liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
1 - 24 av 24
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Bai, Sai
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Univ Oxford, England.
    Da, Peimei
    Univ Oxford, England.
    Li, Cheng
    Univ Bayreuth, Germany; Xiamen Univ, Peoples R China.
    Wang, Zhiping
    Univ Oxford, England.
    Yuan, Zhongcheng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Fu, Fan
    Empa-Swiss Federal Laboratories for Materials Science and Technology, Duebendorf, Switzerland.
    Kawecki, Maciej
    Empa, Switzerland; Univ Basel, Switzerland.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Sakai, Nobuya
    Univ Oxford, England.
    Wang, Jacob Tse-Wei
    CSIRO Energy, Australia.
    Huettner, Sven
    Univ Bayreuth, Germany.
    Buecheler, Stephan
    Empa Swiss Fed Labs Mat Sci and Technol, Switzerland.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Univ Oxford, England.
    Snaith, Henry J.
    Univ Oxford, England.
    Planar perovskite solar cells with long-term stability using ionic liquid additives2019Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 571, nr 7764, s. 245-250Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Solar cells based on metal halide perovskites are one of the most promising photovoltaic technologies(1-4). Over the past few years, the long-term operational stability of such devices has been greatly improved by tuning the composition of the perovskites(5-9), optimizing the interfaces within the device structures(10-13), and using new encapsulation techniques(14,15). However, further improvements are required in order to deliver a longer-lasting technology. Ion migration in the perovskite active layer-especially under illumination and heat-is arguably the most difficult aspect to mitigate(16-18). Here we incorporate ionic liquids into the perovskite film and thence into positive-intrinsic-negative photovoltaic devices, increasing the device efficiency and markedly improving the long-term device stability. Specifically, we observe a degradation in performance of only around five per cent for the most stable encapsulated device under continuous simulated full-spectrum sunlight for more than 1,800 hours at 70 to 75 degrees Celsius, and estimate that the time required for the device to drop to eighty per cent of its peak performance is about 5,200 hours. Our demonstration of long-term operational, stable solar cells under intense conditions is a key step towards a reliable perovskite photovoltaic technology.

    Ladda ner fulltext (pdf)
    fulltext
  • 2.
    Bai, Sai
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Yuan, Zhongcheng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Colloidal metal halide perovskite nanocrystals: synthesis, characterization, and applications2016Ingår i: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 4, nr 18, s. 3898-3904Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Colloidal metal halide perovskite nanocrystals (NCs) have emerged as promising materials for optoelectronic devices and received considerable attention recently. Their superior photoluminescence (PL) properties provide significant advantages for lighting and display applications. In this Highlight, we discuss recent developments in the design and chemical synthesis of colloidal perovskite NCs, including both organic-inorganic hybrid and all inorganic perovskite NCs. We review the excellent PL properties and current optoelectronic applications of these perovskite NCs. In addition, critical challenges that currently limit the applicability of perovskite NCs are discussed, and prospects for future directions are proposed.

    Ladda ner fulltext (pdf)
    fulltext
  • 3.
    Bao, Chunxiong
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten. Nanjing Univ, Peoples R China.
    Yuan, Zhongcheng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten. Univ Oxford, England.
    Niu, Wenxiao
    Nanjing Univ, Peoples R China.
    Yang, Jie
    Nanjing Tech Univ, Peoples R China; Nanjing Tech Univ, Peoples R China.
    Wang, Zijian
    Nanjing Univ, Peoples R China.
    Yu, Tao
    Nanjing Univ, Peoples R China.
    Wang, Jianpu
    Nanjing Tech Univ, Peoples R China; Nanjing Tech Univ, Peoples R China; Changzhou Univ, Peoples R China; Changzhou Univ, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten. Westlake Univ, Peoples R China; Westlake Univ, Peoples R China.
    A multifunctional display based on photo-responsive perovskite light-emitting diodes2024Ingår i: NATURE ELECTRONICS, ISSN 2520-1131Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Current display screens are typically only used for information display, but can have a range of different sensors integrated into them for functions such as touch control, ambient light sensing and fingerprint sensing. Photo-responsive light-emitting diodes (LEDs), which can display information and respond to light excitation, could be used to develop future ultra-thin and large screen-to-body ratio screens. However, photo-response is difficult to achieve with conventional display technologies. Here, we report a multifunctional display that uses photo-responsive metal halide perovskite LEDs as pixels. The perovskite LED display can be simultaneously used as a touch screen, ambient light sensor and image sensor (including for fingerprint drawing) without integrating any additional sensors. The light-to-electricity conversion efficiency of the pixels also allow the display to act as a photovoltaic device that can charge the equipment. Photo-responsive metal halide perovskite light-emitting diodes can be used to create a multifunctional display that can function as a touch screen, ambient light sensor and image sensor.

  • 4.
    Giovanni, David
    et al.
    Nanyang Technol Univ, Singapore; Energy Res Inst NTU ERI N, Singapore.
    Lim, Jia Wei Melvin
    Nanyang Technol Univ, Singapore.
    Yuan, Zhongcheng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Lim, Swee Sien
    Nanyang Technol Univ, Singapore.
    Righetto, Marcello
    Nanyang Technol Univ, Singapore.
    Qing, Jian
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Qiannan
    Nanyang Technol Univ, Singapore.
    Dewi, Herlina Arianita
    Energy Res Inst NTU ERI N, Singapore.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Mhaisalkar, Subodh Gautam
    Energy Res Inst NTU ERI N, Singapore; Nanyang Technol Univ, Singapore.
    Mathews, Nripan
    Energy Res Inst NTU ERI N, Singapore; Nanyang Technol Univ, Singapore.
    Sum, Tze Chien
    Nanyang Technol Univ, Singapore.
    Ultrafast long-range spin-funneling in solution-processed Ruddlesden-Popper halide perovskites2019Ingår i: Nature Communications, E-ISSN 2041-1723, Vol. 10, artikel-id 3456Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Room-temperature spin-based electronics is the vision of spintronics. Presently, there are few suitable material systems. Herein, we reveal that solution-processed mixed-phase Ruddlesden-Popper perovskite thin-films transcend the challenges of phonon momentum-scattering that limits spin-transfer in conventional semiconductors. This highly disordered system exhibits a remarkable efficient ultrafast funneling of photoexcited spin-polarized excitons from two-dimensional (2D) to three-dimensional (3D) phases at room temperature. We attribute this efficient exciton relaxation pathway towards the lower energy states to originate from the energy transfer mediated by intermediate states. This process bypasses the omnipresent phonon momentum-scattering in typical semiconductors with stringent band dispersion, which causes the loss of spin information during thermalization. Film engineering using graded 2D/3D perovskites allows unidirectional out-of-plane spin-funneling over a thickness of similar to 600 nm. Our findings reveal an intriguing family of solution-processed perovskites with extraordinary spin-preserving energy transport properties that could reinvigorate the concepts of spin-information transfer.

    Ladda ner fulltext (pdf)
    fulltext
  • 5.
    Giuri, Antonella
    et al.
    CNR Nanotec, Italy; Univ Salento, Italy.
    Yuan, Zhongcheng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Miao, Yanfeng
    Nanjing Tech Univ Nanjing Tech, Peoples R China.
    Wang, Jianpu
    Nanjing Tech Univ Nanjing Tech, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Sestu, Nicola
    Univ Cagliari, Italy.
    Saba, Michele
    Univ Cagliari, Italy.
    Bongiovanni, Giovanni
    Univ Cagliari, Italy.
    Colella, Silvia
    CNR Nanotec, Italy; Univ Salento, Italy.
    Corcione, Carola Esposito
    Univ Salento, Italy.
    Gigli, Giuseppe
    CNR Nanotec, Italy.
    Listorti, Andrea
    CNR Nanotec, Italy; Univ Salento, Italy.
    Rizzo, Aurora
    CNR Nanotec, Italy.
    Ultra-Bright Near-Infrared Perovskite Light-Emitting Diodes with Reduced Efficiency Roll-off2018Ingår i: Scientific Reports, E-ISSN 2045-2322, Vol. 8, artikel-id 15496Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Herein, an insulating biopolymer is exploited to guide the controlled formation of micro/nano-structure and physical confinement of alpha-delta mixed phase crystalline grains of formamidinium lead iodide (FAPbI(3)) perovskite, functioning as charge carrier concentrators and ensuring improved radiative recombination and photoluminescence quantum yield (PLQY). This composite material is used to build highly efficient near-infrared (NIR) FAPbI(3) Perovskite light-emitting diodes (PeLEDs) that exhibit a high radiance of 206.7 W/sr*m(2), among the highest reported for NIR-PeLEDs, obtained at a very high current density of 1000 mA/cm(2), while importantly avoiding the efficiency roll-off effect. In depth photophysical characterization allows to identify the possible role of the biopolymer in i) enhancing the radiative recombination coefficient, improving light extraction by reducing the refractive index, or ii) enhancing the effective optical absorption because of dielectric scattering at the polymer-perovskite interfaces. Our study reveals how the use of insulating matrixes for the growth of perovskites represents a step towards high power applications of PeLEDs.

    Ladda ner fulltext (pdf)
    fulltext
  • 6.
    Guo, Yuwei
    et al.
    Chinese Univ Hong Kong, Peoples R China.
    Apergi, Sofia
    Eindhoven Univ Technol, Netherlands.
    Li, Nan
    Chinese Univ Hong Kong, Peoples R China.
    Chen, Mengyu
    Chinese Univ Hong Kong, Peoples R China; Xiamen Univ, Peoples R China.
    Yin, Chunyang
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Yuan, Zhongcheng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Xie, Fangyan
    Sun Yat Sen Univ, Peoples R China.
    Brocks, Geert
    Eindhoven Univ Technol, Netherlands; Eindhoven Univ Technol, Netherlands; Univ Twente, Netherlands; Univ Twente, Netherlands.
    Tao, Shuxia
    Eindhoven Univ Technol, Netherlands; Eindhoven Univ Technol, Netherlands.
    Zhao, Ni
    Chinese Univ Hong Kong, Peoples R China.
    Phenylalkylammonium passivation enables perovskite light emitting diodes with record high-radiance operational lifetime: the chain length matters2021Ingår i: Nature Communications, E-ISSN 2041-1723, Vol. 12, nr 1, artikel-id 644Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Perovskite light emitting diodes suffer from poor operational stability, exhibiting a rapid decay of external quantum efficiency within minutes to hours after turn-on. To address this issue, we explore surface treatment of perovskite films with phenylalkylammonium iodide molecules of varying alkyl chain lengths. Combining experimental characterization and theoretical modelling, we show that these molecules stabilize the perovskite through suppression of iodide ion migration. The stabilization effect is enhanced with increasing chain length due to the stronger binding of the molecules with the perovskite surface, as well as the increased steric hindrance to reconfiguration for accommodating ion migration. The passivation also reduces the surface defects, resulting in a high radiance and delayed roll-off of external quantum efficiency. Using the optimized passivation molecule, phenylpropylammonium iodide, we achieve devices with an efficiency of 17.5%, a radiance of 1282.8 W sr(-1) m(-2) and a record T-50 half-lifetime of 130h under 100mAcm(-2). Perovskite light emitting diodes suffer from operational stability, showing rapid decay of performance within minutes to hours after turn-on. Here, the authors investigate how the steric and Coulomb interaction of ammonium passivation molecules with varying alkyl chain length can improve device stability by suppressing iodide ion migration.

    Ladda ner fulltext (pdf)
    fulltext
  • 7.
    Kuang, Chaoyang
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Hu, Zhang-Jun
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska fakulteten.
    Yuan, Zhongcheng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Wen, Kaichuan
    Nanjing Tech Univ, Peoples R China; Nanjing Tech Univ, Peoples R China.
    Qing, Jian
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Jinan Univ, Peoples R China.
    Kobera, Libor
    Czech Acad Sci, Czech Republic.
    Abbrent, Sabina
    Czech Acad Sci, Czech Republic.
    Brus, Jiri
    Czech Acad Sci, Czech Republic.
    Yin, Chunyang
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Wang, Heyong
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Xu, Weidong
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Wang, Jianpu
    Nanjing Tech Univ, Peoples R China; Nanjing Tech Univ, Peoples R China.
    Bai, Sai
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Critical role of additive-induced molecular interaction on the operational stability of perovskite light-emitting diodes2021Ingår i: Joule, E-ISSN 2542-4351, Vol. 5, nr 3, s. 618-630Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Despite rapid improvements in efficiency and brightness of perovskite light-emitting diodes (PeLEDs), the poor operational stability remains a critical challenge hindering their practical applications. Here, we demonstrate greatly improved operational stability of high-efficiency PeLEDs, enabled by incorporating dicarboxylic acids into the precursor for perovskite depositions. We reveal that the dicarboxylic acids efficiently eliminate reactive organic ingredients in perovskite emissive layers through an in situ amidation process, which is catalyzed by the alkaline zinc oxide substrate. The formed stable amides prohibit detrimental reactions between the perovskites and the charge injection layer underneath, stabilizing the perovskites and the interfacial contacts and ensuring the excellent operational stability of the resulting PeLEDs. Through rationally optimizing the amidation reaction in the perovskite emissive layers, we achieve efficient PeLEDs with a peak external quantum efficiency of 18.6% and a long half-life time of 682 h at 20 mA cm(-2), presenting an important breakthrough in PeLEDs.

    Ladda ner fulltext (pdf)
    fulltext
  • 8.
    Kumawat, Naresh Kumar
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Yuan, Zhongcheng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Bai, Sai
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Metal Doping/Alloying of Cesium Lead Halide Perovskite Nanocrystals and their Applications in Light-Emitting Diodes with Enhanced Efficiency and Stability2019Ingår i: Israel Journal of Chemistry, ISSN 0021-2148, Vol. 59, nr 8, s. 695-707Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Metal halide perovskite nanocrystals (NCs) have demonstrated great advances for light-emitting diodes (LEDs) applications, owing to their excellent optical, electrical properties and cost-effective solution-processing potentials. Tremendous progress has been made in perovskite NCs-based LEDs during the past several years, with the external quantum efficiency (EQE) boosted to over 20 %. Recently, metal doping/alloying strategy has been explored to finely tune the optoelectronic properties and enhance material stability of perovskite NCs, leading to further improved device efficiency and stability of the obtained perovskite NCs-based LEDs. In this review, we summarize recent progress on the metal doping/alloying of perovskite NCs and their applications in LEDs. We focus on the effects of different metal doping strategies on the structural and optoelectronic properties of the perovskite NCs. In addition, several works on high-performance LEDs based on metal doped/alloyed perovskite NCs with different light emission colours are highlighted. Finally, we present an outlook on employing metal doping/alloying strategies to further improve the device efficiency and stability of LEDs based on perovskite NCs.

    Ladda ner fulltext (pdf)
    fulltext
  • 9.
    Qing, Jian
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. City Univ Hong Kong, Peoples R China.
    Liu, Xiaoke
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Li, Mingjie
    Nanyang Technol Univ, Singapore.
    Liu, Feng
    Shanghai Jiao Tong University, Peoples Republic of China.
    Yuan, Zhongcheng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Tiukalova, Elizaveta
    Nanyang Technol Univ, Singapore.
    Yan, Zhibo
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Nanjing Univ, Peoples R China.
    Duchamp, Martial
    Nanyang Technol Univ, Singapore.
    Chen, Shi
    Nanyang Technol Univ, Singapore; ASTAR, Singapore.
    Wang, Yuming
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Bai, Sai
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Univ Oxford, England.
    Liu, Jun-Ming
    Nanjing Univ, Peoples R China.
    Snaith, Henry J.
    Univ Oxford, England.
    Lee, Chun-Sing
    City Univ Hong Kong, Peoples R China.
    Sum, Tze Chien
    Nanyang Technol Univ, Singapore.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Shanghai Jiao Tong Univ, Peoples R China; Univ Oxford, England.
    Aligned and Graded Type-II Ruddlesden-Popper Perovskite Films for Efficient Solar Cells2018Ingår i: Advanced Energy Materials, ISSN 1614-6832, E-ISSN 1614-6840, Vol. 8, nr 21, artikel-id 1800185Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Recently, Ruddlesden-Popper perovskites (RPPs) have attracted increasing interests due to their promising stability. However, the efficiency of solar cells based on RPPs is much lower than that based on 3D perovskites, mainly attributed to their poor charge transport. Herein, a simple yet universal method for controlling the quality of RPP films by a synergistic effect of two additives in the precursor solution is presented. RPP films achieved by this method show (a) high quality with uniform morphology, enhanced crystallinity, and reduced density of sub-bandgap states, (b) vertically oriented perovskite frameworks that facilitate efficient charge transport, and (c) type-II band alignment that favors self-driven charge separation. Consequently, a hysteresis-free RPP solar cell with a power conversion efficiency exceeding 12%, which is much higher than that of the control device (1.5%), is achieved. The findings will spur new developments in the fabrication of high-quality, aligned, and graded RPP films essential for realizing efficient and stable perovskite solar cells.

    Ladda ner fulltext (pdf)
    fulltext
  • 10.
    Qing, Jian
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Jinan Univ, Peoples R China.
    Ramesh, Sankaran
    Nanyang Technol Univ, Singapore; Nanyang Technol Univ, Singapore.
    Xu, Qiang
    Nanyang Technol Univ, Singapore.
    Liu, Xiaoke
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Wang, Heyong
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Yuan, Zhongcheng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Chen, Zhan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten. Jinan Univ, Peoples R China.
    Hou, Lintao
    Jinan Univ, Peoples R China.
    Sum, Tze Chien
    Nanyang Technol Univ, Singapore.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Spacer Cation Alloying in Ruddlesden-Popper Perovskites for Efficient Red Light-Emitting Diodes with Precisely Tunable Wavelengths2021Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 33, nr 49, artikel-id 2104381Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Perovskite light-emitting diodes (PeLEDs) have recently shown significant progress with external quantum efficiencies (EQEs) exceeding 20%. However, PeLEDs with pure-red (620-660 nm) light emission, an essential part for full-color displays, remain a great challenge. Herein, a general approach of spacer cation alloying is employed in Ruddlesden-Popper perovskites (RPPs) for efficient red PeLEDs with precisely tunable wavelengths. By simply tuning the alloying ratio of dual spacer cations, the thickness distribution of quantum wells in the RPP films can be precisely modulated without deteriorating their charge-transport ability and energy funneling processes. Consequently, efficient PeLEDs with tunable emissions between pure red (626 nm) and deep red (671 nm) are achieved with peak EQEs up to 11.5%, representing the highest values among RPP-based pure-red PeLEDs. This work opens a new route for color tuning, which will spur future developments of pure-red or even pure-blue PeLEDs with high performance.

    Ladda ner fulltext (pdf)
    fulltext
  • 11.
    Shi, Xiaobo
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Liu, Yuan
    Tech Univ Dresden, Germany.
    Yuan, Zhongcheng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xiaoke
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. South China Univ Technol, Peoples R China; Zhejiang Univ, Peoples R China.
    Miao, Yanfeng
    Nanjing Tech Univ NanjingTech, Peoples R China.
    Wang, Jianpu
    Nanjing Tech Univ NanjingTech, Peoples R China.
    Lenk, Simone
    Tech Univ Dresden, Germany.
    Reineke, Sebastian
    Tech Univ Dresden, Germany.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Optical Energy Losses in Organic-Inorganic Hybrid Perovskite Light-Emitting Diodes2018Ingår i: Advanced Optical Materials, ISSN 2162-7568, E-ISSN 2195-1071, Vol. 6, nr 17, artikel-id 1800667Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Light-emitting diodes (LEDs) based on organic-inorganic hybrid perovskites, in particular, 3D and quasi-2D ones, are in the fast development and their external quantum efficiencies (EQEs) have exceeded 10%, making them competitive candidates toward large-area and low-cost light-emitting applications allowing printing techniques. Similar to other LED categories, light out-coupling efficiency is an important parameter determining the EQE of perovskite LEDs (PeLEDs), which, however, is scarcely studied, limiting further efficiency improvement and understanding of PeLEDs. In this work, for the first time, optical energy losses in PeLEDs are investigated through systematic optical simulations, which reveal that the 3D and quasi-2D PeLEDs can achieve theoretically maximum EQEs of approximate to 25% and approximate to 20%, respectively, in spite of their high refractive indices. These results are consistent with the reported experimental data. This work presents primary understanding of the optical energy losses in PeLEDs and will spur new developments in the aspects of device engineering and light extraction techniques to boost the EQEs of PeLEDs.

    Ladda ner fulltext (pdf)
    Optical Energy Losses in Organic-Inorganic Hybrid Perovskite Light-Emitting Diodes
  • 12.
    Wang, Heyong
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Yu, Hongling
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Xu, Weidong
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Yuan, Zhongcheng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Yan, Zhibo
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Nanjing Univ, Peoples R China.
    Wang, Chuan Fei
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Liu, Jun-Ming
    Nanjing Univ, Peoples R China.
    Liu, Xiaoke
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. South China Univ Technol, Peoples R China; Zhejiang Univ, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Efficient perovskite light-emitting diodes based on a solution-processed tin dioxide electron transport layer2018Ingår i: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 6, nr 26, s. 6996-7002Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    To achieve high-performance perovskite light-emitting diodes (PeLEDs), an appropriate functional layer beneath the perovskite emissive layer is significantly important to modulate the morphology of the perovskite film and to facilitate charge injection and transport in the device. Herein, for the first time, we report efficient n-i-p structured PeLEDs using solution-processed SnO2 as an electron transport layer. Three-dimensional perovskites, such as CH(NH2)(2)PbI3 and CH3NH3PbI3, are found to be more chemically compatible with SnO2 than with commonly used ZnO. In addition, SnO2 shows good transparency, excellent morphology and suitable energy levels. These properties make SnO2 a promising candidate in both three-and low-dimensional PeLEDs, among which a high external quantum efficiency of 7.9% has been realized. Furthermore, interfacial materials that are widely used to improve the device performances of ZnO-based PeLEDs are also applied on SnO2-based PeLEDs and their effects have been systematically studied. In contrast to ZnO, SnO2 modified by these interfacial materials shows detrimental effects due to photoluminescence quenching.

    Ladda ner fulltext (pdf)
    fulltext
  • 13.
    Xu, Weidong
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, China.
    Hu, Qi
    Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, China.
    Bai, Sai
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Bao, Chunxiong
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Shenzhen University, Shenzhen, China.
    Miao, Yanfeng
    Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, China.
    Yuan, Zhongcheng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Borzda, Tetiana
    Center for Nano Science and Technology @Polimi, Istituto Italiano di Tecnologia, Milan, Italy.
    Barker, Alex J.
    Center for Nano Science and Technology @Polimi, Istituto Italiano di Tecnologia, Milan, Italy.
    Tyukalova, Elizaveta
    School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore, Singapore.
    Hu, Zhang-Jun
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska fakulteten.
    Kawecki, Maciej
    Laboratory for Nanoscale Materials Science, Empa, Dubendorf, Switzerland; Department of Physics, University of Basel, Basel, Switzerland.
    Wang, Heyong
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Yan, Zhibo
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Laboratory of Solid State Microstructures and Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, P. R. China.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Shi, Xiaobo
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Uvdal, Kajsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Zhang, Wenjing
    International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Shenzhen University, Shenzhen, China.
    Duchamp, Martial
    School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore, Singapore.
    Liu, Jun-Ming
    Laboratory of Solid State Microstructures and Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, P. R. China.
    Petrozza, Annamaria
    Center for Nano Science and Technology @Polimi, Istituto Italiano di Tecnologia, Milan, Italy.
    Wang, Jianpu
    Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, China.
    Liu, Li-Min
    Beijing Computational Science Research Center, Beijing, China; School of Physics, Beihang University, Beijing, China.
    Huang, Wei
    Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, China; Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), Xi’an, China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Rational molecular passivation for high-performance perovskite light-emitting diodes2019Ingår i: Nature Photonics, ISSN 1749-4885, E-ISSN 1749-4893, Vol. 13, nr 6, s. 418-424Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A major efficiency limit for solution-processed perovskite optoelectronic devices, for example light-emitting diodes, is trap-mediated non-radiative losses. Defect passivation using organic molecules has been identified as an attractive approach to tackle this issue. However, implementation of this approach has been hindered by a lack of deep understanding of how the molecular structures influence the effectiveness of passivation. We show that the so far largely ignored hydrogen bonds play a critical role in affecting the passivation. By weakening the hydrogen bonding between the passivating functional moieties and the organic cation featuring in the perovskite, we significantly enhance the interaction with defect sites and minimize non-radiative recombination losses. Consequently, we achieve exceptionally high-performance near-infrared perovskite light-emitting diodes with a record external quantum efficiency of 21.6%. In addition, our passivated perovskite light-emitting diodes maintain a high external quantum efficiency of 20.1% and a wall-plug efficiency of 11.0% at a high current density of 200 mA cm−2, making them more attractive than the most efficient organic and quantum-dot light-emitting diodes at high excitations.

    Ladda ner fulltext (pdf)
    fulltext
  • 14.
    Xu, Weidong
    et al.
    Soochow University, Peoples R China.
    McLeod, John A.
    Soochow University, Peoples R China.
    Yang, Yingguo
    Chinese Academic Science, Peoples R China.
    Wang, Yimeng
    Soochow University, Peoples R China; Beijing University of Technology, Peoples R China; Beijing University of Technology, Peoples R China.
    Wu, Zhongwei
    Soochow University, Peoples R China.
    Bai, Sai
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Yuan, Zhongcheng
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten.
    Song, Tao
    Soochow University, Peoples R China.
    Wang, Yusheng
    Soochow University, Peoples R China; Beijing University of Technology, Peoples R China; Beijing University of Technology, Peoples R China.
    Si, Junjie
    Zhejiang University, Peoples R China.
    Wang, Rongbin
    Soochow University, Peoples R China.
    Gao, Xingyu
    Chinese Academic Science, Peoples R China.
    Zhang, Xinping
    Beijing University of Technology, Peoples R China; Beijing University of Technology, Peoples R China.
    Liu, Lijia
    Soochow University, Peoples R China.
    Sun, Baoquan
    Soochow University, Peoples R China.
    Iodomethane-Mediated Organometal Halide Perovskite with Record Photoluminescence Lifetime2016Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 8, nr 35, s. 23181-23189Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Organometallic lead halide perovskites are excellent light harvesters for high-efficiency photovoltaic devices. However, as the key component in these devices, a perovskite thin film with good morphology and minimal trap states is still difficult to obtain. Herein we show that by incorporating a low boiling point alkyl halide such as iodomethane (CH3I) into the precursor solution, a perovskite (CH3NH3PbI3-xClx) film with improved grain size and orientation can be easily achieved. More importantly, these films exhibit a significantly reduced amount of trap states. Record photoluminescence lifetimes of more than 4 mu s are achieved; these lifetimes are significantly longer than that of pristine CH3NH3PbI3-xClx films. Planar heterojunction solar cells incorporating these CH3I-mediated perovskites have demonstrated a dramatically increased power conversion efficiency compared to the ones using pristine CH3NH3PbI3-xClx. Photoluminescence, transient absorption, and microwave detected photoconductivity measurements all provide consistent evidence that CH3I addition increases the number of excitons generated and their diffusion length, both of which assist efficient carrier transport in the photovoltaic device. The simple incorporation of alkyl halide to enhance perovskite surface passivation introduces an important direction for future progress on high efficiency perovskite optoelectronic devices.

  • 15.
    Yang, Jianming
    et al.
    East China Normal Univ, Peoples R China.
    Hong, Qiuming
    Soochow Univ, Peoples R China.
    Yuan, Zhongcheng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Xu, Ruipeng
    Soochow Univ, Peoples R China.
    Guo, Xuewen
    East China Normal Univ, Peoples R China.
    Xiong, Shaobing
    East China Normal Univ, Peoples R China.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Braun, Slawomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Li, Yanqing
    Soochow Univ, Peoples R China.
    Tang, Jianxin
    Soochow Univ, Peoples R China.
    Duan, Chungang
    East China Normal Univ, Peoples R China; Shanxi Univ, Peoples R China.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Bao, Qinye
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten. East China Normal Univ, Peoples R China; Shanxi Univ, Peoples R China; Soochow Univ, Peoples R China.
    Unraveling Photostability of Mixed Cation Perovskite Films in Extreme Environment2018Ingår i: Advanced Optical Materials, ISSN 2162-7568, E-ISSN 2195-1071, Vol. 6, nr 20, artikel-id 1800262Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Organometal halide perovskites exhibit a bright future for applications in solar cells, as efficiency has achieved over 22%. The long-term stability remains a major obstacle for commercialization. Here, it is found that three cationic compositional engineered perovskites, MAPb(I0.83Br0.17)(3), FA(0.83)MA(0.17)Pb(I0.83Br0.17)(3), and Cs-0.1(FA(0.83)MA(0.17))(0.9)Pb(I0.83Br0.17)(3), undergo severe degradation under white-light illumination in ultrahigh vacuum (UHV) environment, but the rate of degradation is significantly lower for the mixed cation perovskites. This is attributed to the defect-induced trap states that trigger the strong coupling between the photoexcited carriers and the crystal lattice. The observed behavior supports the view of the mixed cations suppressing the photoinduced degradation. It is further demonstrated that UHV environment remarkably accelerates the degradation of the perovskite films under illumination, which delivers a very important message that the current hybrid perovskite materials and their optoelectronic devices are not suitable for application in outer space. Moreover, the applied UHV environment can be an accelerated test method to estimate the photostability of the perovskites.

  • 16.
    Yang, Jianming
    et al.
    East China Normal Univ, Peoples R China.
    Yuan, Zhongcheng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Braun, Slawomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Li, Yanqing
    Soochow Univ, Peoples R China.
    Tang, Jianxin
    Soochow Univ, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Duan, Chungang
    East China Normal Univ, Peoples R China; Shanxi Univ, Peoples R China.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Bao, Qinye
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten. East China Normal Univ, Peoples R China.
    Oxygen- and Water-Induced Energetics Degradation in Organometal Halide Perovskites2018Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, nr 18, s. 16225-16230Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Organometal halide perovskites are under rapid development, and significant focus has been placed on their stability that currently presents a major obstacle for practical application. Energetics plays a vital role in charge injection/extraction and transport properties in devices. Here, we in situ investigate oxygen and water-induced energetics degradation in organometal halide perovskite films. Oxygen gas induces an upward shift of the vacuum level of the perovskite films because of the formation of an oxygen induced surface dipole, water vapor causes a significant vacuum-level downshift, and the valence band binding energy referenced to the Fermi level simultaneously increases so as to keep the ionization potential of the perovskite films unchanged. Moreover, the chemical compositions, crystalline structures, surface morphologies, and dynamical properties also are monitored and analyzed in detail. These results are indispensable to understand the degradation mechanisms and to perform the optimizations of stable materials and devices in the future.

    Ladda ner fulltext (pdf)
    fulltext
  • 17.
    Yu, Hongling
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Wang, Heyong
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Jiangbin
    Univ Cambridge, England; Imperial Coll London, England.
    Lu, Jun
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Yuan, Zhongcheng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Xu, Weidong
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Nanjing Tech Univ, Peoples R China.
    Hultman, Lars
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Bakulin, Artem A.
    Imperial Coll London, England.
    Friend, Richard H.
    Univ Cambridge, England.
    Wang, Jianpu
    Nanjing Tech Univ, Peoples R China.
    Liu, Xiaoke
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Univ Cambridge, England.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Efficient and Tunable Electroluminescence from In Situ Synthesized Perovskite Quantum Dots2019Ingår i: Small, ISSN 1613-6810, E-ISSN 1613-6829, Vol. 15, nr 8, artikel-id 1804947Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Semiconductor quantum dots (QDs) are among the most promising next-generation optoelectronic materials. QDs are generally obtained through either epitaxial or colloidal growth and carry the promise for solution-processed high-performance optoelectronic devices such as light-emitting diodes (LEDs), solar cells, etc. Herein, a straightforward approach to synthesize perovskite QDs and demonstrate their applications in efficient LEDs is reported. The perovskite QDs with controllable crystal sizes and properties are in situ synthesized through one-step spin-coating from perovskite precursor solutions followed by thermal annealing. These perovskite QDs feature size-dependent quantum confinement effect (with readily tunable emissions) and radiative monomolecular recombination. Despite the substantial structural inhomogeneity, the in situ generated perovskite QDs films emit narrow-bandwidth emission and high color stability due to efficient energy transfer between nanostructures that sweeps away the unfavorable disorder effects. Based on these materials, efficient LEDs with external quantum efficiencies up to 11.0% are realized. This makes the technologically appealing in situ approach promising for further development of state-of-the-art LED systems and other optoelectronic devices.

    Ladda ner fulltext (pdf)
    fulltext
  • 18. Beställ onlineKöp publikationen >>
    Yuan, Zhongcheng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Defects and crystallinity control of perovskite films for light-emitting diodes2019Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Metal halide perovskites are promising materials for the fabrication of cost-effective and highperformance light-emitting diodes (LEDs), due to their solution processability, high photoluminescence quantum efficiencies (PLQEs) and excellent charge transport properties. Importantly, perovskite LEDs show ultra-pure emission color, which is better than that of the state-of-the-art quantum dot LEDs (QLEDs) and organic LEDs (OLEDs), demonstrating a bright application potential for realizing vivid natural colors display in the future.

    In this thesis, we first incorporate natural molecules, e.g. deoxyribonucleic acid (DNA), to passivate FAPbI3 perovskite films. We notice that the existence of carbonyl and amide groups within DNA are important for efficient passivation of perovskite films. Combining the knowledge, we further introduce amino-functionalized molecules into perovskite films and achieve significantly improved efficiency of 21.6 %, which is a record external quantum efficiency (EQE) of perovskite LEDs. We reveal that by weakening the hydrogen bond strength between passivation molecules and organic cations, the interaction between passivation amino groups and defects improves, contributing to more efficient passivation.

    We also notice that the underlying substrates play important roles on the film quality of perovskite and the device performance of the ensuing LEDs. Here, we reveal that efficient deprotonation of the undesirable organic cations (Methylammonium (MA+) or Formamidinium (FA+)) by a metal oxide interlayer, e.g. ZnO, with a high isoelectric point, is critical to promote the transition from intermediate phases to highly emissive perovskites. We reveal synergistic effects of precursor stoichiometry and interfacial reactions for high-performance perovskite LEDs, and establish useful guidelines for rational device optimisation. With the knowledge we obtain from the deprotonation process, we further push the EL emission from near-infrared (NIR) (around 800 nm) region to deep red emission (around 700 nm) via cation exchange process between cesium (Cs+) and FA+, which promotes enhanced crystallization of the perovskite films and devices performance simultaneously.

    Intensive efforts in the perovskite community have pushed the EQEs of perovskite LEDs to over 20 %for green, red and NIR emission region. However, it is still a long way to go before their practical applications. We believe that efficient control of both the defects and crystallinity of the perovskite films through rational materials development and interfacial modifications is important for the development of perovskite optoelectronic devices. In addition, both our findings on the perovskite film quality control are universal and provide insights to promote the development of perovskites (especially the hybrid ones containing organic components) for the applications of other optoelectronic devices.

    Delarbeten
    1. Rational molecular passivation for high-performance perovskite light-emitting diodes
    Öppna denna publikation i ny flik eller fönster >>Rational molecular passivation for high-performance perovskite light-emitting diodes
    Visa övriga...
    2019 (Engelska)Ingår i: Nature Photonics, ISSN 1749-4885, E-ISSN 1749-4893, Vol. 13, nr 6, s. 418-424Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    A major efficiency limit for solution-processed perovskite optoelectronic devices, for example light-emitting diodes, is trap-mediated non-radiative losses. Defect passivation using organic molecules has been identified as an attractive approach to tackle this issue. However, implementation of this approach has been hindered by a lack of deep understanding of how the molecular structures influence the effectiveness of passivation. We show that the so far largely ignored hydrogen bonds play a critical role in affecting the passivation. By weakening the hydrogen bonding between the passivating functional moieties and the organic cation featuring in the perovskite, we significantly enhance the interaction with defect sites and minimize non-radiative recombination losses. Consequently, we achieve exceptionally high-performance near-infrared perovskite light-emitting diodes with a record external quantum efficiency of 21.6%. In addition, our passivated perovskite light-emitting diodes maintain a high external quantum efficiency of 20.1% and a wall-plug efficiency of 11.0% at a high current density of 200 mA cm−2, making them more attractive than the most efficient organic and quantum-dot light-emitting diodes at high excitations.

    Ort, förlag, år, upplaga, sidor
    Springer Nature Publishing AG, 2019
    Nationell ämneskategori
    Fysik
    Identifikatorer
    urn:nbn:se:liu:diva-157707 (URN)10.1038/s41566-019-0390-x (DOI)000468752300019 ()
    Anmärkning

    Funding agencies:  ERC Starting Grant [717026]; National Basic Research Program of China (973 Program) [2015CB932200]; National Natural Science Foundation of China [61704077, 51572016, 51721001, 61634001, 61725502, 91733302, U1530401]; Natural Science Foundation of Jiangsu 

    Tillgänglig från: 2019-06-19 Skapad: 2019-06-19 Senast uppdaterad: 2021-12-28Bibliografiskt granskad
    2. Room-temperature film formation of metal halide perovskites on n-type metal oxides: the catalysis of ZnO on perovskite crystallization
    Öppna denna publikation i ny flik eller fönster >>Room-temperature film formation of metal halide perovskites on n-type metal oxides: the catalysis of ZnO on perovskite crystallization
    Visa övriga...
    2018 (Engelska)Ingår i: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 54, nr 50, s. 6887-6890Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    We investigate the effect of commonly used solution-processed TiOx, SnO2 and ZnO interlayers on the perovskite film crystallization process. We find that the ZnO/perovskite interface can efficiently catalyze the perovskite crystallization even without thermal annealing.

    Ort, förlag, år, upplaga, sidor
    ROYAL SOC CHEMISTRY, 2018
    Nationell ämneskategori
    Den kondenserade materiens fysik
    Identifikatorer
    urn:nbn:se:liu:diva-149712 (URN)10.1039/c8cc02482k (DOI)000436029000052 ()29781476 (PubMedID)
    Anmärkning

    Funding Agencies|ERC [717026]; Carl Tryggers Stiftelse; European Commission [691210]; China Scholarship Council; VINNMER Marie Curie Fellowships

    Tillgänglig från: 2018-07-24 Skapad: 2018-07-24 Senast uppdaterad: 2021-12-28
    Ladda ner fulltext (pdf)
    Defects and crystallinity control of perovskite films for light-emitting diodes
    Ladda ner (png)
    presentationsbild
  • 19.
    Yuan, Zhongcheng
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Bai, Sai
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Yan, Zhibo
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Nanjing Univ, Peoples R China.
    Liu, Jun-Ming
    Nanjing Univ, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Room-temperature film formation of metal halide perovskites on n-type metal oxides: the catalysis of ZnO on perovskite crystallization2018Ingår i: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 54, nr 50, s. 6887-6890Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We investigate the effect of commonly used solution-processed TiOx, SnO2 and ZnO interlayers on the perovskite film crystallization process. We find that the ZnO/perovskite interface can efficiently catalyze the perovskite crystallization even without thermal annealing.

    Ladda ner fulltext (pdf)
    fulltext
  • 20.
    Yuan, Zhongcheng
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Hu, Zhang-Jun
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska fakulteten.
    Persson, Ingemar
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Wang, Chuan Fei
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Kuang, Chaoyang
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Xu, Weidong
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Bai, Sai
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten. Univ Elect Sci & Technol China, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Interface-assisted cation exchange enables high-performance perovskiteLEDs with tunable near-infrared emissions2022Ingår i: Joule, E-ISSN 2542-4351, Vol. 6, nr 10, s. 2423-2436Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Achieving high-quality cesium-formamidinium lead iodide (CsxFA1_xPbI3) perovskites with tunable band gaps is highly desired for optoelectronic applications including solar cells and light -emit-ting diodes (LEDs). Herein, by utilizing an alkaline-interface-assisted cation-exchange method, we fabricate highly emissive CsxFA1_x PbI3 perovskite films with fine-tunable Cs-FA alloying ratio for emis-sion-tunable near-infrared (NIR) LEDs. We reveal that the deproto-nation of FA+ cations and the formation of hydrogen-bonded gels consisting of CsI and FA facilitated by the zinc oxide underneath effectively removes the Cs-FA ion-exchange barrier, promoting the formation of phase-pure CsxFA1_xPbI3 films with tunable emis-sions filling the gap between that of pure Cs-and FA-based perov-skites. The obtained NIR perovskite LEDs (PeLEDs) peaking from 715 to 780 nm simultaneously demonstrate high peak external quantum efficiencies of over 15%, maximum radiances exceeding 300 W sr_1 m_2, and high power conversion efficiencies above 10% at 100 mA cm_2, representing the best-performing LEDs based on solution-processed NIR emitters in a similar region.

    Ladda ner fulltext (pdf)
    fulltext
  • 21.
    Yuan, Zhongcheng
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Miao, Yanfeng
    Nanjing Tech Univ, Peoples R China.
    Hu, Zhang-Jun
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska fakulteten.
    Xu, Weidong
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Nanjing Tech Univ, Peoples R China.
    Kuang, Chaoyang
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Pan, Kang
    Nanjing Tech Univ, Peoples R China.
    Liu, Pinlei
    Nanjing Tech Univ, Peoples R China.
    Lai, Jingya
    Nanjing Tech Univ, Peoples R China.
    Sun, Baoquan
    Soochow Univ, Peoples R China.
    Wang, Jianpu
    Nanjing Tech Univ, Peoples R China.
    Bai, Sai
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Unveiling the synergistic effect of precursor stoichiometry and interfacial reactions for perovskite light-emitting diodes2019Ingår i: Nature Communications, E-ISSN 2041-1723, Vol. 10, artikel-id 2818Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Metal halide perovskites are emerging as promising semiconductors for cost-effective and high-performance light-emitting diodes (LEDs). Previous investigations have focused on the optimisation of the emissive perovskite layer, for example, through quantum confinement to enhance the radiative recombination or through defect passivation to decrease non-radiative recombination. However, an in-depth understanding of how the buried charge transport layers affect the perovskite crystallisation, though of critical importance, is currently missing for perovskite LEDs. Here, we reveal synergistic effect of precursor stoichiometry and interfacial reactions for perovskite LEDs, and establish useful guidelines for rational device optimization. We reveal that efficient deprotonation of the undesirable organic cations by a metal oxide interlayer with a high isoelectric point is critical to promote the transition of intermediate phases to highly emissive perovskite films. Combining our findings with effective defect passivation of the active layer, we achieve high-efficiency perovskite LEDs with a maximum external quantum efficiency of 19.6%.

    Ladda ner fulltext (pdf)
    fulltext
  • 22.
    Yuan, Zhongcheng
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten. Soochow University, Peoples R China.
    Yang, Yingguo
    Chinese Academic Science, Peoples R China.
    Wu, Zhongwei
    Soochow University, Peoples R China.
    Bai, Sai
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Xu, Weidong
    Soochow University, Peoples R China.
    Song, Tao
    Soochow University, Peoples R China.
    Gao, Xingyu
    Chinese Academic Science, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Sun, Baoquan
    Soochow University, Peoples R China.
    Approximately 800-nm-Thick Pinhole-Free Perovskite Films via Facile Solvent Retarding Process for Efficient Planar Solar Cells2016Ingår i: ACS APPLIED MATERIALS and INTERFACES, ISSN 1944-8244, Vol. 8, nr 50, s. 34446-34454Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Device performance of organometal halide perovskite solar cells significantly depends on the quality and thickness of perovskite absorber films. However, conventional deposition methods often generate pinholes within similar to 300 nm-thick perovskite films, which are detrimental to the large area device manufacture. Here we demonstrated a simple solvent retarding process to deposit uniform pinhole free perovskite films with thicknesses up to similar to 800 nm. Solvent evaporation during the retarding process facilitated the components separation in the mixed halide perovskite precursors, and hence the final films exhibited pinhole free morphology and large grain sizes. In addition, the increased precursor concentration after solvent-retarding process led to thick perovskite films. Based on the uniform and thick perovskite films prepared by this convenient process, a champion device efficiency up to 16.8% was achieved. We believe that this simple deposition procedure for high quality perovskite films around micrometer thickness has a great potential in the application of large area perovskite solar cells and other optoelectronic devices.

    Ladda ner fulltext (pdf)
    fulltext
  • 23.
    Zou, Yatao
    et al.
    Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, China .
    Teng, Pengpeng
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten.
    Yuan, Zhongcheng
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material.
    Hu, Jingcong
    Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, China.
    Lu, Yue
    Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, China.
    Sun, Baoquan
    Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, China; Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Xu, Weidong
    Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi’an, China.
    Protocol for efficient and self-healing near-infrared perovskite light-emitting diodes.2022Ingår i: STAR protocols, ISSN 2666-1667, Vol. 3, nr 3, artikel-id 101631Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Preparation of highly efficient and stable perovskite light-emitting diodes (PeLEDs) with reproducible device performance is challenging. This protocol describes steps for fabrication of high-performance and self-healing PeLEDs. These include instructions for synthesis of charge-transporting zinc oxide (ZnO) nanocrystals, step-by-step device fabrication, and control over self-healing of the degraded devices. For complete details on the use and execution of this protocol, please refer to Teng et al. (2021).

    Ladda ner fulltext (pdf)
    fulltext
  • 24.
    Zou, Yatao
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Soochow Univ, Peoples R China.
    Wu, Tian
    Soochow Univ, Peoples R China.
    Fu, Fan
    Empa Swiss Fed Labs Mat Sci & Technol, Switzerland.
    Bai, Sai
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Cai, Lei
    Soochow Univ, Peoples R China.
    Yuan, Zhongcheng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Li, Yajuan
    Soochow Univ, Peoples R China.
    Li, Ruiying
    Soochow Univ, Peoples R China.
    Xu, Weidong
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Song, Tao
    Soochow Univ, Peoples R China.
    Yang, Yingguo
    Chinese Acad Sci, Peoples R China.
    Gao, Xingyu
    Chinese Acad Sci, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Sun, Baoquan
    Soochow Univ, Peoples R China.
    Thermal-induced interface degradation in perovskite light-emitting diodes2020Ingår i: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 8, nr 43, s. 15079-15085Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Perovskite light-emitting diodes (PeLEDs) have experienced rapid improvements in device efficiency during the last several years. However, the operational instability of PeLEDs remains a key barrier hindering their practical applications. A fundamental understanding of the degradation mechanism is still lacking but will be important to seek ways to mitigate these unwanted processes. In this work, through comprehensive characterizations of the perovskite emitters and the interfacial contacts, we figure out that Joule heating induced interface degradation is one of the dominant factors affecting the operational stability of PeLEDs. We investigate the interfacial contacts of PeLEDs based on a commonly used device structure, with an organic electron transport layer of 1,3,5-tris(N-phenylbenzimiazole-2-yl)benzene (TPBi), and observe obvious photoluminescence quenching of the perovskite layer after device operation. Detailed characterizations of the interlayers and the interfacial contacts reveal that photoluminescence quenching is mainly due to the element inter-diffusion at the interface induced by the morphological evolution of the TPBi layers under Joule heating during the operation of PeLEDs. Our work provides direct insights into the degradation pathways and highlights the importance of exploring intrinsically stable interlayers as well as interfacial contacts beyond the state-of-the-art to further boost the operational stability of PeLEDs.

    Ladda ner fulltext (pdf)
    fulltext
1 - 24 av 24
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf