liu.seSearch for publications in DiVA
Endre søk
Begrens søket
1 - 34 of 34
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Bouhafs, Chamseddine
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Stanishev, Vallery
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Zakharov, A. A.
    Lund University, Sweden.
    Hofmann, Tino
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten. University of Nebraska, USA.
    Kuhne, Philipp
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Schubert, Mathias
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten. University of Nebraska, USA.
    Darakchieva, Vanya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Decoupling and ordering of multilayer graphene on C-face 3C-SiC(111)2016Inngår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 109, nr 20, artikkel-id 203102Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We show experimentally that few layer graphene (FLG) grown on the carbon terminated surface (C-face) of 3C-SiC(111) is composed of decoupled graphene sheets. Landau level spectroscopy on FLG graphene is performed using the infrared optical Hall effect. We find that Landau level transitions in the FLG exhibit polarization preserving selection rules and the transition energies obey a square-root dependence on the magnetic field strength. These results show that FLG on C-face 3C-SiC(111) behave effectively as a single layer graphene with linearly dispersing bands (Dirac cones) at the graphene K point. We estimate from the Landau level spectroscopy an upper limit of the Fermi energy of about 60 meV in the FLG, which corresponds to a carrier density below 2.5 x 10(11) cm(-2). Low-energy electron diffraction mu-LEED) reveals the presence of azimuthally rotated graphene domains with a typical size of amp;lt;= 200 nm.mu-LEED mapping suggests that the azimuth rotation occurs between adjacent domains within the same sheet rather than vertically in the stack. Published by AIP Publishing.

  • 2.
    Bouhafs, Chamseddine
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Zakharov, A. A.
    Lund University, Sweden.
    Ivanov, Ivan Gueorguiev
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Giannazzo, F.
    CNR IMM, Italy.
    Eriksson, Jens
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad sensorvetenskap. Linköpings universitet, Tekniska fakulteten.
    Stanishev, Vallery
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Kuhne, Philipp
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Hofmann, Tino
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten. University of Nebraska Lincoln, NE 68588 USA.
    Schubert, Mathias
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten. University of Nebraska Lincoln, NE 68588 USA.
    Roccaforte, F.
    CNR IMM, Italy.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Darakchieva, Vanya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Multi-scale investigation of interface properties, stacking order and decoupling of few layer graphene on C-face 4H-SiC2017Inngår i: Carbon, ISSN 0008-6223, E-ISSN 1873-3891, Vol. 116, s. 722-732Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this work, we report a multi-scale investigation using several nano-, micro and macro-scale techniques of few layer graphene (FLG) sample consisting of large monolayer (ML) and bilayer (BL) areas grown on C-face 4H-SiC (000-1) by high-temperature sublimation. Single 1 x 1 diffraction patterns are observed by micro-low-energy electron diffraction for ML, BL and trilayer graphene with no indication of out-of-plane rotational disorder. A SiOx layer is identified between graphene and SiC by X-ray photoelectron emission spectroscopy and reflectance measurements. The chemical composition of the interface layer changes towards SiO2 and its thickness increases with aging in normal ambient conditions. The formation mechanism of the interface layer is discussed. It is shown by torsion resonance conductive atomic force microscopy that the interface layer causes the formation of non-ideal Schottky contact between ML graphene and SiC. This is attributed to the presence of a large density of interface states. Mid-infrared optical Hall effect measurements revealed Landau-level transitions in FLG that have a square-root dependence on magnetic field, which evidences a stack of decoupled graphene sheets. Contrary to previous works on decoupled C-face graphene, our BL and FLG are composed of ordered decoupled graphene layers without out-of-plane rotation. (C) 2017 Elsevier Ltd. All rights reserved.

  • 3.
    Darakchieva, Vanya
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Boosalis, A.
    Department of Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
    Zakharov, A. A.
    Lund University, Maxlab, Lund, Sweden.
    Hofmann, T.
    Department of Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
    Schubert, M.
    Department of Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
    Tiwald, T. E.
    J. A. Woollam Co., Lincoln, Nebraska, USA.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Vasiliauskas, Remigijus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Large-area microfocal spectroscopic ellipsometry mapping of thickness and electronic properties of epitaxial graphene on Si- and C-face of 3C-SiC(111)2013Inngår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 102, nr 21, s. 213116-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Microfocal spectroscopic ellipsometry mapping of the electronic properties and thickness of epitaxial graphene grown by high-temperature sublimation on 3C-SiC (111) substrates is reported. Growth of one monolayer graphene is demonstrated on both Si- and C-polarity of the 3C-SiC substrates and it is shown that large area homogeneous single monolayer graphene can be achieved on the Si-face substrates. Correlations between the number of graphene monolayers on one hand and the main transition associated with an exciton enhanced van Hove singularity at ∼4.5 eV and the free-charge carrier scattering time, on the other are established. It is shown that the interface structure on the Si- and C-polarity of the 3C-SiC(111) differs and has a determining role for the thickness and electronic properties homogeneity of the epitaxial graphene.

  • 4. Ellison, A.
    et al.
    Magnusson, Björn
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Hemmingsson, Carl
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Magnusson, W.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Storasta, Liutauras
    Henry, Anne
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Henelius, N.
    Janzén, Erik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    HTCVD Growth of Semi-Insulating 4H-SiC Crystals With Low Defect Density2001Inngår i: Mat. Res. Soc. Symp. Proc., Vol. 640, 2001, s. H1.2-Konferansepaper (Fagfellevurdert)
  • 5.
    Eriksson, Jens
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Pearce, Ruth
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Virojanadara, Chariya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Gogova, Daniela
    Leibniz Institute of Crystal Growth, Berlin, Germany .
    Andersson, Mike
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Syväjärvi, Mikael
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Lloyd Spetz, Anita
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Yakimova, Rositza
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    The influence of substrate morphology on thickness uniformity and unintentional doping of epitaxial graphene on SiC2012Inngår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 100, nr 24, s. 241607-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A pivotal issue for the fabrication of electronic devices on epitaxial graphene on SiC is controlling the number of layers and reducing localized thickness inhomogeneities. Of equal importance is to understand what governs the unintentional doping of the graphene from the substrate. The influence of substrate surface topography on these two issues was studied by work function measurements and local surface potential mapping. The carrier concentration and the uniformity of epitaxial graphene samples grown under identical conditions and on substrates of nominally identical orientation were both found to depend strongly on the terrace width of the SiC substrate after growth.

  • 6.
    Hens, Philip
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan. University of Marburg, Germany.
    Zakharov, Alexei A.
    Lund University, Sweden.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Syväjärvi, Mikael
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Large area buffer-free graphene on non-polar (001) cubic silicon carbide2014Inngår i: Carbon, ISSN 0008-6223, E-ISSN 1873-3891, Vol. 80, s. 823-829Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Graphene is, due to its extraordinary properties, a promising material for future electronic applications. A common process for the production of large area epitaxial graphene is a high temperature annealing process of atomically flat surfaces from hexagonal silicon carbide. This procedure is very promising but has the drawback of the formation of a buffer layer consisting of a graphene-like sheet, which is covalently bound to the substrate. This buffer layer degenerates the properties of the graphene above and needs to be avoided. We are presenting the combination of a high temperature process for the graphene production with a newly developed substrate of (0 0 1)-oriented cubic silicon carbide. This combination is a promising candidate to be able to supply large area homogenous epitaxial graphene on silicon carbide without a buffer layer. We are presenting the new substrate and first samples of epitaxial graphene on them. Results are shown using low energy electron microscopy and diffraction, photoelectron angular distribution and X-ray photoemission spectroscopy. All these measurements indicate the successful growth of a buffer free few layer graphene on a cubic silicon carbide surface. On our large area samples also the epitaxial relationship between the cubic substrate and the hexagonal graphene could be clarified.

  • 7.
    I Johansson, Leif
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Watcharinyanon, Somsakul
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Zakharov, A.A.
    MAX-lab, Lund University, S-22100 Lund, Sweden.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Virojanadara, Chariya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Detailed studies of graphene grown on C-face SiC2012Inngår i: Technical Proceedings of the 2012 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2012, 2012, s. 200-202Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Graphene samples were grown on the C-face of SiC, at high temperature in a furnace and an Ar ambient, and were investigated using LEEM, XPEEM, LEED, XPS and ARPES. Formation of fairly large grains (crystallographic domains) of graphene exhibiting sharp (1x1) patterns in μ-LEED was revealed and that different grains showed different azimuthal orientations. Selective area constant initial energy photoelectron angular distribution patterns recorded showed the same results, ordered grains and no rotational disorder between adjacent layers. A grain size of up to a few μm was obtained on some samples.

  • 8.
    Ivanov, Ivan Gueorguiev
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Ul Hassan, Jawad
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Zakharov, Alexei A.
    Lund University, Sweden .
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Janzén, Erik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Layer-number determination in graphene on SiC by reflectance mapping2014Inngår i: Carbon, ISSN 0008-6223, E-ISSN 1873-3891, Vol. 77, s. 492-500Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We report a simple, handy and affordable optical approach for precise number-of-layers determination of graphene on SiC based on monitoring the power of the laser beam reflected from the sample (reflectance mapping) in a slightly modified micro-Raman setup. Reflectance mapping is compatible with simultaneous Raman mapping. We find experimentally that the reflectance of graphene on SiC normalized to the reflectivity of bare substrate (the contrast) increases linearly with similar to 1.7% per layer for up to 12 layers, in agreement with theory The wavelength dependence of the contrast in the visible is investigated using the concept of ideal fermions and compared with existing experimental data for the optical constants of graphene. We argue also that the observed contrast is insensitive to the doping condition of the sample, as well as to the type of sample (graphene on C- or Si-face of 4H or 6H SiC, hydrogen-intercalated graphene). The possibility to extend the precise layer counting to similar to 50 layers makes reflectivity mapping superior to low-energy electron microscopy (limited to similar to 10 layers) in quantitative evaluation of graphene on the C-face of SiC. The method is applicable for graphene on other insulating or semiconducting substrates.

  • 9.
    Johansson, Leif I
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Watcharinyanon, Somsakul
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Zakharov, A A
    Lund University.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Virojanadara, Chariya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Stacking of adjacent graphene layers grown on C-face SiC2011Inngår i: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 84, nr 12, s. 125405-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Graphene was grown on the C-face of nominally on-axis SiC substrates using high-temperature sublimation with Ar as the buffer inert gas. The results of studies of the morphology, thickness, and electronic structure of these samples using low-energy electronmicroscopy (LEEM), x-ray photoelectron emission microscopy, photoelectron spectroscopy, angle-resolved photoelectron spectroscopy (ARPES), and low-energy electron diffraction (LEED) are presented. The graphene thickness is determined to vary from 1 or 2 to 6 or 7 monolayers (MLs), depending on the specific growth conditions utilized. The formation of fairly large grains (i.e., crystallographic domains) of graphene exhibiting sharp 1 x 1 spots in micro-LEED is revealed. Adjacent grains are found to show different azimuthal orientations. Macro-LEED patterns recorded mimic previously published, strongly modulated, diffraction ring LEED patterns, indicating contribution from several grains of different azimuthal orientations. We collected selected area constant initial energy photoelectron angular distribution patterns that show the same results. When utilizing a small aperture size, one Dirac cone centered on each of the six K-points in the Brillouin zone is clearly resolved. When using a larger aperture, several Dirac cones from differently oriented grains are detected. Our findings thus clearly show the existence of distinct graphene grains with different azimuthal orientations; they do not show adjacent graphene layers are rotationally disordered, as previously reported for C-face graphene. The graphene grain size is shown to be different on the different samples. In some cases, a probing area of 400 nm is needed to detect the grains. On one sample, a probing area of 5 mu m can be used to collect a 1 x 1 LEED pattern from a multilayer graphene grain. ARPES is used to determine the position of the Dirac point relative to the Fermi level on two samples that LEEM shows have dominant coverage of 2 and 3 MLs of graphene, respectively. The Dirac point is found to be located within 75 meV of the Fermi level on both samples, which indicates that the electron carrier concentration induced in the second and third graphene layers on the C-face is less than similar to 4x10(11) cm(-2). Formation of patches of silicate is revealed on some samples, but the graphene formed on such nonhomogenous surfaces can contain fairly large ordered multilayer graphene grains.

  • 10.
    Johansson, Leif
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Xia, Chao
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    ul Hassan, Jawad
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Zarharov, Alexei A.
    MAX-lab, Lund University, Lund 22100, Sweden.
    Watcharinyanon, Somsakul
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Yakimova, Rositza
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Janzén, Erik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Virojanadara, Chariya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Is the Registry Between Adjacent Graphene Layers Grown on C-Face SiC Different Compared to That on Si-Face SiC2013Inngår i: Crystals, ISSN 2073-4352, Vol. 3, nr 1, s. 1-13Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Graphene grown on C-face SiC substrates using two procedures, high and low growth temperature and different ambients, was investigated using Low Energy Electron Microscopy (LEEM), X-ray Photo Electron Electron Microscopy (XPEEM), selected area Low Energy Electron Diffraction (μ-LEED) and selected area Photo Electron Spectroscopy (μ-PES). Both types of samples showed formation of μm-sized grains of graphene. The sharp (1 × 1) μ-LEED pattern and six Dirac cones observed in constant energy photoelectron angular distribution patterns from a grain showed that adjacent layers are not rotated relative to each other, but that adjacent grains in general have different azimuthal orientations. Diffraction spots from the SiC substrate appeared in μ-LEED patterns collected at higher energies, showing that the rotation angle between graphene and SiC varied. C 1s spectra collected did not show any hint of a carbon interface layer. A hydrogen treatment applied was found to have a detrimental effect on the graphene quality for both types of samples, since the graphene domain/grain size was drastically reduced. From hydrogen treated samples, μ-LEED showed at first a clear (1 × 1) pattern, but within minutes, a pattern containing strong superstructure spots, indicating the presence of twisted graphene layers. The LEED electron beam was found to induce local desorption of hydrogen. Heating a hydrogenated C-face graphene sample did not restore the quality of the original as-grown sample.

  • 11.
    Jokubavicius, Valdas
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Yazdi, Gholamreza
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Ivanov, Ivan G.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Niu, Yuran
    Max Lab, Lund University.
    Zakharov, Alexei
    Max Lab, Lund University.
    Lakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Syväjärvi, Mikael
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Surface engineering of SiC via sublimation etching2016Inngår i: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 390, s. 816-822Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We present a technique for etching of SiC which is based on sublimation and can be used to modify the morphology and reconstruction of silicon carbide surface for subsequent epitaxial growth of various materials, for example graphene. The sublimation etching of 6H-, 4H- and 3C-SiC was explored in vacuum (10−5 mbar) and Ar (700 mbar) ambient using two different etching arrangements which can be considered as Si-C and Si-C-Ta chemical systems exhibiting different vapor phase stoichiometry at a given temperature. The surfaces of different polytypes etched under similar conditions are compared and the etching mechanism is discussed with an emphasis on the role of tantalum as a carbon getter. To demonstrate applicability of such etching process graphene nanoribbons were grown on a 4H-SiC surface that was pre-patterned using the thermal etching technique presented in this study.

  • 12.
    Karlsson, Mikael
    et al.
    Department of Sensor System, Acreo Swedish ICT AB, Box 1070, SE-16440 Kista, Sweden; Department of Materials and Nano Physics, KTH-Royal Institute of Technology, Kista, Sweden .
    Wang, Qin
    Department of Sensor System, Acreo Swedish ICT AB, Box 1070, SE-16440 Kista, Sweden.
    Zhao, Yichen
    Department of Materials and Nano Physics, KTH-Royal Institute of Technology, Kista, Sweden.
    Zhao, Wei
    Department of Sensor System, Acreo Swedish ICT AB, Box 1070, SE-16440 Kista, Sweden; Department of Materials and Nano Physics, KTH-Royal Institute of Technology, Kista, Sweden.
    Toprak, Muhammet S.
    Department of Materials and Nano Physics, KTH-Royal Institute of Technology, Kista, Sweden.
    Iakimov, Tihomir
    Graphensic AB, Mjärdevi Science Park, Teknikringen 1F, SE-58330 Linköping, Sweden.
    Ali, Amer
    Graphensic AB, Mjärdevi Science Park, Teknikringen 1F, SE-58330 Linköping, Sweden.
    Yakimova, Rositsa
    Graphensic AB, Mjärdevi Science Park, Teknikringen 1F, SE-58330 Linköping, Sweden.
    Syväjärvi, Mikael
    Graphensic AB, Mjärdevi Science Park, Teknikringen 1F, SE-58330 Linköping, Sweden.
    Ivanov, Ivan G.
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial.
    Wafer-scale epitaxial graphene on SiC for sensing applications2015Inngår i: Micro+Nano Materials, Devices, and Systems / [ed] Benjamin J. Eggleton, Stefano Palomba, SPIE - International Society for Optical Engineering, 2015, Vol. 9668, s. 96685T-1-96685T-7Konferansepaper (Fagfellevurdert)
    Abstract [en]

    The epitaxial graphene-on-silicon carbide (SiC-G) has advantages of high quality and large area coverage owing to a natural interface between graphene and SiC substrate with dimension up to 100 mm. It enables cost effective and reliable solutions for bridging the graphene-based sensors/devices from lab to industrial applications and commercialization. In this work, the structural, optical and electrical properties of wafer-scale graphene grown on 2’’ 4H semi-insulating (SI) SiC utilizing sublimation process were systemically investigated with focus on evaluation of the graphene’s uniformity across the wafer. As proof of concept, two types of glucose sensors based on SiC-G/Nafion/Glucose-oxidase (GOx) and SiC-G/Nafion/Chitosan/GOx were fabricated and their electrochemical properties were characterized by cyclic voltammetry (CV) measurements. In addition, a few similar glucose sensors based on graphene by chemical synthesis using modified Hummer’s method were also fabricated for comparison. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  • 13.
    Pallon, J.
    et al.
    Lund University, Sweden.
    Syväjärvi, Mikael
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten. Graphens AB, Teknikringen 1F, SE-58330 Linkoping, Sweden.
    Wang, Q.
    ACREO Swedish ICT AB, Sweden.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten. Graphens AB, Teknikringen 1F, SE-58330 Linkoping, Sweden.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten. Graphens AB, Teknikringen 1F, SE-58330 Linkoping, Sweden.
    Elfman, M.
    Lund University, Sweden.
    Kristiansson, P.
    Lund University, Sweden.
    Nilsson, E. J. C.
    Lund University, Sweden.
    Ros, L.
    Lund University, Sweden.
    Ion beam evaluation of silicon carbide membrane structures intended for particle detectors2016Inngår i: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, ISSN 0168-583X, E-ISSN 1872-9584, Vol. 371, s. 132-136Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Thin ion transmission detectors can be used as a part of a telescope detector for mass and energy identification but also as a pre-cell detector in a microbeam system for studies of biological effects from single ion hits on individual living cells. We investigated a structure of graphene on silicon carbide (SiC) with the purpose to explore a thin transmission detector with a very low noise level and having mechanical strength to act as a vacuum window. In order to reach very deep cavities in the SiC wafers for the preparation of the membrane in the detector, we have studied the Inductive Coupled Plasma technique to etch deep circular cavities in 325 mu m prototype samples. By a special high temperature process the outermost layers of the etched SiC wafers were converted into a highly conductive graphitic layer. The produced cavities were characterized by electron microscopy, optical microscopy and proton energy loss measurements. The average membrane thickness was found to be less than 40 mu m, however, with a slightly curved profile. Small spots representing much thinner membrane were also observed and might have an origin in crystal defects or impurities. Proton energy loss measurement (also called Scanning Transmission Ion Microscopy, STIM) is a well suited technique for this thickness range. This work presents the first steps of fabricating a membrane structure of SiC and graphene which may be an attractive approach as a detector due to the combined properties of SiC and graphene in a monolithic materials structure. (C) 2015 Elsevier B.V. All rights reserved.

  • 14.
    Pearce, Ruth
    et al.
    National Physical Laboratory, Teddington, UK.
    Eriksson, Jens
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad sensorvetenskap. Linköpings universitet, Tekniska högskolan.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Hultman, Lars
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Lloyd Spetz, Anita
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad sensorvetenskap. Linköpings universitet, Tekniska högskolan.
    Yakimova, Rositza
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    On the Differing Sensitivity to Chemical Gating of Single and Double Layer Epitaxial Graphene Explored Using Scanning Kelvin Probe Microscopy2013Inngår i: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 7, nr 5, s. 4647-4656Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Using environmental scanning Kelvin probe microscopy we show that the position of the Fermi level of single layer graphene is more sensitive to chemical gating than that of double layer graphene. We calculate that the difference in sensitivity to chemical gating is not entirely due to the difference in band structure of 1 and 2 layer graphene. The findings are important for gas sensing where the sensitivity of the electronic properties to gas adsorption are monitored and suggest that single layer graphene could make a more sensitive gas sensor than double layer graphene. We propose that the difference in surface potential between adsorbate-free single and double layer graphene, measured using scanning kelvin probe microscopy, can be used as a non-invasive method of estimating substrate-induced doping in epitaxial graphene.

  • 15.
    Pearce, Ruth
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Andersson, M
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Hultman, Lars
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Lloyd Spetz, Anita
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Towards Optimisation of Epitaxially Grown Graphene Based Sensors for Highly Sensitive Gas Detection2010Inngår i: 2010 IEEE Sensors, Piscataway, NJ, United States: IEEE , 2010, s. 898-902Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Epitaxially grown single-layer and many-layer (10 atomic layers thick) resistive graphene devices were fabricated and compared for response towards NO2. Single-layer devices showed far greater sensitivity. The many-layer devices reduced in resistance on exposure to electron withdrawing NO2 demonstrating a majority hole carriers (p-type), whereas the single-layer device demonstrated an increase in resistance upon NO2 exposure demonstrating a majority of electron carriers (n-type). An n-p shift is observed for the single-layer device upon exposure to increasing concentrations of NO2. This shift is thought to be due to the reduction of electrons in the conduction band upon adsorption of electron-withdrawing NO2 making holes the majority carriers.

  • 16.
    Pearce, Ruth
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Andersson, Mike
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Hultman, Lars
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Lloyd Spetz, Anita
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Epitaxially grown graphene based gas sensors for ultra sensitive NO(2) detection2011Inngår i: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 155, nr 2, s. 451-455Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Epitaxially grown single layer and multi layer graphene on SiC devices were fabricated and compared for response towards NO(2). Due to electron donation from SiC:, single layer graphene is n-type with a very low carrier concentration. The choice of substrate is demonstrated to enable tailoring of the electronic properties of graphene, with a SiC substrate realising simple resistive devices tuned for extremely sensitive NO(2) detection. The gas exposed uppermost layer of the multi layer device is screened from the SiC by the intermediate layers leading to a p-type nature with a higher concentration of charge carriers and therefore, a lower gas response. The single layer graphene device is thought to undergo an n-p transition upon exposure to increasing concentrations of NO(2) indicated by a change in response direction. This transition is likely to be due to the transfer of electrons to NO(2) making holes the majority carriers. (C) 2011 Elsevier B.V. All rights reserved.

  • 17.
    Raback, P
    et al.
    Ctr Sci Comp, FIN-02101 Espoo, Finland Linkoping Univ, Dept Phys & Measurement Technol, SE-58183 Linkoping, Sweden Okmet AB, SE-17824 Ekero, Sweden Helsinki Univ Technol, Phys Lab, FIN-02015 Helsinki, Finland.
    Yakimova, Rositsa
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial.
    Syväjärvi, Mikael
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial.
    Nieminen, R
    Ctr Sci Comp, FIN-02101 Espoo, Finland Linkoping Univ, Dept Phys & Measurement Technol, SE-58183 Linkoping, Sweden Okmet AB, SE-17824 Ekero, Sweden Helsinki Univ Technol, Phys Lab, FIN-02015 Helsinki, Finland.
    Janzén, Erik
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial.
    Considerations on the crystal morphology in the sublimation growth of SiC2000Inngår i: Materials Science Forum, Vols. 338-343, Trans Tech Publications Inc., 2000, Vol. 338-3, s. 95-98Konferansepaper (Fagfellevurdert)
    Abstract [en]

    In this paper the shape evolution of SiC source and seed is studied with simulations. Some basic geometries and temperature distributions are investigated. Also the condition for stable growth is discussed.

  • 18.
    Shtepliuk, Ivan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten. NASU, Ukraine.
    Caffrey, Nuala M.
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten. Trinity Coll Dublin, Ireland; Trinity Coll Dublin, Ireland.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Khranovskyy, Volodymyr
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Abrikosov, Igor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. National University of Science and Technology MISIS, Russia.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    On the interaction of toxic Heavy Metals (Cd, Hg, Pb) with graphene quantum dots and infinite graphene2017Inngår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, artikkel-id 3934Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The promise of graphene and its derivatives as next generation sensors for real-time detection of toxic heavy metals (HM) requires a clear understanding of behavior of these metals on the graphene surface and response of the graphene to adsorption events. Our calculations herein were focused on the investigation of the interaction between three HMs, namely Cd, Hg and Pb, with graphene quantum dots (GQDs). We determine binding energies and heights of both neutral and charged HM ions on these GQDs. The results show that the adsorption energy of donor-like physisorbed neutral Pb atoms is larger than that of either Cd or Hg. In contrast to the donor-like behavior of elemental HMs, the chemisorbed charged HM species act as typical acceptors. The energy barriers to migration of the neutral adatoms on GQDs are also estimated. In addition, we show how the substitution of a carbon atom by a HM adatom changes the geometric structure of GQDs and hence their electronic and vibrational properties. UV-visible absorption spectra of HM-adsorbed GQDs vary with the size and shape of the GQD. Based on our results, we suggest a route towards the development of a graphene-based sensing platform for the optical detection of toxic HMs.

  • 19.
    Shtepliuk, Ivan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten.
    Eriksson, Jens
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad sensorvetenskap. Linköpings universitet, Tekniska fakulteten.
    Khranovskyy, Volodymyr
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Lloyd Spetz, Anita
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad sensorvetenskap. Linköpings universitet, Tekniska fakulteten.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Monolayer graphene/SiC Schottky barrier diodes with improved barrier height uniformity as a sensing platform for the detection of heavy metals2016Inngår i: Beilstein Journal of Nanotechnology, ISSN 2190-4286, Vol. 7, s. 1800-1814Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A vertical diode structure comprising homogeneous monolayer epitaxial graphene on silicon carbide is fabricated by thermal decomposition of a Si-face 4H-SiC wafer in argon atmosphere. Current-voltage characteristics of the graphene/SiC Schottky junction were analyzed by applying the thermionic-emission theory. Extracted values of the Schottky barrier height and the ideality factor are found to be 0.4879 +/- 0.013 eV and 1.01803 +/- 0.0049, respectively. Deviations of these parameters from average values are smaller than those of previously observed literature data, thereby implying uniformity of the Schottky barrier height over the whole diode area, a stable rectifying behaviour and a good quality of ohmic palladium-graphene contacts. Keeping in mind the strong sensitivity of graphene to analytes we propose the possibility to use the graphene/SiC Schottky diode as a sensing platform for the recognition of toxic heavy metals. Using density functional theory (DFT) calculations we gain insight into the nature of the interaction of cadmium, mercury and lead with graphene as well as estimate the work function and the Schottky barrier height of the graphene/SiC structure before and after applying heavy metals to the sensing material. A shift of the I-V characteristics of the graphene/SiC-based sensor has been proposed as an indicator of presence of the heavy metals. Since the calculations suggested the strongest charge transfer between Pb and graphene, the proposed sensing platform was characterized by good selectivity towards lead atoms and slight interferences from cadmium and mercury. The dependence of the sensitivity parameters on the concentration of Cd, Hg and Pb is studied and discussed.

  • 20.
    Shtepliuk, Ivan I.
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten. NASU, Ukraine.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ivanov, Ivan Gueorguiev
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Yazdi, Gholamreza
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Lead (Pb) interfacing with epitaxial graphene2018Inngår i: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 20, nr 25, s. 17105-17116Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Here, we report the electrochemical deposition of lead (Pb) as a model metal on epitaxial graphene fabricated on silicon carbide (Gr/SiC). The kinetics of electrodeposition and morphological characteristics of the deposits were evaluated by complementary electrochemical, physical and computational methods. The use of Gr/SiC as an electrode allowed the tracking of lead-associated redox conversions. The analysis of current transients passed during the deposition revealed an instantaneous nucleation mechanism controlled by convergent mass transport on the nuclei locally randomly distributed on epitaxial graphene. This key observation of the deposit topology was confirmed by low values of the experimentally-estimated apparent diffusion coefficient, Raman spectroscopy and scanning electron microscopy (SEM) studies. First principles calculations showed that the nucleation of Pb clusters on the graphene surface leads to weakening of the interaction strength of the metal-graphene complex, and only spatially separated Pb adatoms adsorbed on bridge and/or edge-plane sites can affect the vibrational properties of graphene. We expect that the lead adatoms can merge in large metallic clusters only at defect sites that reinforce the metal-graphene interactions. Our findings provide valuable insights into both heavy metal ion electrochemical analysis and metal electroplating on graphene interfaces that are important for designing effective detectors of toxic heavy metals.

  • 21.
    Shtepliuk, Ivan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Khranovskyy, Volodymyr
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Eriksson, Jens
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad sensorvetenskap. Linköpings universitet, Tekniska fakulteten.
    Giannazzo, Filippo
    CNR IMM, Italy.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Role of the Potential Barrier in the Electrical Performance of the Graphene/SiC Interface2017Inngår i: Crystals, ISSN 2073-4352, Vol. 7, nr 6, artikkel-id 162Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    In spite of the great expectations for epitaxial graphene (EG) on silicon carbide (SiC) to be used as a next-generation high-performance component in high-power nano- and micro-electronics, there are still many technological challenges and fundamental problems that hinder the full potential of EG/SiC structures and that must be overcome. Among the existing problems, the quality of the graphene/SiC interface is one of the most critical factors that determines the electroactive behavior of this heterostructure. This paper reviews the relevant studies on the carrier transport through the graphene/SiC, discusses qualitatively the possibility of controllable tuning the potential barrier height at the heterointerface and analyses how the buffer layer formation affects the electronic properties of the combined EG/SiC system. The correlation between the sp(2)/sp(3) hybridization ratio at the interface and the barrier height is discussed. We expect that the barrier height modulation will allow realizing a monolithic electronic platform comprising different graphene interfaces including ohmic contact, Schottky contact, gate dielectric, the electrically-active counterpart in p-n junctions and quantum wells.

  • 22.
    Shtepliuk, Ivan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten. NASU, Ukraine.
    Santangelo, Maria Francesca
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ivanov, Ivan Gueorguiev
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Khranovskyy, Volodymyr
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Eriksson, Jens
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Understanding Graphene Response to Neutral and Charged Lead Species: Theory and Experiment2018Inngår i: Materials, ISSN 1996-1944, E-ISSN 1996-1944, Vol. 11, nr 10, artikkel-id 2059Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Deep understanding of binding of toxic Lead (Pb) species on the surface of two-dimensional materials is a required prerequisite for the development of next-generation sensors that can provide fast and real-time detection of critically low concentrations. Here we report atomistic insights into the Lead behavior on epitaxial graphene (Gr) on silicon carbide substrates by thorough complementary study of voltammetry, electrical characterization, Raman spectroscopy, and Density Functional Theory (DFT). It is verified that the epitaxial graphene exhibits quasi-reversible anode reactions in aqueous solutions, providing a well-defined redox peak for Pb species and good linearity over a concentration range from 1 nM to 1 mu M. The conductometric approach offers another way to investigate Lead adsorption, which is based on the formations of stable charge-transfer complexes affecting the p-type conductivity of epitaxial graphene. Our results suggest the adsorption ability of the epitaxial graphene towards divalent Lead ions is concentration-dependent and tends to saturate at higher concentrations. To elucidate the mechanisms responsible for Pb adsorption, we performed DFT calculations and estimated the solvent-mediated interaction between Lead species in different oxidative forms and graphene. Our results provide central information regarding the energetics and structure of Pb-graphene interacting complexes that underlay the adsorption mechanisms of neutral and divalent Lead species. Such a holistic understanding favors design and synthesis of new sensitive materials for water quality monitoring.

  • 23.
    Syväjärvi, Mikael
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial.
    Yakimova, Rositsa
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial.
    Janzén, Erik
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial.
    Characterization of anisotropic step-bunching on as-grown SiC surfaces2000Inngår i: Materials Science Forum, Vols. 338-343, Trans Tech Publications Inc., 2000, Vol. 338-3, s. 375-378Konferansepaper (Fagfellevurdert)
    Abstract [en]

    We report the presence of anisotropic step-bunching in SiC epitaxy on off-oriented substrates. This is an effect of step-flow growth. The anisotropic step-bunching is discussed in relation to the temperature dependence of lateral growth velocities and the interface roughness. The macrostep appearance is probably related to formation of morphologically stable faces with low surface free energy.

  • 24.
    Vagin, Mikhail
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Sekretareva, Alina
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten. Department of Chemistry, Stanford University, Stanford, USA.
    Ivanov, Ivan Gueorguiev
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Håkansson, Anna
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten. Graphensic AB, Teknikringen 1F, Linköping, Sweden.
    Syväjärvi, Mikael
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten. Graphensic AB, Teknikringen 1F, Linköping, Sweden.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten. Graphensic AB, Teknikringen 1F, Linköping, Sweden.
    Lundström, Ingemar
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Eriksson, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemiska och optiska sensorsystem. Linköpings universitet, Tekniska fakulteten.
    Monitoring of epitaxial graphene anodization2017Inngår i: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 238, s. 91-98Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Anodization of a graphene monolayer on silicon carbide was monitored with electrochemical impedance spectroscopy. Structural and functional changes of the material were observed by Raman spectroscopy and voltammetry. A 21 fold increase of the specific capacitance of graphene was observed during the anodization. An electrochemical kinetic study of the Fe(CN)(6)(3) (/4) redox couple showed a slow irreversible redox process at the pristine graphene, but after anodization the reaction rate increased by several orders of magnitude. On the other hand, the Ru(NH3) (3+/2+)(6) redox couple proved to be insensitive to the activation process. The results of the electron transfer kinetics correlate well with capacitance measurements. The Raman mapping results suggest that the increased specific capacitance of the anodized sample is likely due to a substantial increase of electron doping, induced by defect formation, in the monolayer upon anodization. The doping concentration increased from less than 1 x 10(13) of the pristine graphene to 4-8 x 10(13) of the anodized graphene. (C) 2017 Elsevier Ltd. All rights reserved.

    Fulltekst tilgjengelig fra 2019-04-04 13:36
  • 25.
    Yakimova, Rositsa
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Kakanakova-Gueorguie, Anelia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Syväjärvi, Mikael
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Jacobson, Henrik
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Virojanadara, Chariya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Johansson, Leif
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Janzén, Erik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Effect of High Temperature Annealing on Surface and Bulk Characteristics of 4H-SiC2001Inngår i: Proc. of the 43rd Electronic Material Conference, 2001Konferansepaper (Fagfellevurdert)
  • 26.
    Yakimova, Rositsa
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Yazdi, Gholamreza
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Bouhafs, Chamseddine
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Eriksson, J.
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Zakharov, A.
    MaxLab, Sweden .
    Boosalis, A.
    University of Nebraska, NE 68588 USA University of Nebraska, NE 68588 USA .
    Schubert, M.
    University of Nebraska, NE 68588 USA University of Nebraska, NE 68588 USA .
    Darakchieva, Vanya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Morphological and electronic properties of epitaxial graphene on SiC2014Inngår i: Physica. B, Condensed matter, ISSN 0921-4526, E-ISSN 1873-2135, Vol. 439, s. 54-59Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We report on the structural and electronic properties of graphene grown on SiC by high-temperature sublimation. We have studied thickness uniformity of graphene grown on 4H-SiC (0 0 0 1), 6H-SiC (0 0 0 1), and 3C-SiC (1 1 1) substrates and investigated in detail graphene surface morphology and electronic properties. Differences in the thickness uniformity of the graphene layers on different SiC polytypes is related mainly to the minimization of the terrace surface energy during the step bunching process. It is also shown that a lower substrate surface roughness results in more uniform step bunching and consequently better quality of the grown graphene. We have compared the three SiC polytypes with a clear conclusion in favor of 3C-SiC. Localized lateral variations in the Fermi energy of graphene are mapped by scanning Kelvin probe microscopy It is found that the overall single-layer graphene coverage depends strongly on the surface terrace width, where a more homogeneous coverage is favored by wider terraces, It is observed that the step distance is a dominating, factor in determining the unintentional doping of graphene from the SiC substrate. Microfocal spectroscopic ellipsometry mapping of the electronic properties and thickness of epitaxial graphene on 3C-SiC (1 1 1) is also reported. Growth of one monolayer graphene is demonstrated on both Si- and C-polarity of the 3C-SiC substrates and it is shown that large area homogeneous single monolayer graphene can be achieved on the Si-face substrates. Correlations between the number of graphene monolayers on one hand and the main transition associated with an exciton enhanced van Hove singularity at similar to 4.5 eV and the free-charge carrier scattering time, on the other are established It is shown that the interface structure on the Si- and C-polarity of the 3C-SiC (1 1 1) differs and has a determining role for the thickness and electronic properties homogeneity of the epitaxial graphene.

  • 27.
    Yakimova, Rositsa
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial.
    Jacobson, H
    Syväjärvi, Mikael
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Kakanakova-Georgieva, Anelia
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial.
    Virojanadara, Chariya
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial.
    Johansson, Leif
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi.
    Janzén, Erik
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial.
    Impact of the initial surface conditions on defect appearance in 4H-SiC epilayers2002Inngår i: Materials Science Forum, Vols. 389-393, 2002, Vol. 389-3, s. 283-286Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Effect of surface irregularities on defect nucleation and development in thick epitaxial layers of 4H-SiC has been investigated. It has been shown that during growth extended defects may undergo transformation and thus stacking faults can be formed, which is favored in thicker layers (e.g. 50mum). Network of misfit dislocations appears if the initial surface has a certain critical roughness and a lower surface energy. Evidence has been presented that well ordered graphite layer might form on the substrates during the preheating stage prior to growth via sublimation.

  • 28.
    Yakimova, Rositsa
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial.
    Syväjärvi, Mikael
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial.
    Jacobsson, Henrik
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi.
    Kakanakova-Georgieva, Anelia
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial.
    Raback, P.
    Råback, P., Center for Scientific Computing, P.O. Box 405, FIN-02101 Espoo, Finland.
    Janzén, Erik
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial.
    Growth of silicon carbide: Process-related defects2001Inngår i: Appl. Surf. Sci., Vol. 184, 2001, Vol. 184, nr 1-4, s. 27-36Konferansepaper (Fagfellevurdert)
    Abstract [en]

    This paper reviews the present understanding of defect formation and development in relation to process conditions in 4H-SiC crystal growth and epitaxy. The polytype uniformity during seeded sublimation growth of SiC boules has been discussed. Insight into different structural imperfections has been attempted. The role of the temperature distribution, as well as of the quality of seed/crystal interface in the occurrence of grown-in defects has been demonstrated. Micropipe termination by liquid-phase deposition along with defect evolution in subsequently grown layers due to rough interface has been addressed. Finally, a relation between extended morphological defects in thick (50-100 µm) 4H-SiC epitaxial layers and local stress in the material has been suggested. Optimised growth conditions to reduce the overall defect density have been proposed. © 2001 Elsevier Science B.V. All rights reserved.

  • 29.
    Yakimova, Rositsa
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial.
    Syväjärvi, Mikael
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial.
    Jacobsson, Henrik
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi.
    Raback, R
    Linkoping Univ, Dept Phys & Measurement Technol, S-58183 Linkoping, Sweden Okmet AB, S-17824 Ekero, Sweden Ctr Comp Sci, FIN-02101 Espoo, Finland Okmet Ltd, FIN-01301 Vantaa, Finland.
    Vehanen, A
    Linkoping Univ, Dept Phys & Measurement Technol, S-58183 Linkoping, Sweden Okmet AB, S-17824 Ekero, Sweden Ctr Comp Sci, FIN-02101 Espoo, Finland Okmet Ltd, FIN-01301 Vantaa, Finland.
    Janzén, Erik
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial.
    Polytype stability in seeded sublimation growth of 4H-SiC boules2000Inngår i: Journal of Crystal Growth, ISSN 0022-0248, E-ISSN 1873-5002, Vol. 217, nr 3, s. 255-262Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Process conditions for stable single polytype growth of 4H-SiC boules via a seeded sublimation technique have been developed. Reproducible results can be obtained in a narrow temperature interval around 2350 degrees C and on the C-face of 4H-SiC seeds. Evidence is presented that during the initial stage of growth, morphological instabilities may occur resulting in structural defects. A solution is proposed based on the experimental findings, i.e. the first regions of growth ought to be carried out at a low supersaturation (growth rate similar to 100 mu m/h) until a proper growth front has developed. (C) 2000 Elsevier Science B.V. All rights reserved.

  • 30.
    Yakimova, Rositsa
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial.
    Syväjärvi, Mikael
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial.
    Okunev, AO
    Udal'tsov, VE
    Janzén, Erik
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial.
    Orientation-dependent defect formation in silicon carbide epitaxial layers2003Inngår i: Materials Science Forum, Vols. 433-436, 2003, Vol. 433-4, s. 281-284Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Thick SiC epitaxial layers have been grown by sublimation on different initial surfaces in the range of 1800-2200degreesC. Evidences have been obtained that independently of the polytype and the surface polarity, there exists a transition region between the substrate and the epilayer in which the crystal structure is highly disturbed either by formation of misfit dislocations, predominantly in growth on vicinal (off-axis) surfaces or by domain boundaries and polytype transformation during growth on atomically flat (on-axis) surfaces. The transition layer thickness may vary from 15 to 50 mum and it seems to depend on the growth rate.

  • 31.
    Yakimova, Rositsa
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Yazdi, Gholamreza
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Eriksson, Jens
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad sensorvetenskap. Linköpings universitet, Tekniska fakulteten.
    Darakchieva, Vanya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Challenges of Graphene Growth on Silicon Carbide2013Inngår i: ECS Transactions, Vol. 53, nr 1, s. 9-16Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    One of the main challenges in the fabrication of device quality graphene is the achievement of large area monolayer graphene that is processing compatible. Here, the impact of the substrate properties on the thickness uniformity and electronic characteristics for epitaxial graphene on SiC produced by high temperature sublimation has been evidenced and discussed. Several powerful techniques have been used to collect data, among them large scale ellipsometry mapping has been demonstrated for the first time. The study is covering all three SiC polytype, e.g. 4H-, 6H- and 3C-SiC in order to reveal eventual peculiarities that have to be controlled during graphene growth. The advantage of the cubic polytype is unambiguously demonstrated.

  • 32.
    Yazdi, G. Reza
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Vasiliauskas, Remigijus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Zakharov, A.
    Maxlab, Lund University, S-22100 Lund, Sweden.
    Syväjärvi, Mikael
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Yakimova, Risitza
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Growth of quality graphene on cubic silicon carbideManuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    The growth of epitaxial graphene was performed on the Si-face of 4H-SiC, 6H-SiC and 3C-SiC substrates by Si sublimation of SiC in Ar atmosphere at a temperature of 2000oC. Graphene surface morphology and thickness have been evaluated using low-energy electron microscopy (LEEM)  and  atomic  force  microscopy   (AFM).  Large  homogeneous   areas  of  graphene monolayers (over 50x50 μm2) have been successfully grown on 3C-SiC substrates. Differences in the morphology of graphene layers, grown on different SiC polytypes, are related to a large extent to minimization of the terrace surface energy during the step bunching process. The uniformity  of  Si  sublimation  is  a  decisive  factor  for  obtaining  large  area  homogeneous graphene. It is also shown that better quality graphene is grown on 3C-SiC substrates with smoother  surface,  because of less pronounced  step bunching  and lower distribution  of step heights on polished surface.

  • 33.
    Yazdi, Gholamreza
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Epitaxial Graphene on SiC: A Review of Growth and Characterization2016Inngår i: Crystals, ISSN 2073-4352, Vol. 6, nr 5, artikkel-id 53Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    This review is devoted to one of the most promising two-dimensional (2D) materials, graphene. Graphene can be prepared by different methods and the one discussed here is fabricated by the thermal decomposition of SiC. The aim of the paper is to overview the fabrication aspects, growth mechanisms, and structural and electronic properties of graphene on SiC and the means of their assessment. Starting from historical aspects, it is shown that the most optimal conditions resulting in a large area of one ML graphene comprise high temperature and argon ambience, which allow better controllability and reproducibility of the graphene quality. Elemental intercalation as a means to overcome the problem of substrate influence on graphene carrier mobility has been described. The most common characterization techniques used are low-energy electron microscopy (LEEM), angle-resolved photoelectron spectroscopy (ARPES), Raman spectroscopy, atomic force microscopy (AFM) in different modes, Hall measurements, etc. The main results point to the applicability of graphene on SiC in quantum metrology, and the understanding of new physics and growth phenomena of 2D materials and devices.

  • 34.
    Yazdi, Gholamreza
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Vasiliauskas, Remigijus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Iakimov, Tihomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Zakharov, Alexei
    Lund University, Sweden .
    Syväjärvi, Mikael
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Yakimova, Rositsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Growth of large area monolayer graphene on 3C-SiC and a comparison with other SiC polytypes2013Inngår i: Carbon, ISSN 0008-6223, E-ISSN 1873-3891, Vol. 57, s. 477-484Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Epitaxial graphene growth was performed on the Si-terminated face of 4H-, 6H-, and 3C-SiC substrates by silicon sublimation from SiC in argon atmosphere at a temperature of 2000 degrees C. Graphene surface morphology, thickness and band structure have been assessed by using atomic force microscopy, low-energy electron microscopy, and angle-resolved photoemission spectroscopy, respectively. Differences in the morphology of the graphene layers on different SiC polytypes is related mainly to the minimization of the terrace surface energy during the step bunching process. The uniformity of silicon sublimation is a decisive factor for obtaining large area homogenous graphene. It is also shown that a lower substrate surface roughness results in more uniform step bunching with a lower distribution of step heights and consequently better quality of the grown graphene. Large homogeneous areas of graphene monolayers (over 50 x 50 mu m(2)) have been grown on 3C-SiC (1 1 1) substrates. The comparison with the other polytypes suggests a similarity in the surface behaviour of 3C- and 6H-SiC.

1 - 34 of 34
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf