and oxygen content in the working gas) on the morphology, structure and optical properties of films was investigated. Depending on the O-2/(Ar + O-2) ratio of the working gas, bismuth, delta-Bi2O3, alpha-Bi2O3 or a mixture of these phases can be deposited, with a narrow window for growth of [111]-oriented delta-Bi2O3 thin films. The delta-Bi2O3 phase is stable from room temperature up to 350 degrees C (in air), where an irreversible transition to alpha-Bi2O3 occurs. This phase transformation is also shown to occur during TEM sample preparation, because of the inherent heating from the ion-milling process, unless liquid -nitrogen cooling is used. (C) 2017 Published by Elsevier B.V.

    Download full text (pdf)
    fulltext
  • 11.
    Paul, Biplab
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Schroeder, Jeremy Leroy
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Kerdsongpanya, Sit
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    van Nong, Ngo
    Risö-DTU, Denmark.
    Schell, Norbert
    Helmholtz-Zentrum Geestacht, Germany.
    Ostach, Daniel
    Helmholtz-Zentrum Geestacht, Germany.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Mechanism of Formation of the Thermoelectric Layered Cobaltate Ca3Co4O9 by Annealing of CaO-CoO Thin Films2015In: Advanced Electronic Materials, E-ISSN 2199-160X, Vol. 1, no 3, article id 1400022Article in journal (Refereed)
    Abstract [en]

    The layered cobaltate Ca3Co4O9 is of interest for energy-harvesting and heat-conversion applications because of its good thermoelectric properties and the fact that the raw materials Ca and Co are nontoxic, abundantly available, and inexpensive. While single-crystalline Ca3Co4O9 exhibits high Seebeck coefficient and low resistivity, its widespread use is hampered by the fact that single crystals are too small and expensive. A promising alternative approach is the growth of highly textured and/or epitaxial Ca3Co4O9 thin films with correspondingly anisotropic properties. Here, we present a two-step sputtering/annealing method for the formation of highly textured virtually phase-pure Ca3Co4O9 thin films by reactive cosputtering from Ca and Co targets followed by an annealing process at 730 °C under O2-gas flow. The thermally induced phase transformation mechanism is investigated by in situ time-resolved annealing experiments using synchrotron-based 2D X-ray diffraction (XRD) as well as ex situ annealing experiments and standard lab-based XRD. By tuning the proportion of initial CaO and CoO phases during film deposition, the method enables synthesis of Ca3Co4O9 thin films as well as CaxCoO2. With this method, we demonstrate production of epitaxial Ca3Co4O9 thin films with in-plane electrical resistivity of 6.44 mΩ cm and a Seebeck coefficient of 118 μV K−1 at 300 K.

    Download full text (pdf)
    fulltext
1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf