liu.seSearch for publications in DiVA
Change search
Refine search result
123 1 - 50 of 121
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andreu-Cabedo, Yasmina
    et al.
    University of Central Lancashire, England.
    Castellano, Pedro
    University of Central Lancashire, England.
    Colantonio, Sara
    National Research Council Italy, Italy.
    Coppini, Giuseppe
    National Research Council Italy, Italy.
    Favilla, Riccardo
    National Research Council Italy, Italy.
    Germanese, Danila
    National Research Council Italy, Italy.
    Giannakakis, Giorgos
    Fdn Research and Technology, Greece.
    Giorgi, Daniela
    National Research Council Italy, Italy.
    Larsson, Marcus
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Science & Engineering.
    Marraccini, Paolo
    National Research Council Italy, Italy.
    Martinelli, Massimo
    National Research Council Italy, Italy.
    Matuszewski, Bogdan
    University of Central Lancashire, England.
    Milanic, Matijia
    Norvegian University of Science and Technology, Norway.
    Pascali, Mariantonietta
    National Research Council Italy, Italy.
    Pediaditis, Mattew
    Fdn Research and Technology, Greece.
    Raccichini, Giovanni
    National Research Council Italy, Italy.
    Randeberg, Lise
    Norvegian University of Science and Technology, Norway.
    Salvetti, Ovidio
    National Research Council Italy, Italy.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Science & Engineering.
    MIRROR MIRROR ON THE WALL... AN INTELLIGENT MULTISENSORY MIRROR FOR WELL-BEING SELF-ASSESSMENT2015In: 2015 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA and EXPO (ICME), IEEE , 2015Conference paper (Refereed)
    Abstract [en]

    The face reveals the healthy status of an individual, through a combination of physical signs and facial expressions. The project SEMEOTICONS is translating the semeiotic code of the human face into computational descriptors and measures, automatically extracted from videos, images, and 3D scans of the face. SEMEOTICONS is developing a multisensory platform, in the form of a smart mirror, looking for signs related to cardio-metabolic risk. The goal is to enable users to self-monitor their well-being status over time and improve their life-style via tailored user guidance. Building the multisensory mirror requires addressing significant scientific and technological challenges, from touch-less data acquisition, to real-time processing and integration of multimodal data.

  • 2.
    Arildsson, Mikael
    et al.
    Linköping University, Department of Biomedical Engineering. Linköping University, The Institute of Technology.
    Asker, Claes
    Linköping University, Department of Biomedical Engineering. Linköping University, The Institute of Technology.
    Salerud, Göran
    Linköping University, Department of Biomedical Engineering. Linköping University, The Institute of Technology.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering. Linköping University, The Institute of Technology.
    Skin capillary appearance and skin microvascular perfusion due to topical application of analgesia cream2000In: Microvascular Research, ISSN 0026-2862, E-ISSN 1095-9319, Vol. 59, no 1, p. 14-23Article in journal (Refereed)
    Abstract [en]

    Local topical analgesia changes basal skin perfusion and its regulation. In particular, the response induced by local heating, which in nontreated skin comprises a rapidly increased perfusion followed by a normalization within 30 s, is altered to a delayed and persistent perfusion increase. The response dependency to the analgesia cream application time, that is, the intradermal penetration of the analgesics and in which vascular plexa the response occurs, is not known. The aim of this study was to assess changes in the appearance of superficial skin capillaries and skin microvascular perfusion changes due to different application periods of topical analgesia cream (EMLA). Twelve subjects were treated with EMLA and placebo applied to the volar side of each forearm, respectively. The treatment areas were assigned different application times (20 min, 40 min, 1 h, 2 h, and 3 h). The areas were cleared from the creams and shortly thereafter provoked during 9 s with a probe heated to 45°C. To assess capillary number density and skin perfusion, capillary microscopy, and Laser Doppler perfusion imaging (LDPI), respectively, were used. The number density of physiologically active capillary was significantly decreased with longer application times of EMLA (P < 0.005). The LDPI-signal showed a persistent perfusion increase after provocation associated with increasing application time of the cream. This perfusion pattern was not seen after 20 min of treatment, but was present in 9 of 12 subjects after 3 h of treatment. No significant relationship between changes in the capillary number density and the LDF measurement was found. In conclusion, a longer application time and therefore a higher intradermal concentration and a deeper penetration of the analgesics was associated with a delayed and persistent perfusion increase after local heating. There was a discrepancy between changes in capillary number density and skin perfusion, indicating that the perfusion increase does not occur in the capillaries but in the deeper lying vessels. Hence, the contribution of the capillary perfusion to the LDF-signal is smaller than previously anticipated. Capillary number density and presumably their perfusion were decreased with longer application times.

  • 3.
    Arildsson, Mikael
    et al.
    Linköping University, Department of Biomedical Engineering. Linköping University, The Institute of Technology.
    Nilsson, Gert
    Linköping University, Department of Biomedical Engineering. Linköping University, The Institute of Technology.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering. Linköping University, The Institute of Technology.
    Effects on skin blood flow by provocation during local analgesia2000In: Microvascular Research, ISSN 0026-2862, E-ISSN 1095-9319, Vol. 59, no 1, p. 122-130Article in journal (Refereed)
    Abstract [en]

    Although topical analgesia cream has been used for several years, little is known about its effects on the microcirculation. Previous studies have shown a vasoconstrictive effect after short application times and a vasodilatation after longer application. It has also been shown that vasomotion does not occur in the analgesized skin. The present study was undertaken to investigate the alterations in skin blood perfusion following local cooling, local heating and pin-pricking after the establishment of analgesia. In 11 healthy volunteers, skin analgesia was attained by use of a eutectic mixture of lidocaine and prilocaine (EMLA, Astra Pain Control AB, Sweden) applied to the skin three hours prior to provocation. The changes in skin blood perfusion, after applying three different provocation methods, were studied using the laser Doppler technique. Local cooling and heating to temperatures of +10 and +45°C, respectively, were applied for 9 s by use of a copper probe (Ø12 mm). In the pin-prick provocation method, a combined effect of deflection and penetration of the skin to in total 3 mm was attained. Identical provocation methods were applied to placebo treated and untreated skin areas. After heat provocation, significant differences in the perfusion response between the treatments were seen (P < 0.0001). Skin areas treated with analgesia cream responded with a slow increase in perfusion that persisted beyond the four minute measurement period. Placebo and untreated areas decreased their perfusion over time. After cooling a significant reduction in skin perfusion was seen, irrespective of the treatment. Similarly, after pin-pricking a perfusion increase was seen for all treatments. The findings indicate that topical analgesia influences the myogenic control of the blood flow in those vascular plexa measured by laser Doppler following heat provocation. No differences could be seen in the response to pin-pricking and cooling for the different treatments.

  • 4.
    Arildsson, Mikael
    et al.
    Linköping University, Department of Biomedical Engineering. Linköping University, The Institute of Technology.
    Nilsson, Gert
    Linköping University, Department of Biomedical Engineering. Linköping University, The Institute of Technology.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering. Linköping University, The Institute of Technology.
    Spectral signature and heterodyne efficiency for different wavelengths in laser Doppler flowmetry2002In: Medical and Biological Engineering and Computing, ISSN 0140-0118, E-ISSN 1741-0444, Vol. 40, no 1, p. 85-89Article in journal (Refereed)
    Abstract [en]

    Laser Doppler perfusion monitoring and imaging technologies generate time traces and two-dimensional flow maps of the microcirculation. With the goal of reaching different tissue depths, these technologies are equipped with lassers operating at different wavelengths λ. The fact that the average scattering angle, at a single scattering event, between a photon and a red blood cell increases with λ is compensated for by a 1/λ effect in the scattering vector, rendering the average frequency shift virtually independent of the choice of wavelength. Monte Carlo simulations showed that the corresponding spectral signature of the Doppler signals for λ=632.8nm and 780nm were close to identical. The theoretical predictions were verified by calculating the centre-of-gravity (COG) frequency of the laser Doppler power spectral density for the two wavelengths from forearm and finger skin, representing a low and high perfusion area, respectively (forearm COG=123 against 121Hz, finger COG=220 against 212 Hz). When the wavelength changes from 632.8nm to 780nm, the heterodyne efficiency of the detector and, thereby, the inherent system amplifcation increase. For tissues with identical microvascular flow conditions, the output signal therfore tends to increase in magnitude when shifting to longer wavelengths.

  • 5.
    Arildsson, Mikael
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Strömberg, Tomas
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Perfusion responses after local provocation of EMLA analgesized skin1999In: Congress of the International Society for Skin Imaging,1999, 1999Conference paper (Other academic)
  • 6.
    Asker, Claes
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Arildsson, Mikael
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Salerud, Göran
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Strömberg, Tomas
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Compartmental skin perfusion resposes affected by analgesia1999In: Congress of the International Society for Skin Imaging,1999, 1999Conference paper (Other academic)
  • 7.
    Belcastro, Luigi
    et al.
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Jonasson, Hanna
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Elserafy, Ahmed
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland.
    Saager, Rolf
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Beneath the skin: multi-frequency SFDI to detect thin layers of skin using light scattering2023In: PHOTONICS IN DERMATOLOGY AND PLASTIC SURGERY 2023, SPIE-INT SOC OPTICAL ENGINEERING , 2023, Vol. 12352, article id 1235209Conference paper (Refereed)
    Abstract [en]

    Wound healing assessment is usually performed visually by a trained physician. This type of evaluation is very subjective and returns limited information about the wound progression. In contrast, optical imaging techniques are non-invasive ways to quantitatively measure biological parameters. Spatial frequency domain imaging (SFDI) is an optical technique that exploits sinusoidal patterns of light with multiple spatial frequencies to measure the tissue frequency-specific response, from which the absorption and scattering coefficient of the material can be derived. While SFDI is based on models of light transport that assume the tissue is homogeneous, skin is composed by several layer with very different optical properties. An underutilized property of SFDI, however, is that the spatial frequency of the patterns determines the penetration depth of photons in the tissue. By using multiple ranges of spatial frequencies, we are developing a means to obtain morphological data from different volumes of tissue. This data is used to reconstruct the optical properties in depth, allowing us to differentiate between different thin layers of tissue. In this study we have developed a 2-layer optical phantom model with realistic optical properties and dimensions, that mimics the physiology of wound healing. We have used this physical model to validate the accuracy of this approach in obtaining layer specific optical properties.

  • 8.
    Belcastro, Luigi
    et al.
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Jonasson, Hanna
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Saager, Rolf B.
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Handheld multispectral imager for quantitative skin assessment in low resource settings2020In: Journal of Biomedical Optics, ISSN 1083-3668, E-ISSN 1560-2281, Vol. 25, no 8, article id 082702Article in journal (Refereed)
    Abstract [en]

    Significance: Spatial frequency domain imaging (SFDI) is a quantitative imaging method to measure absorption and scattering of tissue, from which several chromophore concentrations (e.g., oxy-/deoxy-/meth-hemoglobin, melanin, and carotenoids) can be calculated. Employing a method to extract additional spectral bands from RGB components (that we named cross-channels), we designed a handheld SFDI device to account for these pigments, using low-cost, consumer-grade components for its implementation and characterization.

    Aim: With only three broad spectral bands (red, green, blue, or RGB), consumer-grade devices are often too limited. We present a methodology to increase the number of spectral bands in SFDI devices that use RGB components without hardware modification.

    Approach: We developed a compact low-cost RGB spectral imager using a color CMOS camera and LED-based mini projector. The components’ spectral properties were characterized and additional cross-channel bands were calculated. An alternative characterization procedure was also developed that makes use of low-cost equipment, and its results were compared. The device performance was evaluated by measurements on tissue-simulating optical phantoms and in-vivo tissue. The measurements were compared with another quantitative spectroscopy method: spatial frequency domain spectroscopy (SFDS).

    Results: Out of six possible cross-channel bands, two were evaluated to be suitable for our application and were fully characterized (520  ±  20  nm; 556  ±  18  nm). The other four cross-channels presented a too low signal-to-noise ratio for this implementation. In estimating the optical properties of optical phantoms, the SFDI data have a strong linear correlation with the SFDS data (R2  =  0.987, RMSE  =  0.006 for μa, R2  =  0.994, RMSE  =  0.078 for μs′).

    Conclusions: We extracted two additional spectral bands from a commercial RGB system at no cost. There was good agreement between our device and the research-grade SFDS system. The alternative characterization procedure we have presented allowed us to measure the spectral features of the system with an accuracy comparable to standard laboratory equipment.

    Download full text (pdf)
    fulltext
  • 9.
    Bergkvist, Max
    et al.
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery.
    Henricson, Joakim
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Drug Research. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Local Health Care Services in Central Östergötland, Department of Emergency Medicine in Linköping.
    Bergstrand, Sara
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Nursing Sciences and Reproductive Health. Linköping University, Faculty of Medicine and Health Sciences.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Droog Tesselaar, Erik
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Medical radiation physics.
    Farnebo, Simon
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery.
    Assessment of oxygenation with polarized light spectroscopy enables new means for detecting vascular events in the skin2020In: Microvascular Research, ISSN 0026-2862, E-ISSN 1095-9319, Vol. 130, article id 104000Article in journal (Refereed)
    Abstract [en]

    Introduction: Impaired oxygenation in the skin may occur in disease states and after reconstructive surgery. We used tissue viability imaging (TiVi) to measure changes in oxygenation and deoxygenation of haemoglobin in an in vitro model and in the dermal microcirculation of healthy individuals. Materials and methods: Oxygenation was measured in human whole blood with different levels of oxygenation. In healthy subjects, changes in red blood cell concentration (C-RBC,(TiVi)), oxygenation (Delta C-OH,(TiVi)) and deoxygenation (Delta C-DOH,(TiVi)) of haemoglobin were measured during and after arterial and venous occlusion using TiVi and were compared with measurements from the enhanced perfusion and oxygen saturation system (EPOS). Results: During arterial occlusion, C-RBC,(TiVi) remained unchanged while Delta C-OH,(TiVi) decreased to -44.2 (10.4) AU (p = 0.04), as compared to baseline. After release, C-RBC,C-TiVi increased to 39.2 (18.8) AU (p &lt; 0.001), Delta C-OH,C-TiVi increased to 38.5. During venous occlusion, C-RBC,C-TiVi increased to 28.9 (11.2) AU (p &lt; 0.001), Delta C-OH,C-TiVi decreased to -52.2 (46.1) AU (p &lt; 0.001) compared to baseline after 5 min of venous occlusion. There was a significant correlation between the TiVi Oxygen Mapper and EPOS, for arterial (r = 0.92, p &lt; 0.001) and venous occlusion (r = 0.87, p &lt; 0.001), respectively. Conclusion: This study shows that TiVi can measure trends in oxygenation and deoxygenation of haemoglobin during arterial and venous stasis in healthy individuals.

  • 10.
    Bergstrand, Sara
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Nursing Science. Linköping University, Faculty of Medicine and Health Sciences.
    Morales, Maria-Aurora
    CNR Inst Clin Physiol, Italy.
    Coppini, Giuseppe
    CNR Inst Clin Physiol, Italy.
    Larsson, Marcus
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    The relationship between forearm skin speed-resolved perfusion and oxygen saturation, and finger arterial pulsation amplitudes, as indirect measures of endothelial function2018In: Microcirculation, ISSN 1073-9688, E-ISSN 1549-8719, Vol. 25, no 2, article id e12422Article in journal (Refereed)
    Abstract [en]

    Objective: Endothelial function is important for regulating peripheral blood flow to meet varying metabolic demands and can be measured indirectly during vascular provocations. In this study, we compared the PAT finger response (EndoPAT) after a 5-minutes arterial occlusion to that from forearm skin comprehensive microcirculation analysis (EPOS). Methods: Measurements in 16 subjects with varying cardiovascular risk factors were carried out concurrently with both methods during arterial occlusion, while forearm skin was also evaluated during local heating. Results: Peak values for EPOS skin Perf(conv) and speed-resolved total perfusion after the release of the occlusion were significantly correlated to the EndoPAT RHI (rho =.68, P = .007 and rho =.60, P = .025, respectively), mainly due to high-speed blood flow. During local heating, EPOS skin oxygen saturation, SO2, was significantly correlated to RHI (rho = .62, P =.043). This indicates that SO2 may have diagnostic value regarding endothelial function. Conclusions: We have demonstrated for the first time a significant relationship between forearm skin microcirculatory perfusion and oxygen saturation and finger PAT. Both local heating and reactive hyperemia are useful skin provocations. Further studies are needed to understand the precise regulation mechanisms of blood flow and oxygenation during these tests.

  • 11.
    Björkman, Stina
    et al.
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Children's and Women's Health. Linköping University, Faculty of Medicine and Health Sciences.
    Lilliecreutz, Caroline
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Children's and Women's Health. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center of Paediatrics and Gynaecology and Obstetrics, Department of Gynaecology and Obstetrics in Linköping.
    Bladh, Marie
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Children's and Women's Health. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center of Paediatrics and Gynaecology and Obstetrics, Department of Gynaecology and Obstetrics in Linköping.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Östgren, Carl Johan
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Prevention, Rehabilitation and Community Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Primary Care Center, Primary Health Care Center Ekholmen. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Mahmoud, Arina
    Linköping University.
    Kafashian, Arian
    Linköping University.
    Bergstrand, Sara
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Nursing Sciences and Reproductive Health. Linköping University, Faculty of Medicine and Health Sciences.
    Sederholm Lawesson, Sofia
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart Center, Department of Cardiology in Linköping.
    Microvascular dysfunction in women with a history of hypertensive disorders of pregnancy: A population-based retrospective cohort study2024In: British Journal of Obstetrics and Gynecology, ISSN 1470-0328, E-ISSN 1471-0528, Vol. 131, no 4, p. 433-443Article in journal (Refereed)
    Abstract [en]

    ObjectiveTo evaluate microvascular function in women with previous hypertensive disorders of pregnancy (HDP).DesignRetrospective population-based cohort study.SettingLinkoping, Sweden.PopulationWomen aged 50-65 years, participating in the Swedish CArdioPulmonary bioImage Study (SCAPIS) at one site (Linkoping) 2016-18, who underwent microcirculatory assessment (N = 1222).MethodsForearm skin comprehensive microcirculatory assessment was performed with a PeriFlux PF6000 EPOS (Enhanced Perfusion and Oxygen Saturation) system measuring oxygen saturation and total speed resolved perfusion. Obstetric records were reviewed to identify women with previous HDP. Data on cardiovascular risk factors, comorbidities, medication, lifestyle, anthropometric data, and biochemical analyses were obtained from SCAPIS. The microcirculatory data were compared between women with and without previous HDP.Main outcome measuresSkin microcirculatory oxygen saturation and total speed resolved perfusion at baseline and post-ischaemic peak.ResultsWomen with previous pre-eclampsia displayed impaired post-ischaemic peak oxygen saturation compared with women with normotensive pregnancies (88%, interquartile range [IQR] 84-89% vs 91%, IQR 87-94%, p = 0.001) 6-30 years after pregnancy. The difference remained after multivariable adjustment (& beta; -2.69, 95% CI -4.93 to -0.45).ConclusionsThe findings reveal microvascular dysfunction at long-term follow up in women with previous pre-eclampsia and strengthen the possible role of endothelial dysfunction as a link to the increased risk of cardiovascular disease in women with HDP.

  • 12.
    Briers, David
    et al.
    University of Kingston, England .
    Duncan, Donald D.
    Portland State University, OR USA .
    Hirst, Evan
    Callaghan Innovat, New Zealand .
    Kirkpatrick, Sean J.
    Michigan Technology University, MI USA .
    Larsson, Marcus
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Steenbergen, Wiendelt
    University of Twente, Netherlands .
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Thompson, Oliver B.
    Callaghan Innovat, New Zealand .
    Laser speckle contrast imaging: theoretical and practical limitations2013In: Journal of Biomedical Optics, ISSN 1083-3668, E-ISSN 1560-2281, Vol. 18, no 6Article in journal (Refereed)
    Abstract [en]

    When laser light illuminates a diffuse object, it produces a random interference effect known as a speckle pattern. If there is movement in the object, the speckles fluctuate in intensity. These fluctuations can provide information about the movement. A simple way of accessing this information is to image the speckle pattern with an exposure time longer than the shortest speckle fluctuation time scale-the fluctuations cause a blurring of the speckle, leading to a reduction in the local speckle contrast. Thus, velocity distributions are coded as speckle contrast variations. The same information can be obtained by using the Doppler effect, but producing a two-dimensional Doppler map requires either scanning of the laser beam or imaging with a high-speed camera: laser speckle contrast imaging (LSCI) avoids the need to scan and can be performed with a normal CCD- or CMOS-camera. LSCI is used primarily to map flow systems, especially blood flow. The development of LSCI is reviewed and its limitations and problems are investigated. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.

  • 13.
    Colantonio, Sara
    et al.
    CNR, Italy.
    Germanese, Danila
    CNR, Italy.
    Moroni, Davide
    CNR, Italy.
    Giorgi, Daniela
    CNR, Italy.
    Pascali, Mariantonietta
    CNR, Italy.
    Righi, Marco
    CNR, Italy.
    Coppini, Giuseppe
    CNR, Italy.
    Aurora Morales, Maria
    CNR, Italy.
    Chiarugi, Franco
    FORTH, Greece.
    Pediaditis, Mattew
    FORTH, Greece.
    Larsson, Marcus
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Science & Engineering.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Science & Engineering.
    Henriquez, Pedro
    University of Central Lancashire, England.
    Matuszewski, Bogdan
    University of Central Lancashire, England.
    Milanic, Matijia
    Norwegian University of Science and Technology, Norway.
    Randeberg, Lise
    Norwegian University of Science and Technology, Norway.
    SEMEOTICONS - READING THE FACE CODE OF CARDIO-METABOLIC RISK2015In: 2015 INTERNATIONAL WORKSHOP ON COMPUTATIONAL INTELLIGENCE FOR MULTIMEDIA UNDERSTANDING (IWCIM), IEEE , 2015Conference paper (Refereed)
    Abstract [en]

    What if you could discover your health status by looking at yourself in the mirror? Since November 2013, the EU FP7 Project SEMEOTICONS is working to make this possible. The Project is building a multi-sensory device, having the form of a conventional mirror, able to read the semeiotic code of the face and detect possible evidence of the onset of cardio-metabolic diseases. The device, called Wize Mirror, integrates unobtrusive imaging sensors used to capture videos, images and 3D scans of the face. These are processed to assess the risk of a cardio-metabolic disease and thereby suggest possible strategies to prevent its onset.

  • 14.
    Danielis, Alessandro
    et al.
    CNR, Italy.
    Giorgi, Daniela
    CNR, Italy.
    Larsson, Marcus
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Science & Engineering.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Science & Engineering.
    Colantonio, Sara
    CNR, Italy.
    Salvetti, Ovidio
    CNR, Italy.
    Lip segmentation based on Lambertian shadings and morphological operators for hyper-spectral images2017In: Pattern Recognition, ISSN 0031-3203, E-ISSN 1873-5142, Vol. 63, p. 355-370Article in journal (Refereed)
    Abstract [en]

    Lip segmentation is a non-trivial task because the colour difference between the lip and the skin regions maybe not so noticeable sometimes. We propose an automatic lip segmentation technique for hyper-spectral images from an imaging prototype with medical applications. Contrarily to many other existing lip segmentation methods, we do not use colour space transformations to localise the lip area. As input image, we use for the first time a parametric blood concentration map computed by using narrow spectral bands. Our method mainly consists of three phases: (i) for each subject generate a subset of face images enhanced by different simulated Lambertian illuminations, then (ii) perform lip segmentation on each enhanced image by using constrained morphological operations, and finally (iii) extract features from Fourier-based modeled lip boundaries for selecting the lip candidate. Experiments for testing our approach are performed under controlled conditions on volunteers and on a public hyper-spectral dataset. Results show the effectiveness of the algorithm against low spectral range, moustache, and noise.

  • 15.
    Ewerlöf, Maria
    et al.
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Salerud, E. Göran
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Larsson, Marcus
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Estimating skin blood saturation by selecting a subset of hyperspectral imaging data2015In: Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XIII / [ed] Daniel L. Farkas; Dan V. Nicolau; Robert C. Leif, SPIE, 2015, Vol. 9328Conference paper (Refereed)
    Abstract [en]

    Skin blood haemoglobin saturation (𝑠b) can be estimated with hyperspectral imaging using the wavelength (λ) range of 450-700 nm where haemoglobin absorption displays distinct spectral characteristics. Depending on the image size and photon transport algorithm, computations may be demanding. Therefore, this work aims to evaluate subsets with a reduced number of wavelengths for 𝑠b estimation. White Monte Carlo simulations are performed using a two-layered tissue model with discrete values for epidermal thickness (𝑇epi) and the reduced scattering coefficient (μ's ), mimicking an imaging setup. A detected intensity look-up table is calculated for a range of model parameter values relevant to human skin, adding absorption effects in the post-processing. Skin model parameters, including absorbers, are; μ's (λ), 𝑇epi, haemoglobin saturation (𝑠b), tissue fraction blood (𝑐b) and tissue fraction melanin (𝑐mel). The skin model paired with the look-up table allow spectra to be calculated swiftly. Three inverse models with varying number of free parameters are evaluated: A(𝑠b, 𝑐b), B(𝑠b, 𝑐b, 𝑐mel) and C(all parameters free). Fourteen wavelength candidates are selected by analysing the maximal spectral sensitivity to 𝑠b and minimizing the sensitivity to 𝑐b. All possible combinations of these candidates with three, four and 14 wavelengths, as well as the full spectral range, are evaluated for estimating 𝑠b for 1000 randomly generated evaluation spectra. The results show that the simplified models A and B estimated 𝑠b accurately using four wavelengths (mean error 2.2% for model B). If the number of wavelengths increased, the model complexity needed to be increased to avoid poor estimations.

    Download full text (pdf)
    fulltext
  • 16.
    Ewerlöf, Maria
    et al.
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Salerud, Göran
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Larsson, Marcus
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Estimation of skin microcirculatory hemoglobinoxygen saturation and red blood cell tissue fractionusing a multispectral snapshot imaging system: a validation study2021In: Journal of Biomedical Optics, ISSN 1083-3668, E-ISSN 1560-2281, Vol. 26, no 2, article id 200291RRArticle in journal (Refereed)
    Abstract [en]

    Significance: Hemoglobin oxygen saturation and red blood cell (RBC) tissue fraction are important parameters when assessing microvascular status. Functional information can be attained using temporally resolved measurements performed during stimulus–response protocols. Pointwise assessments can currently be conducted with probe-based systems. However, snapshot multispectral imaging (MSI) can be used for spatial–temporal measurements.

    Aim: To validate if hemoglobin oxygen saturation and RBC tissue fraction can be quantified using a snapshot MSI system and an inverse Monte Carlo algorithm.

    Approach: Skin tissue measurements from the MSI system were compared to those from a validated probe-based system during arterial and venous occlusion provocation on 24 subjects in the wavelength interval 450 to 650 nm, to evaluate a wide range of hemoglobin oxygen saturation and RBC tissue fraction levels.

    Results: Arterial occlusion results show a mean linear regression R2 = 0.958 for hemoglobin oxygen saturation. Comparing relative RBC tissue fraction during venous occlusion results in R2 = 0.925. The MSI system shows larger dynamic changes than the reference system, which might be explained by a deeper sampling including more capacitance vessels.

    Conclusions: The snapshot MSI system estimates hemoglobin oxygen saturation and RBC tissue fraction in skin microcirculation showing a high correlation (R2 > 0.9 in most subjects) with those measured by the reference method.

    Download full text (pdf)
    fulltext
  • 17.
    Ewerlöf, Maria
    et al.
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Linköping University, Department of Biomedical Engineering, Linköping.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Linköping University, Department of Biomedical Engineering, Linköping.
    Larsson, Marcus
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Linköping University, Department of Biomedical Engineering, Linköping.
    Salerud, E. Göran
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Linköping University, Department of Biomedical Engineering, Linköping.
    Multispectral snapshot imaging of skin microcirculatory hemoglobin oxygen saturation using artificial neural networks trained on in vivo data2022In: Journal of Biomedical Optics, ISSN 1083-3668, E-ISSN 1560-2281, Vol. 27, no 3, article id 036004Article in journal (Refereed)
    Abstract [en]

    Significance: Developing algorithms for estimating blood oxygenation from snapshot multispectral imaging (MSI) data is challenging due to the complexity of sensor characteristics and photon transport modeling in tissue. We circumvent this using a method where artificial neural networks (ANNs) are trained on in vivo MSI data with target values from a point-measuring reference method.

    Aim: To develop and evaluate a methodology where a snapshot filter mosaic camera is utilized for imaging skin hemoglobin oxygen saturation (SO2), using ANNs.

    Approach: MSI data were acquired during occlusion provocations. ANNs were trained to estimate SO2 with MSI data as input, targeting data from a validated probe-based reference system. Performance of ANNs with different properties and training data sets was compared.

    Results: The method enables spatially resolved estimation of skin tissue SO2. Results are comparable to those acquired using a Monte-Carlo-based approach when relevant training data are used.

    Conclusions: Training an ANN on in vivo MSI data covering a wide range of target values acquired during an occlusion protocol enable real-time estimation of SO2 maps. Data from the probe-based reference system can be used as target despite differences in sampling depth and measurement position.

    Download full text (pdf)
    dataset
    Download full text (pdf)
    fulltext
  • 18.
    Fredriksson, Ingemar
    et al.
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology. Perimed AB, Järfälla, Sweden.
    Burdakov, Oleg
    Linköping University, Department of Mathematics, Optimization . Linköping University, The Institute of Technology.
    Larsson, Marcus
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Inverse Monte Carlo in a multilayered tissue model: merging diffuse reflectance spectroscopy and laser Doppler flowmetry2013In: Journal of Biomedical Optics, ISSN 1083-3668, E-ISSN 1560-2281, Vol. 18, no 12, p. 127004-1-127004-14Article in journal (Refereed)
    Abstract [en]

    The tissue fraction of red blood cells (RBCs) and their oxygenation and speed-resolved perfusion areestimated in absolute units by combining diffuse reflectance spectroscopy (DRS) and laser Doppler flowmetry(LDF). The DRS spectra (450 to 850 nm) are assessed at two source–detector separations (0.4 and 1.2 mm), allowingfor a relative calibration routine, whereas LDF spectra are assessed at 1.2mmin the same fiber-optic probe. Data areanalyzed using nonlinear optimization in an inverse Monte Carlo technique by applying an adaptive multilayeredtissue model based on geometrical, scattering, and absorbing properties, as well as RBC flow-speed information.Simulations of 250 tissue-like models including up to 2000 individual blood vessels were used to evaluatethe method. The absolute root mean square (RMS) deviation between estimated and true oxygenation was 4.1percentage units, whereas the relative RMS deviations for the RBC tissue fraction and perfusion were 19% and23%, respectively. Examples of in vivo measurements on forearm and foot during common provocations arepresented. The method offers several advantages such as simultaneous quantification of RBC tissue fractionand oxygenation and perfusion from the same, predictable, sampling volume. The perfusion estimate is speedresolved, absolute (% RBC × mm∕s), and more accurate due to the combination with DRS.

    Download full text (pdf)
    fulltext
  • 19.
    Fredriksson, Ingemar
    et al.
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Perimed AB, Sweden.
    Hultman, Martin
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Larsson, Marcus
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Machine learning in multiexposure laser speckle contrast imaging can replace conventional laser Doppler flowmetry2019In: Journal of Biomedical Optics, ISSN 1083-3668, E-ISSN 1560-2281, Vol. 24, no 1, article id 016001Article in journal (Refereed)
    Abstract [en]

    Laser speckle contrast imaging (LSCI) enables video rate imaging of blood flow. However, its relation to tissue blood perfusion is nonlinear and depends strongly on exposure time. By contrast, the perfusion estimate from the slower laser Doppler flowmetry (LDF) technique has a relationship to blood perfusion that is better understood. Multiexposure LSCI (MELSCI) enables a perfusion estimate closer to the actual perfusion than that using a single exposure time. We present and evaluate a method that utilizes contrasts from seven exposure times between 1 and 64 ms to calculate a perfusion estimate that resembles the perfusion estimate from LDF. The method is based on artificial neural networks (ANN) for fast and accurate processing of MELSCI contrasts to perfusion. The networks are trained using modeling of Doppler histograms and speckle contrasts from tissue models. The importance of accounting for noise is demonstrated. Results show that by using ANN, MELSCI data can be processed to LDF perfusion with high accuracy, with a correlation coefficient R = 1.000 for noise-free data, R = 0.993 when a moderate degree of noise is present, and R = 0.995 for in vivo data from an occlusion-release experiment. (C) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.

    Download full text (pdf)
    fulltext
  • 20.
    Fredriksson, Ingemar
    et al.
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Larsson, Marcus
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Nyström, Fredrik
    Linköping University, Department of Medicine and Health Sciences, Internal Medicine . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medicine, Department of Endocrinology and Gastroenterology UHL.
    Länne, Toste
    Linköping University, Department of Medicine and Health Sciences, Physiology . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart Centre, Department of Thoracic and Vascular Surgery.
    Johan Östgren, Carl
    Linköping University, Department of Medicine and Health Sciences, General Practice. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Finspång, Primary Health Care Centre.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Reduced Arteriovenous Shunting Capacity After Local Heating and Redistribution of Baseline Skin Blood Flow in Type 2 Diabetes Assessed With Velocity-Resolved Quantitative Laser Doppler Flowmetry2010In: Diabetes, ISSN 0012-1797, E-ISSN 1939-327X, Vol. 59, no 7, p. 1578-1584Article in journal (Refereed)
    Abstract [en]

    OBJECTIVE-To compare the microcirculatory velocity distribution in type 2 diabetic patients and nondiabetic control subjects at baseline and after local heating. RESEARCH DESIGN AND METHODS-The skin blood flow response to local heating (44 degrees C for 20 mm) was assessed in 28 diabetic patients and 29 control subjects using a new velocity-resolved quantitative laser Doppler flowmetry technique (qLDF). The qLDF estimates erythrocyte (RBC) perfusion (velocity X concentration), in a physiologically relevant unit (grams RBC per 100 g tissue X millimeters per second) in a fixed output volume, separated into three velocity regions: v less than1 mm/s, v 1-10 mm/s, and v greater than10 mm/s. RESULTS-The increased blood flow occurs in vessels with a velocity greater than1 mm/s. A significantly lower response in qLDF total perfusion was found in diabetic patients than in control subjects after heat provocation because of less high-velocity blood flow (v greater than10 mm/s). The RBC concentration in diabetic patients increased sevenfold for v between 1 and 10 mm/s, and 15-fold for v greater than10 mm/s, whereas no significant increase was found for v less than1 mm/s. The mean velocity increased from 0.94 to 7.3 mm/s in diabetic patients and from 0.83 to 9.7 mm/s in control subjects. CONCLUSIONS-The perfusion increase occurs in larger shunting vessels and not as an increase in capillary flow. Baseline diabetic patient data indicated a redistribution of flow to higher velocity regions, associated with longer duration of diabetes. A lower perfusion was associated with a higher BMI and a lower toe-to-brachial systolic blood pressure ratio.

    Download full text (pdf)
    FULLTEXT01
  • 21.
    Fredriksson, Ingemar
    et al.
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Larsson, Marcus
    Linköping University, Department of Biomedical Engineering. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Nyström, Fredrik
    Linköping University, Department of Medicine and Health Sciences. Linköping University, Department of Medicine and Health Sciences, Cardiology .
    Länne, Toste
    Linköping University, Department of Medicine and Health Sciences. Linköping University, Department of Medicine and Health Sciences, Cardiology .
    Östgren, Carl Johan
    Linköping University, Department of Medicine and Health Sciences, General Practice. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in the West of Östergötland, West County Primary Health Care.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Microcirculatory changes in type 2 diabetes assessed with velocity resolved quantitative laser Doppler flowmetryManuscript (preprint) (Other academic)
    Abstract [en]

    The response to local heating (44oC for 20 min) was evaluated in 28 type 2 diabetes patients (DM) and 29 non-diabetes controls (ND). Microcirculatory perfusion was assessed using conventional and quantitative Laser Doppler flowmetry (cLDF and qLDF), respectively. The qLDF estimates perfusion in a physiological relevant unit (g RBC / 100 g tissue × mm/s) in a fixed output volume, separated into three velocity regions, v < 1 mm/s, 1 - 10 mm/s, and v > 10 mm/s. Perfusion in cLDF is given in arbitrary units with unknown velocity distribution and measurement volume.

    A significantly lower response in DM than in ND was found after heat provocation both for the initial peak and the plateau response, while no significant differences were found at baseline. The qLDF showed increased perfusion for the velocity regions 1-10 mm/s and above 10 mm/s, while no significant increase was found for v < 1 mm/s. In conclusion, we found a lowered LDF response to local heating in DM. The new qLDF method showed that the increased blood flow occurs in vessels with a velocity above 1 mm/s. Baseline qLDF-data indicated that a redistribution of flow to higher velocity regions was associated with longer DM duration and for DM a negative correlation between perfusion and BMI.

  • 22.
    Fredriksson, Ingemar
    et al.
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Larsson, Marcus
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology. Linköping University, Faculty of Health Sciences.
    Salomonsson, Fredrik
    Perimed AB, Järfälla-Stockholm, Sweden.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Improved calibration procedure for laser Doppler perfusion monitors2011In: Optical Diagnostics and SensingXI: Toward Point-of-CareDiagnostics; and Design andPerformance Validation ofPhantoms Used in Conjunctionwith Optical Measurement ofTissue III / [ed] Robert J. Nordstrom; Gerard L. Coté, SPIE - International Society for Optical Engineering, 2011, p. 790602-1-790602-7Conference paper (Other academic)
    Abstract [en]

    Commercial laser Doppler perfusion monitors are calibrated using the perfusion value, i.e. the first order moment of the Doppler power spectrum, from a measurement in a standardized microsphere colloidal suspension under Brownian motion. The calibration perfusion value depends on several parameters of the suspension that are difficult to keep constant with adequate accuracy, such as the concentration, temperature and the microsphere size distribution. The calibration procedure itself may therefore introduce significant errors in the measured values.

    An altered calibration procedure, where the zero order moment is used is described and demonstrated in this paper. Since the above mentioned parameters only affect the frequency content of the Doppler power spectrum and not the total power, the zero order moment will be independent of those parameters. It is shown that the variation in the calibration value, as given by measurements on different scattering liquids with a wide range of scattering properties and temperatures, is only a few percent using the proposed method. For the conventional calibration procedure, this variation corresponds to an error introduced by merely a 1°C variation in the reference liquid temperature. The proposed calibration method also enables absolute level comparisons between measured and simulated Doppler power spectra.

    Download full text (pdf)
    Improved calibration procedure for laser Doppler perfusion monitors
  • 23.
    Fredriksson, Ingemar
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Larsson, Marcus
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Strömberg, Tomas
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Absolute blood flow velocity components in Laser Doppler flowmetry2005In: International Graduate Summer School Biophotonics05,2005, 2005Conference paper (Other academic)
  • 24.
    Fredriksson, Ingemar
    et al.
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Larsson, Marcus
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Absolute flow velocity components in laser Doppler flowmetry2006In: Proceedings of SPIE, the International Society for Optical Engineering, ISSN 0277-786X, E-ISSN 1996-756X, Vol. 6094, p. 60940A-Article in journal (Refereed)
    Abstract [en]

    A method to separate a Doppler power spectrum into a number of flow velocity components, measured in absolute units (mm/s), is presented. A Monte Carlo software was developed to track each individual Doppler shift, to determine the probability, p(n), for a photon to undergo n Doppler shifts. Given this shift distribution, a mathematical relationship was developed and used to calculate a Doppler power spectrum originating from a certain combination of velocity components. The non linear Levenberg-Marquardt optimization method could thus be used to fit the calculated and measured Doppler power spectra, giving the true set of velocity components in the measured sample. The method was evaluated using a multi tube flow phantom perfused with either polystyrene microspheres or undiluted/diluted human blood (hct = 0.45). It estimated the velocity components in the flow phantom well, during both low and high concentrations of moving scatterers (microspheres or blood). Thus, further development of the method could prove to be a valuable clinical tool to differentiate capillary blood flow.

    Download full text (pdf)
    FULLTEXT01
  • 25.
    Fredriksson, Ingemar
    et al.
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Larsson, Marcus
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Accuracy of vessel diameter estimated from a vessel packaging compensation in diffuse reflectance spectroscopy2011In: Clinical and Biomedical Spectroscopy and Imaging II / [ed] Nirmala Ramanujam, Jurgen Popp, SPIE - International Society for Optical Engineering, 2011, Vol. 8087, p. 8087 1M-1-8087 1M-8Conference paper (Other academic)
    Abstract [en]

     Light absorption in tissue is generally decreased when chromophores are spatially concentrated rather than being homogeneously distributed. In tissue, this applies to hemoglobin located in blood vessels (vessel packaging). In this paper, the diffusely reflected light from 41 tissue models with discrete blood vessels with diameters ranging from 6.25 to 100 μm were simulated using the Monte Carlo technique. A reverse engineering approach was then utilized to find the model that had an optimal spectral fit to each of the simulated models. The average vessel diameter was one fitting parameter in the adaptive model. The estimated vessel diameter from the optimal fit model was compared to the known diameter from the simulated models. Two different methods to calculate the vessel packaging effect were used, one existing based on a simple analytic expression and a new method based on path length distributions. Both methods had similar performance. For the new method, the absolute RMS deviation of the estimated vessel diameter was 5.5 μm for vessel diameters ≤ 25 μm, and the relative RMS deviation was 21 % for vessel diameters > 25 μm.

     

  • 26.
    Fredriksson, Ingemar
    et al.
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Larsson, Marcus
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Forced detection Monte Carlo algorithms for accelerated blood vessel image simulations2009In: JOURNAL OF BIOPHOTONICS, ISSN 1864-063X, Vol. 2, no 3, p. 178-184Article in journal (Refereed)
    Abstract [en]

    Two forced detection (FD) variance reduction Monte Carlo algorithms for image simulations of tissue-embedded objects with matched refractive index are presented. The principle of the algorithms is to force a fraction of the photon weight to the detector at each and every scattering event. The fractional weight is given by the probability for the photon to reach the detector without further interactions. Two imaging setups are applied to a tissue model including blood vessels, where the ID algorithms produce identical results as traditional brute force simulations, while being accelerated with two orders of magnitude. Extending the methods to include refraction mismatches is discussed.

    The principle of forced detection; a part of the photon weight. based on the probability of reaching the detector without further interactions, is forced to the detector at each and every scattering event.

    Download full text (pdf)
    FULLTEXT01
  • 27.
    Fredriksson, Ingemar
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Larsson, Marcus
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Strömberg, Tomas
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Hastighetsupplöst blodflödesmätning med Laserdopplertekniken2005In: Medicinteknikdagar MTF,2005, 2005Conference paper (Other academic)
  • 28.
    Fredriksson, Ingemar
    et al.
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Larsson, Marcus
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy2012In: Journal of Biomedical Optics, ISSN 1083-3668, E-ISSN 1560-2281, Vol. 17, no 4, p. 047004-Article in journal (Refereed)
    Abstract [en]

    Model based data analysis of diffuse reflectance spectroscopy data enables the estimation of optical and structural tissue parameters. The aim of this study was to present an inverse Monte Carlo method based on spectra from two source-detector distances (0.4 and 1.2 mm), using a multilayered tissue model. The tissue model variables include geometrical properties, light scattering properties, tissue chromophores such as melanin and hemoglobin, oxygen saturation and average vessel diameter. The method utilizes a small set of presimulated Monte Carlo data for combinations of different levels of epidermal thickness and tissue scattering. The path length distributions in the different layers are stored and the effect of the other parameters is added in the post-processing. The accuracy of the method was evaluated using Monte Carlo simulations of tissue-like models containing discrete blood vessels, evaluating blood tissue fraction and oxygenation. It was also compared to a homogeneous model. The multilayer model performed better than the homogeneous model and all tissue parameters significantly improved spectral fitting. Recorded in vivo spectra were fitted well at both distances, which we previously found was not possible with a homogeneous model. No absolute intensity calibration is needed and the algorithm is fast enough for real-time processing.

  • 29.
    Fredriksson, Ingemar
    et al.
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Larsson, Marcus
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Laser doppler flowmetry2012In: Microcirculation imaging / [ed] Martin J. Leahy, Weinheim: Wiley-VCH Verlagsgesellschaft, 2012, , p. 411p. 67-86Chapter in book (Other academic)
    Abstract [en]

    Adopting a multidisciplinary approach with input from physicists, researchers and medical professionals, this is the first book to introduce many different technical approaches for the visualization of microcirculation, including laser Doppler and laser speckle, optical coherence tomography and photo-acoustic tomography. It covers everything from basic research to medical applications, providing the technical details while also outlining the respective strengths and weaknesses of each imaging technique. Edited by an international team of top experts, this is the ultimate handbook for every clinician and researcher relying on microcirculation imaging.

  • 30.
    Fredriksson, Ingemar
    et al.
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Perimed AB, Sweden.
    Larsson, Marcus
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Machine learning for direct oxygen saturation and hemoglobin concentration assessment using diffuse reflectance spectroscopy2020In: Journal of Biomedical Optics, ISSN 1083-3668, E-ISSN 1560-2281, Vol. 25, no 11, article id 112905Article in journal (Refereed)
    Abstract [en]

    Significance: Diffuse reflectance spectroscopy (DRS) is frequently used to assess oxygen saturation and hemoglobin concentration in living tissue. Methods solving the inverse problem may include time-consuming nonlinear optimization or artificial neural networks (ANN) determining the absorption coefficient one wavelength at a time. Aim: To present an ANN-based method that directly outputs the oxygen saturation and the hemoglobin concentration using the shape of the measured spectra as input. Approach: A probe-based DRS setup with dual source-detector separations in the visible wavelength range was used. ANNs were trained on spectra generated from a three-layer tissue model with oxygen saturation and hemoglobin concentration as target. Results: Modeled evaluation data with realistic measurement noise showed an absolute root-mean-square (RMS) deviation of 5.1% units for oxygen saturation estimation. The relative RMS deviation for hemoglobin concentration was 13%. This accuracy is at least twice as good as our previous nonlinear optimization method. On blood-intralipid phantoms, the RMS deviation from the oxygen saturation derived from partial oxygen pressure measurements was 5.3% and 1.6% in two separate measurement series. Results during brachial occlusion showed expected patterns. Conclusions: The presented method, directly assessing oxygen saturation and hemoglobin concentration, is fast, accurate, and robust to noise. (C) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.

    Download full text (pdf)
    fulltext
  • 31.
    Fredriksson, Ingemar
    et al.
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Larsson, Marcus
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Measurement depth and volume in laser Doppler flowmetry2009In: Microvascular Research, ISSN 0026-2862, E-ISSN 1095-9319, Vol. 78, no 1, p. 4-13Article in journal (Refereed)
    Abstract [en]

    A new method for estimating the measurement depth and volume in laser Doppler flowmetry (LDF) is presented. The method is based on Monte Carlo simulations of light propagation in tissue. The contribution from each individual Doppler shift is calculated and thereby multiple Doppler shifts are handled correctly. Different LDF setups for both probe based (0.0, 0.25, 0.5, and 1.2 mm source-detector separation) and imaging systems (0.5 and 2.0 mm beam diameter) are considered, at the wavelengths 543 nm, 633 nm, and 780 nm. Non-linear speckle pattern effects are accounted for in the imaging system setups. The effects of tissue optical properties, blood concentration, and blood oxygen saturation are evaluated using both homogeneous tissue models and a layered skin model. The results show that the effect on the measurement depth of changing tissue properties is comparable to the effect of changing the system setup, e.g. source-detector separation and wavelength. Skin pigmentation was found to have a negligible effect on the measurement depth. Examples of measurement depths are (values are given for a probe based system with 0.25 mm source-detector separation and an imaging system with a 0.5 mm beam diameter, respectively, both operating at 780 nm): muscle - 0.55/0.79 mm; liver - 0.40/0.53 mm; gray matter - 0.48/0.68 mm; white matter - 0.20/0.20 mm; index finger pulp - 0.41/0.53 mm; forearm skin - 0.53/0.56 mm; heat provoked forearm skin - 0.66/0.67 mm.

    Download full text (pdf)
    FULLTEXT01
  • 32.
    Fredriksson, Ingemar
    et al.
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Larsson, Marcus
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Model-based quantification of skin microcirculatory perfusion2015In: Computational biophysics of the skin / [ed] Bernard Querleux, Boca Raton: CRC Press, 2015, 1, p. 395-418Chapter in book (Other academic)
    Abstract [en]

    During the last decades new tools, such as magnetic resonance imaging and Doppler ultra sound imaging, have rapidly been taken into clinical practice for studying the flow dynamics of the macrocirculation. M eanw hile, techniques for quantifying the microcirculation have struggled to become clinically accepted. This includes the use of laser Doppler flow metry (LDF), an optical technique that is capable of monitoring either spatial or temporal changes in the microcirculation by analyzing the backscattered Doppler shifted light from a laser illuminated tissue. Until now , LDF has only been capable of producing non-absolute relative measures, w hich has limited its cl inical acceptance. With a model based analysis approach, as presented here, this can be overcome, and objective diagnosis of the microcirculation may finally be a part of everyday clinical praxis. The most important advantages w ith the proposed method are that a quantitative perfusion estimate (% RBC × mm/ s) can be extracted, and that this measure can be resolved into different speed regions.

  • 33.
    Fredriksson, Ingemar
    et al.
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Larsson, Marcus
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Model-based quantitative laser Doppler flowmetry in skin2010In: Journal of Biomedical Optics, ISSN 1083-3668, E-ISSN 1560-2281, Vol. 15, no 5Article in journal (Refereed)
    Abstract [en]

    Laser Doppler Flowmetry (LDF) can be used for assessing the microcirculatory perfusion. However, conventional LDF (cLDF) gives only a relative perfusion estimate in an unknown measurement volume. To overcome these limitations a model-based analysis method for quantitative LDF (qLDF) is proposed. The method uses an inverse Monte Carlo technique with an adaptive three layer skin model. By analyzing the optimal model where measured and simulated LDF spectra using two different source-detector separations match, the absolute microcirculatory perfusion for a specified velocity region in a predefined volume is determined. The robustness of the qLDF method and how much it is affected by physiologically relevant variations in optical properties were evaluated using additional Monte Carlo simulations. When comparing qLDF to cLDF, a much smaller deviation from the true perfusion was attained. For physiologically relevant variations in the optical properties of static tissue and blood absorption, qLDF displayed errors <12%. Variations in the scattering properties of blood displayed larger errors (<58%). Evaluations on inhomogeneous models containing small blood vessels, hair and sweat glands displayed errors <5%. For extremely inhomogeneous models containing larger blood vessels, the error increased substantially, but this was detected by analyzing the qLDF model residual. The qLDF algorithm was applied to an in vivo local heat provocation. The perfusion increase was higher with qLDF than cLDF, due to non-linear effects in the latter. The qLDF showed that the perfusion increase was due to an increased amount of blood cells with a velocity > 1 mm/s.

  • 34.
    Fredriksson, Ingemar
    et al.
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Larsson, Marcus
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Optical microcirculatory skin model: Assessed by Monte Carlo simulations paired with in vivo laser Doppler flowmetry2008In: Journal of Biomedical Optics, ISSN 1083-3668, E-ISSN 1560-2281, Vol. 13, no 1, p. 14015-Article in journal (Refereed)
    Abstract [en]

    An optical microvascular skin model, valid at 780 nm, was developed. The model consisted of six layers with individual optical properties, and variable thicknesses and blood concentrations at three different blood flow velocities. Monte Carlo simulations were used to evaluate the impact of various model parameters on the traditional Laser Doppler flowmetry (LDF) measures. A set of reference Doppler power spectra was generated by simulating 7,000 configurations, varying the thickness and blood concentrations. Simulated spectra, at two different source detector separations, were compared with in vivo recorded spectra, using a non-linear search algorithm for minimizing the deviation between simulated and measured spectra. The model was validated by inspecting the thickness and blood concentrations which generated the best fit. These four parameters followed a priori expectations for the measurement situations, and the simulated spectra agreed well with the measured spectra for both detector separations. Average estimated dermal blood concentration was 0.08% at rest and 0.63% during heat provocation (44°C) on the volar side of the forearm, and 1.2% at rest on the finger pulp. The model is crucial for developing a technique for velocity-resolved absolute LDF measurements with known sampling volume, and can also be useful for other bio-optical modalities.

    Download full text (pdf)
    FULLTEXT01
  • 35.
    Fredriksson, Ingemar
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Larsson, Marcus
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Strömberg, Tomas
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Separation av shuntat och kapillärt mikrocirkulatoriskt blodflöde med laser Doppler-tekniken2006In: Medicinteknikdagarna,2006, 2006Conference paper (Refereed)
  • 36.
    Fredriksson, Ingemar
    et al.
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Larsson, Marcus
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Iredahl, Fredrik
    Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Department of Health, Medicine and Caring Sciences, Division of Prevention, Rehabilitation and Community Medicine. Region Östergötland, Primary Care Center, Primary Health Care Center Åby.
    Vasomotion analysis of speed resolved perfusion, oxygen saturation, red blood cell tissue fraction, and vessel diameter: Novel microvascular perspectives2022In: Skin research and technology, ISSN 0909-752X, E-ISSN 1600-0846, Vol. 28, no 1, p. 142-152Article in journal (Refereed)
    Abstract [en]

    Background

    Vasomotion is the spontaneous oscillation in vascular tone in the microcirculation and is believed to be a physiological mechanism facilitating the transport of blood gases and nutrients to and from tissues. So far, Laser Doppler flowmetry has constituted the gold standard for in vivo vasomotion analysis.

    Materials and methods

    We applied vasomotion analysis to speed-resolved perfusion, oxygen saturation, red blood cell tissue (RBC) tissue fraction, and average vessel diameter from five healthy individuals at rest measured by the newly developed Periflux 6000 EPOS system over 10 minutes. Magnitude scalogram and the time-averaged wavelet spectra were divided into frequency intervals reflecting endothelial, neurogenic, myogenic, respiratory, and cardiac function.

    Results

    Recurrent high-intensity periods of the myogenic, neurogenic, and endothelial frequency intervals were found. The neurogenic activity was considerably more pronounced for the oxygen saturation, RBC tissue fraction, and vessel diameter signals, than for the perfusion signals. In a correlation analysis we found that changes in perfusion in the myogenic, neurogenic, and endothelial frequency intervals precede changes in the other signals. Furthermore, changes in average vessel diameter were in general negatively correlated to the other signals in the same frequency intervals, indicating the importance of capillary recruitment.

    Conclusion

    We conclude that vasomotion can be observed in signals reflecting speed resolved perfusion, oxygen saturation, RBC tissue fraction, and vessel diameter. The new parameters enable new aspects of the microcirculation to be observed.

    Download full text (pdf)
    fulltext
  • 37.
    Fredriksson, Ingemar
    et al.
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Perimed AB, Sweden.
    Saager, Rolf B.
    University of Calif Irvine, CA USA; University of Calif Irvine, CA USA.
    Durkin, Anthony J.
    University of Calif Irvine, CA USA.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. University of Calif Irvine, CA USA; University of Calif Irvine, CA USA.
    Evaluation of a multi-layer diffuse reflectance spectroscopy system using optical phantoms2017In: DESIGN AND QUALITY FOR BIOMEDICAL TECHNOLOGIES X, SPIE-INT SOC OPTICAL ENGINEERING , 2017, Vol. 10056, article id UNSP 100560GConference paper (Refereed)
    Abstract [en]

    A fiber probe-based device for assessing microcirculatory parameters, especially red blood cell (RBC) tissue fraction, their oxygen saturation and speed resolved perfusion, has been evaluated using state-of-the-art multi-layer tissue simulating phantoms. The device comprises both diffuse reflectance spectroscopy (DRS) at two source-detector separations (0.4 and 1.2 mm) and laser Doppler flowmetry (LDF) and use an inverse Monte Carlo method for identifying the parameters of a multi-layered tissue model. First, model parameters affecting scattering, absorption and geometrical parameters are fitted to measured DRS spectra, then speed parameters are fitted to LDF spectra. In this paper, the accuracy of the spectral parameters is evaluated. The measured spectral shapes at the two source-detector separations were in good agreement with forward calculated spectral shapes. In conclusion, the multi-layer skin model based on spectral features of the included chromophores, can reliably estimate the tissue fraction of RBC, its oxygen saturation and the reduced scattering coefficient spectrum of the tissue. Furthermore, it was concluded that some freedom in the relative intensity difference between the two DRS channels is necessary in order to compensate for non-modeled surface structure effects.

  • 38.
    Fredriksson, Ingemar
    et al.
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Perimed AB, Sweden.
    Saager, Rolf B.
    University of Calif Irvine, CA 92715 USA.
    Durkin, Anthony J.
    University of Calif Irvine, CA USA.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. University of Calif Irvine, CA 92715 USA.
    Evaluation of a pointwise microcirculation assessment method using liquid and multilayered tissue simulating phantoms2017In: Journal of Biomedical Optics, ISSN 1083-3668, E-ISSN 1560-2281, Vol. 22, no 11, article id 115004Article in journal (Refereed)
    Abstract [en]

    A fiber-optic probe-based instrument, designed for assessment of parameters related to microcirculation, red blood cell tissue fraction (f(RBC)), oxygen saturation (S-O2), and speed resolved perfusion, has been evaluated using state-of-the-art tissue phantoms. The probe integrates diffuse reflectance spectroscopy (DRS) at two source-detector separations and laser Doppler flowmetry, using an inverse Monte Carlo method for identifying the parameters of a multilayered tissue model. Here, we characterize the accuracy of the DRS aspect of the instrument using (1) liquid blood phantoms containing yeast and (2) epidermis-dermis mimicking solid-layered phantoms fabricated from polydimethylsiloxane, titanium oxide, hemoglobin, and coffee. The rootmean-square (RMS) deviations for f(RBC) for the two liquid phantoms were 11% and 5.3%, respectively, and 11% for the solid phantoms with highest hemoglobin signatures. The RMS deviation for SO2 was 5.2% and 2.9%, respectively, for the liquid phantoms, and 2.9% for the solid phantoms. RMS deviation for the reduced scattering coefficient (mus), for the solid phantoms was 15% (475 to 850 nm). For the liquid phantoms, the RMS deviation in average vessel diameter (D) was 1 mu m. In conclusion, the skin microcirculation parameters fRBC and SO2, as well as, mu(s) and D are estimated with reasonable accuracy. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.

  • 39.
    Henricson, Joakim
    et al.
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Clinical Chemistry and Pharmacology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Local Health Care Services in Central Östergötland, Department of Emergency Medicine in Linköping.
    Sjöberg, Folke
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Prevention, Rehabilitation and Community Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, ANOPIVA US. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery.
    Iredahl, Fredrik
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Prevention, Rehabilitation and Community Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Primary Care Center, Primary Health Care Center Åby.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Björk Wilhelms, Daniel
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Clinical Chemistry and Pharmacology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Local Health Care Services in Central Östergötland, Department of Emergency Medicine in Linköping.
    In vivo dose-response analysis to acetylcholine: pharmacodynamic assessment by polarized reflectance spectroscopy2022In: Scientific Reports, E-ISSN 2045-2322, Vol. 12, no 1, article id 6594Article in journal (Refereed)
    Abstract [en]

    Transdermal iontophoresis offers an in vivo alternative to the strain-gauge model for measurement of vascular function but is limited due to lack of technical solutions for outcome assessment. The aims of this study were to, after measurement by polarized reflectance spectroscopy (PRS), use pharmacodynamic dose-response analysis on responses to different concentrations of acetylcholine (ACh); and to examine the effect of three consecutively administered iontophoretic current pulses. The vascular responses in 15 healthy volunteers to iontophorised ACh (5 concentrations, range 0.0001% to 1%, three consecutive pulses of 0.02 mA for 10 min each) were recorded using PRS. Data were fitted to a four-parameter logistic dose response model and compared. Vascular responses were quantifiable by PRS. Similar pharmacodynamic dose response curves could be generated irrespectively of the ACh concentration. Linearly increasing maximum vasodilatory responses were registered with increasing concentration of ACh. A limited linear dose effect of the concentration of ACh was seen between pulses. Polarized reflectance spectroscopy is well suited for measuring vascular responses to iontophoretically administrated ACh. The results of this study support further development of iontophoresis as a method to study vascular function and pharmacological responses in vivo.

    Download full text (pdf)
    fulltext
  • 40.
    Henriquez, Pedro
    et al.
    University of Central Lancashire, England.
    Matuszewski, Bogdan J.
    University of Central Lancashire, England.
    Andreu-Cabedo, Yasmina
    University of Central Lancashire, England.
    Bastiani, Luca
    CNR, Italy.
    Colantonio, Sara
    CNR, Italy.
    Coppini, Giuseppe
    CNR, Italy.
    DAcunto, Mario
    CNR, Italy.
    Favilla, Riccardo
    CNR, Italy.
    Germanese, Danila
    CNR, Italy.
    Giorgi, Daniela
    CNR, Italy.
    Marraccini, Paolo
    CNR, Italy.
    Martinelli, Massimo
    CNR, Italy.
    Morales, Maria-Aurora
    CNR, Italy.
    Antonietta Pascali, Maria
    CNR, Italy.
    Righi, Marco
    CNR, Italy.
    Salvetti, Ovidio
    CNR, Italy.
    Larsson, Marcus
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Randeberg, Lise
    Norwegian University of Science and Technology, Norway.
    Bjorgan, Asgeir
    Norwegian University of Science and Technology, Norway.
    Giannakakis, Giorgos
    Fdn Research and Technology Hellas, Greece.
    Pediaditis, Matthew
    Fdn Research and Technology Hellas, Greece.
    Chiarugi, Franco
    Fdn Research and Technology Hellas, Greece.
    Christinaki, Eirini
    Fdn Research and Technology Hellas, Greece.
    Marias, Kostas
    Fdn Research and Technology Hellas, Greece.
    Tsiknakis, Manolis
    Fdn Research and Technology Hellas, Greece; Technology Educ Institute Crete, Greece.
    Mirror Mirror on the Wall ... An Unobtrusive Intelligent Multisensory Mirror for Well-Being Status Self-Assessment and Visualization2017In: IEEE transactions on multimedia, ISSN 1520-9210, E-ISSN 1941-0077, Vol. 19, no 7, p. 1467-1481Article in journal (Refereed)
    Abstract [en]

    A persons well-being status is reflected by their face through a combination of facial expressions and physical signs. The SEMEOTICONS project translates the semeiotic code of the human face into measurements and computational descriptors that are automatically extracted from images, videos, and three-dimensional scans of the face. SEMEOTICONS developed a multisensory platform in the form of a smart mirror to identify signs related to cardio-metabolic risk. The aim was to enable users to self-monitor their well-being status over time and guide them to improve their lifestyle. Significant scientific and technological challenges have been addressed to build the multisensory mirror, from touchless data acquisition, to real-time processing and integration of multimodal data.

  • 41.
    Hultman, Martin
    et al.
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Aronsson, Sofie
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Fredriksson, Ingemar
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Perimed AB, Järfälla, Stockholm, Sweden.
    Zachrisson, Helene
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Region Östergötland, Heart Center, Department of Clinical Physiology in Linköping. Linköping University, Faculty of Medicine and Health Sciences.
    Pärsson, Håkan N.
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences.
    Larsson, Marcus
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Comprehensive imaging of microcirculatory changes in the foot during endovascular intervention - A technical feasibility study2022In: Microvascular Research, ISSN 0026-2862, E-ISSN 1095-9319, Vol. 141, article id 104317Article in journal (Refereed)
    Abstract [en]

    Chronic limb-threatening ischemia (CLTI) has a major impact on patient's lives and is associated with a heavy health care burden with high morbidity and mortality. Treatment by endovascular intervention is mostly based on macrocirculatory information from angiography and does not consider the microcirculation. Despite successful endovascular intervention according to angiographic criteria, a proportion of patients fail to heal ischemic lesions. This might be due to impaired microvascular perfusion and variations in the supply to different angiosomes. Non-invasive optical techniques for microcirculatory perfusion and oxygen saturation imaging have the potential to provide the interventionist with additional information in real-time, supporting clinical decisions during the intervention. This study presents a novel multimodal imaging system, based on multi-exposure laser speckle contrast imaging and multi-spectral imaging, for continuous use during endovascular intervention. The results during intervention display spatiotemporal changes in the microcirculation compatible with expected physiological reactions during balloon dilation, with initially induced ischemia followed by a restored perfusion, and local administration of a vasodilator inducing hyperemia. We also present perioperative and postoperative follow-up measurements with a pulsatile microcirculation perfusion. Finally, cases of spatial heterogeneity in the observed oxygen saturation and perfusion are discussed. In conclusion, this technical feasibility study shows the potential of the methodology to characterize changes in microcirculation before, during, and after endovascular intervention.

    Download full text (pdf)
    fulltext
  • 42.
    Hultman, Martin
    et al.
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Fredriksson, Ingemar
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Perimed AB, Järfälla-Stockholm, Sweden.
    Larsson, Marcus
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Alvandpour, Atila
    Linköping University, Department of Electrical Engineering, Integrated Circuits and Systems. Linköping University, Faculty of Science & Engineering.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    A 15.6 frames per second 1 megapixel Multiple Exposure Laser Speckle Contrast Imaging setup2018In: Journal of Biophotonics, ISSN 1864-063X, E-ISSN 1864-0648, Vol. 11, no 2, article id e201700069Article in journal (Refereed)
    Abstract [en]

    A multiple exposure laser speckle contrast imaging (MELSCI) setup for visualizing blood perfusion was developed using a field programmable gate array (FPGA), connected to a 1000 frames per second (fps) 1-megapixel camera sensor. Multiple exposure time images at 1, 2, 4, 8, 16, 32 and 64 milliseconds were calculated by cumulative summation of 64 consecutive snapshot images. The local contrast was calculated for all exposure times using regions of 4 × 4 pixels. Averaging of multiple contrast images from the 64-millisecond acquisition was done to improve the signal-to-noise ratio. The results show that with an effective implementation of the algorithm on an FPGA, contrast images at all exposure times can be calculated in only 28 milliseconds. The algorithm was applied to data recorded during a 5 minutes finger occlusion. Expected contrast changes were found during occlusion and the following hyperemia in the occluded finger, while unprovoked fingers showed constant contrast during the experiment. The developed setup is capable of massive data processing on an FPGA that enables processing of MELSCI data in 15.6 fps (1000/64 milliseconds). It also leads to improved frame rates, enhanced image quality and enables the calculation of improved microcirculatory perfusion estimates compared to single exposure time systems.

    Download full text (pdf)
    fulltext
  • 43.
    Hultman, Martin
    et al.
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Fredriksson, Ingemar
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Perimed AB, Järfälla-Stockholm, Sweden.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Larsson, Marcus
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Evaluation of a high framerate multi-exposure laser speckle contrast imaging setup2018In: High-Speed Biomedical Imaging and Spectroscopy III: Toward Big Data Instrumentation and Management / [ed] Kevin K. Tsia, Keisuke Goda, SPIE - International Society for Optical Engineering, 2018Conference paper (Refereed)
    Abstract [en]

    We present a first evaluation of a new multi-exposure laser speckle contrast imaging (MELSCI) system for assessing spatial variations in the microcirculatory perfusion. The MELSCI system is based on a 1000 frames per second 1-megapixel camera connected to a field programmable gate arrays (FPGA) capable of producing MELSCI data in realtime. The imaging system is evaluated against a single point laser Doppler flowmetry (LDF) system during occlusionrelease provocations of the arm in five subjects. Perfusion is calculated from MELSCI data using current state-of-the-art inverse models. The analysis displayed a good agreement between measured and modeled data, with an average error below 6%. This strongly indicates that the applied model is capable of accurately describing the MELSCI data and that the acquired data is of high quality. Comparing readings from the occlusion-release provocation showed that the MELSCI perfusion was significantly correlated (R=0.83) to the single point LDF perfusion, clearly outperforming perfusion estimations based on a single exposure time. We conclude that the MELSCI system provides blood flow images of enhanced quality, taking us one step closer to a system that accurately can monitor dynamic changes in skin perfusion over a large area in real-time

    Download full text (pdf)
    fulltext
  • 44.
    Hultman, Martin
    et al.
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Larsson, Marcus
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Fredriksson, Ingemar
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Perimed AB, Sweden.
    Real-time video-rate perfusion imaging using multi-exposure laser speckle contrast imaging and machine learning2020In: Journal of Biomedical Optics, ISSN 1083-3668, E-ISSN 1560-2281, Vol. 25, no 11, article id 116007Article in journal (Refereed)
    Abstract [en]

    Significance: Multi-exposure laser speckle contrast imaging (MELSCI) estimates microcirculatory blood perfusion more accurately than single-exposure LSCI. However, the technique has been hampered by technical limitations due to massive data throughput requirements and nonlinear inverse search algorithms, limiting it to an offline technique where data must be postprocessed. Aim: To present an MELSCI system capable of continuous acquisition and processing of MELSCI data, enabling real-time video-rate perfusion imaging with high accuracy. Approach: The MELSCI algorithm was implemented in programmable hardware (field programmable gate array) closely interfaced to a high-speed CMOS sensor for real-time calculation. Perfusion images were estimated in real-time from the MELSCI data using an artificial neural network trained on simulated data. The MELSCI perfusion was compared to two existing single-exposure metrics both quantitatively in a controlled phantom experiment and qualitatively in vivo. Results: The MELSCI perfusion shows higher signal dynamics compared to both single-exposure metrics, both spatially and temporally where heartbeat-related variations are resolved in much greater detail. The MELSCI perfusion is less susceptible to measurement noise and is more linear with respect to laser Doppler perfusion in the phantom experiment (R-2 = 0.992). Conclusions: The presented MELSCI system allows for real-time acquisition and calculation of high-quality perfusion at 15.6 frames per second. (C) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.

    Download full text (pdf)
    fulltext
  • 45.
    Hultman, Martin
    et al.
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Perimed AB, Sweden.
    Larsson, Marcus
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Fredriksson, Ingemar
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Perimed AB, Sweden.
    Speed-resolved perfusion imaging using multi-exposure laser speckle contrast imaging and machine learning2023In: Journal of Biomedical Optics, ISSN 1083-3668, E-ISSN 1560-2281, Vol. 28, no 3, article id 036007Article in journal (Refereed)
    Abstract [en]

    Significance: Laser speckle contrast imaging (LSCI) gives a relative measure of microcirculatory perfusion. However, due to the limited information in single-exposure LSCI, models are inaccurate for skin tissue due to complex effects from e.g. static and dynamic scatterers, multiple Doppler shifts, and the speed-distribution of blood. It has been demonstrated how to account for these effects in laser Doppler flowmetry (LDF) using inverseMonte Carlo (MC) algorithms. This allows for a speed-resolved perfusion measure in absolute units %RBC x mm/s, improving the physiological interpretation of the data. Until now, this has been limited to a single-point LDF technique but recent advances inmulti-exposure LSCI (MELSCI) enable the analysis in an imaging modality. Aim: To present a method for speed-resolved perfusion imaging in absolute units %RBC x mm/s, computed from multi-exposure speckle contrast images. Approach: An artificial neural network (ANN) was trained on a large simulated dataset of multi- exposure contrast values and corresponding speed-resolved perfusion. The dataset was generated using MC simulations of photon transport in randomized skin models covering a wide range of physiologically relevant geometrical and optical tissue properties. The ANN was evaluated on in vivo data sets captured during an occlusion provocation. Results: Speed-resolved perfusion was estimated in the three speed intervals 0 to 1 mm/s, 1 to 10 mm/s, and &gt; 10 mm/s, with relative errors 9.8%, 12%, and 19%, respectively. The perfusion had a linear response to changes in both blood tissue fraction and blood flow speed and was less affected by tissue properties compared with single-exposure LSCI. The image quality was subjectively higher compared with LSCI, revealing previously unseen macro- and microvascular structures. Conclusions: The ANN, trained on modeled data, calculates speed-resolved perfusion in absolute units from multi-exposure speckle contrast. This method facilitates the physiological interpretation of measurements using MELSCI and may increase the clinical impact of the technique. (c) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.

    Download full text (pdf)
    fulltext
  • 46.
    Hultman, Martin
    et al.
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Perimed AB, Sweden.
    Larsson, Marcus
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Henricson, Joakim
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Clinical Chemistry and Pharmacology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Local Health Care Services in Central Östergötland, Department of Emergency Medicine in Linköping.
    Iredahl, Fredrik
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Prevention, Rehabilitation and Community Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Primary Care Center, Primary Health Care Center Åby.
    Fredriksson, Ingemar
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Perimed AB, Sweden.
    Flowmotion imaging analysis of spatiotemporal variations in skin microcirculatory perfusion2023In: Microvascular Research, ISSN 0026-2862, E-ISSN 1095-9319, Vol. 146, article id 104456Article in journal (Refereed)
    Abstract [en]

    Background: Flowmotion is the rhythmical variations in measured skin blood flow that arise due to global and local regulation of the vessels and can be studied using frequency analysis of time-resolved blood flow signals. It has the potential to reveal clinically useful information about microvascular diseases, but the spatial heteroge-neous nature of the microvasculature makes interpretation difficult. However, recent technological advances in multi-exposure laser speckle contrast imaging (MELSCI) enable new possibilities for simultaneously studying spatial and temporal variations in flowmotion.Aim: To develop a method for flowmotion analysis of MELSCI perfusion images. Furthermore, to investigate the spatial and temporal variations in flowmotion in forearm baseline skin perfusion.Method: In four healthy subjects, forearm skin perfusion was imaged at 15.6 fps for 10 min in baseline. The time -trace signal in each pixel was analyzed using the wavelet transform and summarized in five physiologically relevant frequency intervals, resulting in images of flowmotion. Furthermore, a method for reducing the effect of motion artifacts in the flowmotion analysis was developed.Results: The flowmotion images displayed patterns of high spatial heterogeneity that differed between the fre-quency intervals. The spatial variations in flowmotion, quantified as the coefficient of variation, was between 11 % and 31 % in four subjects. Furthermore, significant temporal variations in flowmotion were also observed, indicating the importance of a spatiotemporal analysis.Conclusion: The new imaging technique reveals significant spatial differences in flowmotion that cannot be ob-tained with single-point measurements. The results indicate that global statistics of flowmotion, such as the mean value in a large region of interest, is more representative of the microcirculation than data measured only in a single point. Therefore, imaging techniques have potential to increase the clinical usefulness of flowmotion analysis.

    Download full text (pdf)
    fulltext
  • 47. Humeau, A
    et al.
    Nilsson, Henrik
    Linköping University, The Institute of Technology. Linköping University, Department of Computer and Information Science, PELAB - Programming Environment Laboratory.
    Steenbergen, W
    Strömberg, Tomas
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Laser Doppler perfusion monitoring and imaging: Novel approaches2007In: Medical and Biological Engineering and Computing, ISSN 0140-0118, E-ISSN 1741-0444, Vol. 45, no 5, p. 421-435Article in journal (Refereed)
    Abstract [en]

    Laser Doppler flowmetry (LDF) is a non invasive method enabling the monitoring of microvascular blood flow, a very important marker of tissue health. This article gives an overview on the concept of LDF for microvascular perfusion monitoring and imaging. It first describes the theoretical background of the technique. Then, the benefits of LDF signal processing are shown through clinical examples: use of time-frequency representations and wavelets. Afterwards, the paper introduces novel approaches of velocity components. For that purpose, a work providing the determination of the velocities relative contribution in physiologically relevant units (mm/s) is presented. Imaging perfusion is also reviewed through methods based on laser speckle. The most prominent disadvantage of the latter devices being the time needed to produce a perfusion image, solutions are proposed in the last part of the paper. © International Federation for Medical and Biological Engineering 2007.

  • 48.
    Häggblad, Erik
    et al.
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Larsson, Marcus
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Arildsson, Mikael
    Linköping University, Department of Biomedical Engineering.
    Strömberg, Tomas
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Salerud, Göran
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Reflection Spectroscopy of Analgesized Skin2001In: Microvascular Research, ISSN 0026-2862, E-ISSN 1095-9319, Vol. 62, no 3, p. 392-400 Article in journal (Refereed)
    Abstract [en]

    Analgesized skin, when subjected to heat stimuli, responds by increasing skin perfusion. This response does not originate from increased perfusion in superficial capillaries, but rather in the deeper lying vessels. The aim of this study was to assess changes in blood chromophore content, measured by reflection spectroscopy, in relation to the perfusion increase, especially regarding the chromophores oxyhemoglobin and deoxyhemoglobin. Eleven normal subjects were treated with analgesic cream (EMLA) and placebo for 20, 40, 60, 120, and 180 min. Individual reactions to local heating were classified as responses if the change in reflection data or the change in perfusion, as measured by laser Doppler blood flowmetry, exceeded 2 standard deviations of normal variation. The increase in blood perfusion or in blood content gave rise to an increased absorption, interpreted as an increase due mainly to the chromophore oxyhemoglobin. The number of responses increased with increased treatment time for EMLA-treated areas. In general, there was a good agreement between both methods; 44 of 55 classifications coincided for the two methods used. In conclusion, analgesized forearm skin, which had been exposed to local heating, responded with an elevated perfusion consisting of oxygenated blood. This strengthens the hypothesis that the flow increase occurs through dilatation of larger deeper lying skin vessels and not in the capillaries.

  • 49.
    Häggblad, Erik
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Larsson, Marcus
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Arildsson, Mikael
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Salerud, Göran
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Strömberg, Tomas
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Reflektionsspektroskopi på EML-behandlad och värmeprovocerad hud2000In: Svenska läkarsällskapets Riksstämma,2000, 2000, p. 250-250Conference paper (Other academic)
  • 50.
    Häggblad, Erik
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Larsson, Marcus
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Arildsson, Mikael
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Strömberg, Tomas
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Reflectance spectroscopy of analgesized skin after local healing2000In: CNVD,2000, 2000Conference paper (Refereed)
123 1 - 50 of 121
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf