liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Grek, Viktoria
    et al.
    Linköping University, Department of Computer and Information Science, The Division of Statistics and Machine Learning.
    Gabrielsson, Molinia
    Linköping University, Department of Computer and Information Science, The Division of Statistics and Machine Learning.
    Analys av nutidens tågindelning: Ett uppdrag framtaget av Trafikverket2018Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    The information used in this paper comes from Trafikverket's delivery monitoring system. It consists of information about planned train missions on the Swedish railways for the years 2014 to 2017 during week four (except planned train missions on Roslagsbanan and Saltsjöbanan).

    Trafikanalys with help from Trafikverket presents public statistics for short-distance trains, middle-distance trains and long-distance trains on Trafikanalys website. The three classes of trains have no scientific basis. The purpose of this study is therefore to analyze if today's classes of trains can be used and which variables that have importance for the classification. The purpose of this study is also to analyze if there is a better way to categorize the classes of trains when Trafikanalys publishes public statistics. The statistical methods that are used in this study are decision tree, neural network and hierarchical clustering.

    The result obtained from the decision tree was a 92.51 percent accuracy for the classification of Train type. The most important variables for Train type were Train length, Planned train kilometers and Planned km/h.Neural networks were used to investigate whether this method could also provide a similar result as the decision tree too strengthening the reliability. Neural networks got an 88 percent accuracy when classifying Train type. Based on these two results, it indicates that the larger proportion of train assignments could be classified to the correct Train Type. This means that the current classification of Train type works when Trafikanalys presents official statistics.

    For the new train classification, three groups were analyzed when hierarchical clustering was used. These three groups were not the same as the group's short-distance trains, middle-distance trains and long-distance trains. Because the new divisions have blended the various passenger trains, this result does not help to find a better subdivision that can be used for when Trafikanalys presents official statistics.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf