liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Alvbrant, Joakim
    et al.
    Linköping University, Department of Electrical Engineering. Linköping University, Faculty of Science & Engineering.
    Keshmiri, Vahid
    Linköping University, Department of Electrical Engineering, Information Coding. Linköping University, Faculty of Science & Engineering.
    Wikner, Jacob
    Linköping University, Department of Electrical Engineering, Integrated Circuits and Systems. Linköping University, Faculty of Science & Engineering.
    Transfer Characteristics and Bandwidth Limitation in a Linear-Drift Memristor Model2015In: 2015 EUROPEAN CONFERENCE ON CIRCUIT THEORY AND DESIGN (ECCTD), IEEE , 2015, p. 332-335Conference paper (Refereed)
    Abstract [en]

    The linear-drift memristor model, suggested by HP Labs a few years ago, is used in this work together with two window functions. From the equations describing the memristor model, the transfer characteristics of a memristor is formulated and analyzed. A first-order estimation of the cut-off frequency is shown, that illustrates the bandwidth limitation of the memristor and how it varies with some of its physical parameters. The design space is elaborated upon and it is shown that the state speed, the variation of the doped and undoped regions of the memristor, is inversely proportional to the physical length, and depth of the device. The transfer characteristics is simulated for Joglekar-Wolf, and Biolek window functions and the results are analyzed. The Joglekar-Wolf window function causes a distinct behavior in the tranfer characteristics at cut-off frequency. The Biolek window function on the other hand gives a smooth state transfer function, at the cost of loosing the one-to-one mapping between charge and state. We also elaborate on the design constraints derived from the transfer characteristics.

  • 2.
    Keshmiri, Vahid
    et al.
    Linköping University, Department of Electrical Engineering, Information Coding. Linköping University, Faculty of Science & Engineering.
    Forchheimer, Robert
    Linköping University, Department of Electrical Engineering, Information Coding. Linköping University, Faculty of Science & Engineering.
    Tu, Deyu
    Linköping University, Department of Electrical Engineering, Information Coding. Linköping University, Faculty of Science & Engineering.
    Westerberg, David
    Acreo Swedish ICT AB, Sweden.
    Sandberg, Mats
    Acreo Swedish ICT AB, Sweden.
    The Applications of OECTs in Supercapacitor Balancing Circuits2016In: 2016 7TH INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN FOR THIN-FILM TRANSISTOR TECHNOLOGIES (CAD-TFT), IEEE , 2016, p. 23-23Conference paper (Refereed)
    Abstract [en]

    In this paper, we investigate using OECTs in differential amplifiers and cell voltage equalizers for supercapacitor balancing circuits. The differential amplifier based on OECTs can sense voltage difference and the voltage equalizer consisting of a microcontroller and OECTs can be used to charge supercapacitors to desired voltages.

  • 3.
    Keshmiri, Vahid
    et al.
    Linköping University, Department of Electrical Engineering, Information Coding. Linköping University, Faculty of Science & Engineering.
    Larsen, C.
    Umeå University, Sweden.
    Edman, L.
    Umeå University, Sweden.
    Forchheimer, Robert
    Linköping University, Department of Electrical Engineering, Information Coding. Linköping University, Faculty of Science & Engineering.
    Tu, Deyu
    Linköping University, Department of Electrical Engineering, Information Coding. Linköping University, Faculty of Science & Engineering.
    A Current Supply with Single Organic Thin-Film Transistor for Charging Supercapacitors2016In: THIN FILM TRANSISTORS 13 (TFT 13), ELECTROCHEMICAL SOC INC , 2016, Vol. 75, no 10, p. 217-222Conference paper (Refereed)
    Abstract [en]

    We present a current supply, comprising a single organic thin-film transistor (OTFT), for the charging of supercapacitors. The current supply takes power from the electric grid (115 V AC, US standard), converts the AC voltage to a quasi-constant DC current (similar to 0.1 mA) regardless of the impedance of the load, and charges the supercapacitor. Solution-processed OTFTs based on the popular polymeric semiconductor poly(3-hexylthiophene- 2,5-diyl) have been developed to rectify the 115 V AC voltage. A diodeconfigured OTFT was used as a half-wave rectifier. The single OTFT current supply was demonstrated to charge a 220 mF supercapacitor to 1 V directly using 115 V AC voltage as the input. This work paves the road towards all-printable supercapacitor energy-storage systems with integrated chargers, which enable direct charging from a power outlet.

  • 4.
    Keshmiri, Vahid
    et al.
    Linköping University, Department of Electrical Engineering, Information Coding. Linköping University, Faculty of Science & Engineering.
    Westerberg, David
    Acreo Swedish ICT AB, Sweden.
    Andersson Ersman, Peter
    Acreo Swedish ICT AB, Sweden.
    Sandberg, Mats
    Acreo Swedish ICT AB, Sweden.
    Forchheimer, Robert
    Linköping University, Department of Electrical Engineering, Information Coding. Linköping University, Faculty of Science & Engineering.
    Tu, Deyu
    Linköping University, Department of Electrical Engineering, Information Coding. Linköping University, Faculty of Science & Engineering.
    A Silicon-Organic Hybrid Voltage Equalizer for Supercapacitor Balancing2017In: IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, ISSN 2156-3357, Vol. 7, no 1, p. 114-122Article in journal (Refereed)
    Abstract [en]

    Cell voltage equalizers are an important part in electric energy storage systems comprising series-connected cells, for example, supercapacitors. Hybrid electronics with silicon chips and printed devices enables electronic systems with moderate performance and low cost. This paper presents a silicon-organic hybrid voltage equalizer to balance and protect series-connected supercapacitor cells during charging. Printed organic electrochemical transistors with conducting polymer poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT: PSS) are utilized to bypass excess current when the supercapacitor cells are fully charged to desired voltages. In this study, low-cost silicon microcontrollers (ATtiny85) are programmed to sense voltages across the supercapacitor cells and control the organic electrochemical transistors to bypass charging current when the voltages exceed 1 V. Experimental results show that the hybrid equalizer with the organic electrochemical transistors works in dual-mode, switched-transistor mode or constant-resistor mode, depending on the charging current applied (0.3-100 mA). With the voltage equalizer, capacitors are charged equally regardless of their capacitances. This work demonstrates a low-cost hybrid solution for supercapacitor balancing modules at large-scale packs.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf