liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
1234567 1 - 50 av 477
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Han, Shaobo
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Alvi, Naveed
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Granlof, Lars
    RISE Bioecon, Sweden.
    Granberg, Hjalmar
    RISE Bioecon, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    A Multiparameter Pressure-Temperature-Humidity Sensor Based on Mixed Ionic-Electronic Cellulose Aerogels2019Ingår i: ADVANCED SCIENCE, ISSN 2198-3844, Vol. 6, nr 8, artikel-id 1802128Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Pressure (P), temperature (T), and humidity (H) are physical key parameters of great relevance for various applications such as in distributed diagnostics, robotics, electronic skins, functional clothing, and many other Internet-of-Things (IoT) solutions. Previous studies on monitoring and recording these three parameters have focused on the integration of three individual single-parameter sensors into an electronic circuit, also comprising dedicated sense amplifiers, signal processing, and communication interfaces. To limit complexity in, e.g., multifunctional IoT systems, and thus reducing the manufacturing costs of such sensing/communication outposts, it is desirable to achieve one single-sensor device that simultaneously or consecutively measures P-T-H without cross-talks in the sensing functionality. Herein, a novel organic mixed ion-electron conducting aerogel is reported, which can sense P-T-H with minimal cross-talk between the measured parameters. The exclusive read-out of the three individual parameters is performed electronically in one single device configuration and is enabled by the use of a novel strategy that combines electronic and ionic Seebeck effect along with mixed ion-electron conduction in an elastic aerogel. The findings promise for multipurpose IoT technology with reduced complexity and production costs, features that are highly anticipated in distributed diagnostics, monitoring, safety, and security applications.

  • 2.
    Xiong, Kunli
    et al.
    Chalmers Univ Technol, Sweden.
    Tordera, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten. TNO, Netherlands.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Dahlin, Andreas B.
    Chalmers Univ Technol, Sweden.
    Active control of plasmonic colors: emerging display technologies2019Ingår i: Reports on progress in physics (Print), ISSN 0034-4885, E-ISSN 1361-6633, Vol. 82, nr 2, artikel-id 024501Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    In recent years there has been a growing interest in the use of plasmonic nanostructures for color generation, a technology that dates back to ancient times. Plasmonic structural colors have several attractive features but once the structures arc prepared the colors arc normally fixed. Lately, several concepts have emerged for actively tuning the colors, which opens up for many new potential applications, the most obvious being novel color displays. In this review we summarize recent progress in active control of plasmonic colors and evaluate them with respect to performance criteria for color displays. It is suggested that actively controlled plasmonic colors are generally less interesting for emissive displays but could be useful for new types of electrochromic devices relying on ambient light (electronic paper). Furthermore, there are several other potential applications such as images to be revealed on demand and colorimetric sensors.

  • 3.
    Gerasimov, Jennifer
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Karlsson, Roger H
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Forchheimer, Robert
    Linköpings universitet, Institutionen för systemteknik, Informationskodning. Linköpings universitet, Tekniska fakulteten.
    Stavrinidou, Eleni
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel T
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    An Evolvable Organic Electrochemical Transistor for Neuromorphic Applications2019Ingår i: ADVANCED SCIENCE, ISSN 2198-3844, Vol. 6, nr 7, artikel-id 1801339Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    An evolvable organic electrochemical transistor (OECT), operating in the hybrid accumulation-depletion mode is reported, which exhibits short-term and long-term memory functionalities. The transistor channel, formed by an electropolymerized conducting polymer, can be formed, modulated, and obliterated in situ and under operation. Enduring changes in channel conductance, analogous to long-term potentiation and depression, are attained by electropolymerization and electrochemical overoxidation of the channel material, respectively. Transient changes in channel conductance, analogous to short-term potentiation and depression, are accomplished by inducing nonequilibrium doping states within the transistor channel. By manipulating the input signal, the strength of the transistor response to a given stimulus can be modulated within a range that spans several orders of magnitude, producing behavior that is directly comparable to short- and long-term neuroplasticity. The evolvable transistor is further incorporated into a simple circuit that mimics classical conditioning. It is forecasted that OECTs that can be physically and electronically modulated under operation will bring about a new paradigm of machine learning based on evolvable organic electronics.

  • 4.
    Janson, Per
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gabrielsson, Erik
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Lee, Keon Jae
    Korea Adv Inst Sci and Technol, South Korea.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    An Ionic Capacitor for Integrated Iontronic Circuits2019Ingår i: ADVANCED MATERIALS TECHNOLOGIES, ISSN 2365-709X, Vol. 4, nr 4, artikel-id 1800494Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Organic electronics, in combination with custom polyelectrolytes, enables solid- and hydrogel-state circuit components using ionic charges in place of the electrons of traditional electronics. This growing field of iontronics leverages anion- and cation-exchange membranes as analogs to n-type and p-type semiconductors, and conjugated polymer electrodes as ion-to-electron converters. To date, the iontronics toolbox includes ionic resistors, ionic diodes, ionic transistors, and analog and digital circuits comprised thereof. Here, an ionic capacitor based on mixed electron-ion conductors is demonstrated. The ionic capacitor resembles the structure of a conventional electrochemical capacitor that is inverted, with an electronically conducting core and two electrolyte ionic conductors. The device is first verified as a capacitor, and then demonstrated as a smoothing element in an iontronic diode bridge circuit driving an organic electronic ion pump (ionic resistor). The ionic capacitor complements the existing iontronics toolbox, enabling more complex and functional ionic circuits, and will thus have implications in a variety of mixed electron-ion conduction technologies.

  • 5.
    Wang, Xin
    et al.
    Department of Printed Electronics, RISE Acreo, Norrköping, Sweden.
    Grimoldi, Andrea
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Hakansson, Karl
    RISE Bioeconomy, Stockholm, Sweden.
    Fall, Andreas
    RISE Bioeconomy, Stockholm, Sweden.
    Granberg, Hjalmar
    RISE Bioeconomy, Stockholm, Sweden.
    Mengistie, Desalegn
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Edberg, Jesper
    Department of Printed Electronics, RISE Acreo, Norrköping, Sweden.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Nilsson, David
    Department of Printed Electronics, RISE Acreo, Norrköping, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Gustafsson, Goran
    Department of Printed Electronics, RISE Acreo, Norrköping, Sweden.
    Anisotropic conductivity of Cellulose-PEDOT:PSS composite materials studied with a generic 3D four-point probe tool2019Ingår i: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 66, s. 258-264Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The conducive polymer poly(3,4-ethylenedioxythiphene):poly(styrenesulfonate) (PEDOT:PSS) is widely used in organic electronics and printed electronics due to its excellent electronic and ionic conductivity. PEDOT:PSS films exhibit anisotropic conductivities originating from the interplay of film deposition processes and chemical structure. The previous studies found that high boiling point solvent treated PEDOT:PSS exhibits an anisotropy of 3-4 orders magnitude. Even though both the in-plane and out-of-plane conductivities are important for the device performance, the out-of-plane conductivity is rarely studied due to the complexity with the experiment procedure. Cellulose-based paper or films can also exhibit anisotropic behavior due to the combination of their intrinsic fibric structure and film formation process. We have previously developed a conducive paper based on PEDOT:PSS and cellulose which could be used as the electrodes in energy storage devices. In this work we developed a novel measurement set-up for studying the anisotropy of the charge transport in such composite materials. A tool with two parallel plates mounted with spring loaded probes was constructed enabling probing both lateral and vertical directions and resistances from in-plane and out-of-plane directions to be obtained. The measurement results were then input and analyzed with a model based on a transformation method developed by Montgomery, and thus the in-plane and out-of-plane conductivities could be detangled and derived. We also investigated how the conductivity anisotropy depends on the microstructure of the cellulose template onto which the conducive polymer self-organizes. We show that there is a relatively small difference between the in-plane and out-of-plane conductivities which is attributed to the unique 3D-structure of the composites. This new knowledge gives a better understanding of the possibilities and limitations for using the material in electronic and electrochemical devices.

    Publikationen är tillgänglig i fulltext från 2021-12-17 00:01
  • 6.
    Poxson, David
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gabrielsson, Erik
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Bonisoli, Alberto
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Ist Italiano Tecnol, Italy; St Anna Sch Adv Studies, Italy.
    Linderhed, Ulrika
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Res Inst Sweden, Sweden.
    Abrahamsson, Tobias
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Matthiesen, Isabelle
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. KTH Royal Inst Technol, Sweden.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Capillary-Fiber Based Electrophoretic Delivery Device2019Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 11, nr 15, s. 14200-14207Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Organic electronic ion pumps (OEIPs) are versatile tools for electrophoretic delivery of substances with high spatiotemporal resolution. To date, OEIPs and similar iontronic components have been fabricated using thin-film techniques and often rely on laborious, multistep photolithographic processes. OEIPs have been demonstrated in a variety of in vitro and in vivo settings for controlling biological systems, but the thin-film form factor and limited repertoire of polyelectrolyte materials and device fabrication techniques unnecessarily constrain the possibilities for miniaturization and extremely localized substance delivery, e.g., the greater range of pharmaceutical compounds, on the scale of a single cell. Here, we demonstrate an entirely new OEIP form factor based on capillary fibers that include hyperbranched polyglycerols (dPGs) as the selective electrophoretic membrane. The dPGs enable electrophoretic channels with a high concentration of fixed charges and well-controlled cross-linking and can be realized using a simple one-pot fluidic manufacturing protocol. Selective electrophoretic transport of cations and anions of various sizes is demonstrated, including large substances that are difficult to transport with other OEIP technologies. We present a method for tailoring and characterizing the electrophoretic channels fixed charge concentration in the operational state. Subsequently, we compare the experimental performance of these capillary OEIPs to a computational model and explain unexpected features in the ionic current for the transport and delivery of larger, lower-mobility ionic compounds. From this model, we are able to elucidate several operational and design principles relevant to miniaturized electrophoretic drug delivery technologies in general. Overall, the compactness of the capillary OEIP enables electrophoretic delivery devices with probelike geometries, suitable for a variety of ionic compounds, paving the way for less-invasive implantation into biological systems and for healthcare applications.

  • 7.
    Modarresi, Mohsen
    et al.
    Ferdawsi Univ Mashhad, Iran.
    Franco Gonzalez, Felipe
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Autonomous Univ Madrid, Spain.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Computational microscopy study of the granular structure and pH dependence of PEDOT:PSS2019Ingår i: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 21, nr 12, s. 6699-6711Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Computational microscopy based on Martini coarse grained molecular dynamics (MD) simulations of a doped conducting polymer poly(3,4-ethylenedioxythiophene)polystyrene sulfonate (best known as PEDOT:PSS) was performed focussing on the formation of the granular structure and PEDOT crystallites, and the effect of pH on the material morphology. The PEDOT:PSS morphology is shown to be sensitive to the initial distribution of PEDOT and PSS in the solution, and the results of the modelling suggest that the experimentally observed granular structure of PEDOT:PSS can be only obtained if the PEDOT/PSS solution is in the dispersive state in the initial crystallization stages. Variation of the pH is demonstrated to strongly affect the morphology of PEDOT:PSS films, altering their structure between granular-type and homogeneous. It also affects the size of crystallites and the relative arrangement of PEDOT and PSS chains. It is shown that the crystallites in PEDOT:PSS are smaller than those in PEDOT with molecular counterions such as PEDOT:tosylate, which is consistent with the available experimental data. The predicted changes of the PEDOT:PSS morphology with variation of the pH can be tested experimentally, and the calculated atomistic picture of PEDOT:PSS films (not accessible by conventional experimental techniques) is instrumental for understanding the material structure and building realistic models of PEDOT:PSS morphology.

  • 8.
    Kiefer, David
    et al.
    Chalmers Univ Technol, Sweden.
    Kroon, Renee
    Chalmers Univ Technol, Sweden.
    Hofmann, Anna I.
    Chalmers Univ Technol, Sweden.
    Sun, Hengda
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Giovannitti, Alexander
    Imperial Coll London, England; Imperial Coll London, England.
    Stegerer, Dominik
    Chalmers Univ Technol, Sweden; Tech Univ Chemnitz, Germany.
    Cano, Alexander
    Chalmers Univ Technol, Sweden.
    Hynynen, Jonna
    Chalmers Univ Technol, Sweden.
    Yu, Liyang
    Chalmers Univ Technol, Sweden.
    Zhang, Yadong
    Georgia Inst Technol, GA 30332 USA; Georgia Inst Technol, GA 30332 USA.
    Nai, Dingqi
    Univ Calif Davis, CA 95616 USA.
    Harrelson, Thomas F.
    Univ Calif Davis, CA 95616 USA.
    Sommer, Michael
    Tech Univ Chemnitz, Germany.
    Moule, Adam J.
    Univ Calif Davis, CA 95616 USA.
    Kemerink, Martijn
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Komplexa material och system. Linköpings universitet, Tekniska fakulteten.
    Marder, Seth R.
    Georgia Inst Technol, GA 30332 USA; Georgia Inst Technol, GA 30332 USA.
    McCulloch, Iain
    Imperial Coll London, England; Imperial Coll London, England; King Abdullah Univ Sci and Technol, Saudi Arabia.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Mueller, Christian
    Chalmers Univ Technol, Sweden.
    Double doping of conjugated polymers with monomer molecular dopants2019Ingår i: Nature Materials, ISSN 1476-1122, E-ISSN 1476-4660, Vol. 18, nr 2, s. 149-+Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Molecular doping is a crucial tool for controlling the charge-carrier concentration in organic semiconductors. Each dopant molecule is commonly thought to give rise to only one polaron, leading to a maximum of one donor: acceptor charge-transfer complex and hence an ionization efficiency of 100%. However, this theoretical limit is rarely achieved because of incomplete charge transfer and the presence of unreacted dopant. Here, we establish that common p-dopants can in fact accept two electrons per molecule from conjugated polymers with a low ionization energy. Each dopant molecule participates in two charge-transfer events, leading to the formation of dopant dianions and an ionization efficiency of up to 200%. Furthermore, we show that the resulting integer charge-transfer complex can dissociate with an efficiency of up to 170%. The concept of double doping introduced here may allow the dopant fraction required to optimize charge conduction to be halved.

    Publikationen är tillgänglig i fulltext från 2019-07-14 12:42
  • 9.
    Wadnerkar, Nitin Shriram
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Exploring Hydrogen Storage in PEDOT: A Computational Study2019Ingår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 123, nr 4, s. 2066-2074Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A reliable hydrogen-based energy technology requires promising materials for safe storage and transport of hydrogen. Here, the storage of hydrogen in the organic polymer poly(3,4-ethylenedioxythiophene) (PEDOT) is explored using density functional theory calculations. It is demonstrated that hydrogen chemisorption on PEDOT is feasible with the maximum gravimetric uptake of similar to 2.8 wt % in ambient condition, whereas physisorption is possible only at very low temperatures or at high pressure. The Gibbs absorption energies, electronic structure, and absorption spectra are calculated for the cases of chemisorption of a single hydrogen atom, a hydrogen pair, and hydrogen saturated chain for both neutral and oxidized PEDOT. Various experimental routes for PEDOT hydrogenations are discussed.

  • 10.
    Brooke, Robert
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten. Acreo, Sweden.
    Edberg, Jesper
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Acreo, Sweden.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Greyscale and Paper Electrochromic Polymer Displays by UV Patterning2019Ingår i: Polymers, ISSN 2073-4360, E-ISSN 2073-4360, Vol. 11, nr 2, artikel-id 267Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electrochromic devices have important implications as smart windows for energy efficient buildings, internet of things devices, and in low-cost advertising applications. While inorganics have so far dominated the market, organic conductive polymers possess certain advantages such as high throughput and low temperature processing, faster switching, and superior optical memory. Here, we present organic electrochromic devices that can switch between two high-resolution images, based on UV-patterning and vapor phase polymerization of poly(3,4-ethylenedioxythiophene) films. We demonstrate that this technique can provide switchable greyscale images through the spatial control of a UV-light dose. The color space was able to be further altered via optimization of the oxidant concentration. Finally, we utilized a UV-patterning technique to produce functional paper with electrochromic patterns deposited on porous paper, allowing for environmentally friendly electrochromic displays.

  • 11.
    Berggren, Magnus
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Malliaras, George G.
    Univ Cambridge, England.
    How conducting polymer electrodes operate2019Ingår i: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 364, nr 6437, s. 233-234Artikel i tidskrift (Övrigt vetenskapligt)
    Abstract [en]

    n/a

  • 12.
    Cherian, Dennis
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Armgarth, Astrid
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Beni, Valerio
    Res Inst Sweden, Sweden.
    Linderhed, Ulrika
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Res Inst Sweden, Sweden.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Nilsson, David
    Res Inst Sweden, Sweden.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Large-area printed organic electronic ion pumps2019Ingår i: FLEXIBLE AND PRINTED ELECTRONICS, ISSN 2058-8585, Vol. 4, nr 2, artikel-id 022001Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Biological systems use a large variety of ions and molecules of different sizes for signaling. Precise electronic regulation of biological systems therefore requires an interface which translates the electronic signals into chemically specific biological signals. One technology for this purpose that has been developed during the last decade is the organic electronic ion pump (OEIP). To date, OEIPs have been fabricated by micropatterning and labor-intensive manual techniques, hindering the potential application areas of this promising technology. Here we show, for the first time, fully screen-printed OEIPs. We demonstrate a large-area printed design with manufacturing yield amp;gt;90%. Screen-printed cation- and anion-exchange membranes are both demonstrated with promising ion selectivity and performance, with transport verified for both small ions (Na+,K+,Cl-) and biologically-relevant molecules (the cationic neurotransmitter acetylcholine, and the anionic anti-inflammatory salicylic acid). These advances open the iontronics toolbox to the world of printed electronics, paving the way for a broader arena for applications.

  • 13.
    Chen, Shangzhi
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Kuhne, Philipp
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Stanishev, Vallery
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Knight, Sean
    Univ Nebraska, NE 68588 USA.
    Brooke, Robert
    RISE Acreo, Sweden.
    Petsagkourakis, Ioannis
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Schubert, Mathias
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten. Univ Nebraska, NE 68588 USA; Leibniz Inst Polymerforsch Dresden eV, Germany.
    Darakchieva, Vanya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    On the anomalous optical conductivity dispersion of electrically conducting polymers: ultra-wide spectral range ellipsometry combined with a Drude-Lorentz model2019Ingår i: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 7, nr 15, s. 4350-4362Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electrically conducting polymers (ECPs) are becoming increasingly important in areas such as optoelectronics, biomedical devices, and energy systems. Still, their detailed charge transport properties produce an anomalous optical conductivity dispersion that is not yet fully understood in terms of physical model equations for the broad range optical response. Several modifications to the classical Drude model have been proposed to account for a strong non-Drude behavior from terahertz (THz) to infrared (IR) ranges, typically by implementing negative amplitude oscillator functions to the model dielectric function that effectively reduce the conductivity in those ranges. Here we present an alternative description that modifies the Drude model via addition of positive-amplitude Lorentz oscillator functions. We evaluate this so-called Drude-Lorentz (DL) model based on the first ultra-wide spectral range ellipsometry study of ECPs, spanning over four orders of magnitude: from 0.41 meV in the THz range to 5.90 eV in the ultraviolet range, using thin films of poly(3,4-ethylenedioxythiophene): tosylate (PEDOT: Tos) as a model system. The model could accurately fit the experimental data in the whole ultrawide spectral range and provide the complex anisotropic optical conductivity of the material. Examining the resonance frequencies and widths of the Lorentz oscillators reveals that both spectrally narrow vibrational resonances and broader resonances due to localization processes contribute significantly to the deviation from the Drude optical conductivity dispersion. As verified by independent electrical measurements, the DL model accurately determines the electrical properties of the thin film, including DC conductivity, charge density, and (anisotropic) mobility. The ellipsometric method combined with the DL model may thereby become an effective and reliable tool in determining both optical and electrical properties of ECPs, indicating its future potential as a contact-free alternative to traditional electrical characterization.

  • 14.
    Seitanidou, Maria S
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel T
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Overcoming transport limitations in miniaturized electrophoretic delivery devices2019Ingår i: Lab on a Chip, ISSN 1473-0197, E-ISSN 1473-0189, Vol. 19, nr 8, s. 1427-1435Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Organic electronic ion pumps (OEIPs) have been used for delivery of biological signaling compounds, at high spatiotemporal resolution, to a variety of biological targets. The miniaturization of this technology provides several advantages, ranging from better spatiotemporal control of delivery to reduced invasiveness for implanted OEIPs. One route to miniaturization is to develop OEIPs based on glass capillary fibers that are filled with a polyelectrolyte (cation exchange membrane, CEM). These devices can be easily inserted and brought into close proximity to targeted cells and tissues and could be considered as a starting point for other fiber-based OEIP and iontronic technologies enabling favorable implantable device geometries. While characterizing capillary OEIPs we observed deviations from the typical linear current-voltage behavior. Here we report a systematic investigation of these irregularities by performing experimental characterizations in combination with computational modelling. The cause of the observed irregularities is due to concentration polarization established at the OEIP inlet, which in turn causes electric field-enhanced water dissociation at the inlet. Water dissociation generates protons and is typically problematic for many applications. By adding an ion-selective cap that separates the inlet from the source reservoir this effect is then, to a large extent, suppressed. By increasing the surface area of the inlet with the addition of the cap, the concentration polarization is reduced which thereby allows for significantly higher delivery rates. These results demonstrate a useful approach to optimize transport and delivery of therapeutic substances at low concentrations via miniaturized electrophoretic delivery devices, thus considerably broadening the opportunities for implantable OEIP applications.

  • 15.
    Kang, Evan
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ekinge, Hugo
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Platen High Sch, Sweden.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Plasmonic fanoholes: on the gradual transition from suppressed to enhanced optical transmission through nanohole arrays in metal films of increasing film thickness2019Ingår i: Optical Materials Express, ISSN 2159-3930, E-ISSN 2159-3930, Vol. 9, nr 3, s. 1404-1415Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We study the evolution from suppressed to enhanced optical transmission through metal nanohole arrays with increasing film thickness. Due to Fano interferences, the plasmon resonances gradually shift from transmission dips for ultrathin films to peaks for thick films, accompanied by a Fano asymmetry parameter that increases with film thickness. For intermediate thicknesses, both peaks and dips in transmission are far from the plasmon resonances, and hence, also far from the spectral positions of maximum light absorption and nearfield enhancements. Calculations for various hole diameters and periodicities confirm the universality of our conclusions. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

  • 16.
    Zhao, Dan
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Martinelli, Anna
    Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg.
    Willfahrt, Andreas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Fischer, Thomas
    Innovative Applications of The Printing Technologies, Stuttgart Media University.
    Bernin, Diana
    Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg.
    Ullah Khan, Zia
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Shahi, Maryam
    Department of Physics and Astronomy, University of Kentucky.
    Brill, Joseph
    Department of Physics and Astronomy, University of Kentucky.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Polymer gels with tunable ionic Seebeck coefficient for ultra-sensitive printed thermopiles2019Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 10, artikel-id 1093Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Measuring temperature and heat flux is important for regulating any physical, chemical, and biological processes. Traditional thermopiles can provide accurate and stable temperature reading but they are based on brittle inorganic materials with low Seebeck coefficient, and are difficult to manufacture over large areas. Recently, polymer electrolytes have been proposed for thermoelectric applications because of their giant ionic Seebeck coefficient, high flexibility and ease of manufacturing. However, the materials reported to date have positive Seebeck coefficients, hampering the design of ultra-sensitive ionic thermopiles. Here we report an “ambipolar” ionic polymer gel with giant negative ionic Seebeck coefficient. The latter can be tuned from negative to positive by adjusting the gel composition. We show that the ion-polymer matrix interaction is crucial to control the sign and magnitude of the ionic Seebeck coefficient. The ambipolar gel can be easily screen printed, enabling large-area device manufacturing at low cost.

  • 17.
    Wang, Suhao
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Sun, Hengda
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Erdmann, Tim
    Tech Univ Dresden, Germany; Leibniz Inst Polymerforsch Dresden eV, Germany; Flexterra Corp, IL 60077 USA; IBM Almaden Res Ctr, CA 95120 USA.
    Wang, Gang
    Northwestern Univ, IL 60208 USA.
    Fazzi, Daniele
    Max Planck Inst Kohlenforsch, Germany; Univ Cologne, Germany.
    Lappan, Uwe
    Leibniz Inst Polymerforsch Dresden eV, Germany.
    Puttisong, Yuttapoom
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Chen, Zhihua
    Flexterra Corp, IL 60077 USA.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Kiriy, Anton
    Tech Univ Dresden, Germany; Leibniz Inst Polymerforsch Dresden eV, Germany.
    Voit, Brigitte
    Tech Univ Dresden, Germany; Leibniz Inst Polymerforsch Dresden eV, Germany.
    Marks, Tobin J.
    Northwestern Univ, IL 60208 USA; Northwestern Univ, IL 60208 USA.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Flexterra Corp, IL 60077 USA; Northwestern Univ, IL 60208 USA; Northwestern Univ, IL 60208 USA.
    Facchetti, Antonio
    Flexterra Corp, IL 60077 USA; Northwestern Univ, IL 60208 USA; Northwestern Univ, IL 60208 USA.
    A Chemically Doped Naphthalenediimide-Bithiazole Polymer for n-Type Organic Thermoelectrics2018Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 30, nr 31, artikel-id 1801898Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The synthesis of a novel naphthalenediimide (NDI)-bithiazole (Tz2)-based polymer [P(NDI2OD-Tz2)] is reported, and structural, thin-film morphological, as well as charge transport and thermoelectric properties are compared to the parent and widely investigated NDI-bithiophene (T2) polymer [P(NDI2OD-T2)]. Since the steric repulsions in Tz2 are far lower than in T2, P(NDI2OD-Tz2) exhibits a more planar and rigid backbone, enhancing p-p chain stacking and intermolecular interactions. In addition, the electron-deficient nature of Tz2 enhances the polymer electron affinity, thus reducing the polymer donor-acceptor character. When n-doped with amines, P(NDI2OD-Tz2) achieves electrical conductivity (approximate to 0.1 S cm(-1)) and a power factor (1.5 mu W m(-1) K-2) far greater than those of P(NDI2OD-T2) (0.003 S cm(-1) and 0.012 mu W m(-1) K-2, respectively). These results demonstrate that planarized NDI-based polymers with reduced donor-acceptor character can achieve substantial electrical conductivity and thermoelectric response.

  • 18.
    Arbring Sjöström, Theresia
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Gabrielsson, Erik
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Janson, Per
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Poxson, David
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Seitanidou, Maria S.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    A Decade of Iontronic Delivery Devices2018Ingår i: Advanced Materials Technologies, ISSN 2365-709X, Vol. 3, nr 5, artikel-id 1700360Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    In contrast to electronic systems, biology rarely uses electrons as the signal to regulate functions, but rather ions and molecules of varying size. Due to the unique combination of both electronic and ionic/molecular conductivity in conjugated polymers and polyelectrolytes, these materials have emerged as an excellent tool for translating signals between these two realms, hence the field of organic bioelectronics. Since organic bioelectronics relies on the electron-mediated transport and compensation of ions (or the ion-mediated transport and compensation of electrons), a great deal of effort has been devoted to the development of so-called "iontronic" components to effect precise substance delivery/transport, that is, components where ions are the dominant charge carrier and where ionic-electronic coupling defines device functionality. This effort has resulted in a range of technologies including ionic resistors, diodes, transistors, and basic logic circuits for the precisely controlled transport and delivery of biologically active chemicals. This Research News article presents a brief overview of some of these "ion pumping" technologies, how they have evolved over the last decade, and a discussion of applications in vitro, in vivo, and in plantae.

  • 19.
    Li, Zaifang
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Huazhong Univ Sci and Technol, Peoples R China.
    Sun, Hengda
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Hsiao, Ching-Lien
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Yao, Yulong
    Univ Kentucky, KY 40506 USA.
    Xiao, Yiqun
    Chinese Univ Hong Kong, Peoples R China.
    Shahi, Maryam
    Univ Kentucky, KY 40506 USA.
    Jin, Yingzhi
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Cruce, Alex
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Jiang, Youyu
    Huazhong Univ Sci and Technol, Peoples R China.
    Meng, Wei
    Huazhong Univ Sci and Technol, Peoples R China.
    Qin, Fei
    Huazhong Univ Sci and Technol, Peoples R China.
    Ederth, Thomas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Lu, Xinhui
    Chinese Univ Hong Kong, Peoples R China.
    Birch, Jens
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Brill, Joseph W.
    Univ Kentucky, KY 40506 USA.
    Zhou, Yinhua
    Huazhong Univ Sci and Technol, Peoples R China; South China Univ Technol, Peoples R China.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Fengling
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    A Free-Standing High-Output Power Density Thermoelectric Device Based on Structure-Ordered PEDOT:PSS2018Ingår i: Advanced Electronic Materials, ISSN 2199-160X, Vol. 4, nr 2, artikel-id 1700496Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A free-standing high-output power density polymeric thermoelectric (TE) device is realized based on a highly conductive (approximate to 2500 S cm(-1)) structure-ordered poly(3,4-ethylenedioxythiophene):polystyrene sulfonate film (denoted as FS-PEDOT:PSS) with a Seebeck coefficient of 20.6 mu V K-1, an in-plane thermal conductivity of 0.64 W m(-1) K-1, and a peak power factor of 107 mu W K-2 m(-1) at room temperature. Under a small temperature gradient of 29 K, the TE device demonstrates a maximum output power density of 99 +/- 18.7 mu W cm(-2), which is the highest value achieved in pristine PEDOT:PSS based TE devices. In addition, a fivefold output power is demonstrated by series connecting five devices into a flexible thermoelectric module. The simplicity of assembling the films into flexible thermoelectric modules, the low out-of-plane thermal conductivity of 0.27 W m(-1) K-1, and free-standing feature indicates the potential to integrate the FS-PEDOT:PSS TE modules with textiles to power wearable electronics by harvesting human bodys heat. In addition to the high power factor, the high thermal stability of the FS-PEDOT:PSS films up to 250 degrees C is confirmed by in situ temperature-dependent X-ray diffraction and grazing incident wide angle X-ray scattering, which makes the FS-PEDOT:PSS films promising candidates for thermoelectric applications.

  • 20.
    Edberg, Jesper
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. RISE Acreo, Sweden.
    Inganäs, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Stellenbosch University, South Africa.
    Boosting the capacity of all-organic paper supercapacitors using wood derivatives2018Ingår i: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 6, nr 1, s. 145-152Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Printed and flexible organic electronics is a steadily expanding field of research and applications. One of the most attractive features of this technology is the possibility of large area and high throughput production to form low-cost electronics on different flexible substrates. With an increasing demand for sustainable energy production, low-cost and large volume technologies to store high-quality energy become equally important. These devices should be environmentally friendly with respect to their entire life cycle. Supercapacitors and batteries based on paper hold great promise for such applications due to the low cost and abundance of cellulose and other forest-derived components. We report a thick-film paper-supercapacitor system based on cellulose nanofibrils, the mixed ion-electron conducting polymer PEDOT: PSS and sulfonated lignin. We demonstrate that the introduction of sulfonated lignin into the cellulose-conducting polymer system increases the specific capacitance from 110 to 230 F g(-1) and the areal capacitance from 160 mF cm(-2) to 1 F cm(-2). By introducing lignosulfonate also into the electrolyte solution, equilibrium, with respect to the concentration of the redox molecule, was established between the electrode and the electrolyte, thus allowing us to perform beyond 700 charge/discharge cycles with no observed decrease in performance.

  • 21.
    Wijeratne, Kosala
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ail, Ujwala
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Brooke, Robert
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Bulk electronic transport impacts on electron transfer at conducting polymer electrode-electrolyte interfaces.2018Ingår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, nr 7, s. 11899-11904Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electrochemistry is an old but still flourishing field of research due to the importance of the efficiency and kinetics of electrochemical reactions in industrial processes and (bio-)electrochemical devices. The heterogeneous electron transfer from an electrode to a reactant in the solution has been well studied for metal, semiconductor, metal oxide, and carbon electrodes. For those electrode materials, there is little correlation between the electronic transport within the electrode material and the electron transfer occurring at the interface between the electrode and the solution. Here, we investigate the heterogeneous electron transfer between a conducting polymer electrode and a redox couple in an electrolyte. As a benchmark system, we use poly(3,4-ethylenedioxythiophene) (PEDOT) and the Ferro/ferricyanide redox couple in an aqueous electrolyte. We discovered a strong correlation between the electronic transport within the PEDOT electrode and the rate of electron transfer to the organometallic molecules in solution. We attribute this to a percolation-based charge transport within the polymer electrode directly involved in the electron transfer. We show the impact of this finding by optimizing an electrochemical thermogalvanic cell that transforms a heat flux into electrical power. The power generated by the cell increased by four orders of magnitude on changing the morphology and conductivity of the polymer electrode. As all conducting polymers are recognized to have percolation transport, we believe that this is a general phenomenon for this family of conductors.

  • 22.
    Rudd, Sam
    et al.
    University of South Australia, Australia.
    Franco Gonzalez, Felipe
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Singh, Sandeep Kumar
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Ullah Khan, Zia
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Andreasen, Jens W.
    Technical University of Denmark, Denmark.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Evans, Drew
    University of South Australia, Australia.
    Charge transport and structure in semimetallic polymers2018Ingår i: Journal of Polymer Science Part B: Polymer Physics, ISSN 0887-6266, E-ISSN 1099-0488, Vol. 56, nr 1, s. 97-104Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Owing to changes in their chemistry and structure, polymers can be fabricated to demonstrate vastly different electrical conductivities over many orders of magnitude. At the high end of conductivity is the class of conducting polymers, which are ideal candidates for many applications in low-cost electronics. Here, we report the influence of the nature of the doping anion at high doping levels within the semi-metallic conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) on its electronic transport properties. Hall effect measurements on a variety of PEDOT samples show that the choice of doping anion can lead to an order of magnitude enhancement in the charge carrier mobilityamp;gt;3 cm(2)/Vs at conductivities approaching 3000 S/cm under ambient conditions. Grazing Incidence Wide Angle X-ray Scattering, Density Functional Theory calculations, and Molecular Dynamics simulations indicate that the chosen doping anion modifies the way PEDOT chains stack together. This link between structure and specific anion doping at high doping levels has ramifications for the fabrication of conducting polymer-based devices. (c) 2017 The Authors. Journal of Polymer Science Part B: Polymer Physics Published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 97-104

  • 23.
    Sun, Hengda
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten.
    Wang, Suhao
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Forchheimer, Robert
    Linköpings universitet, Institutionen för systemteknik, Informationskodning. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Complementary Logic Circuits Based on High-Performance n-Type Organic Electrochemical Transistors2018Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 30, nr 9, artikel-id 1704916Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Organic electrochemical transistors (OECTs) have been the subject of intense research in recent years. To date, however, most of the reported OECTs rely entirely on p-type (hole transport) operation, while electron transporting (n-type) OECTs are rare. The combination of efficient and stable p-type and n-type OECTs would allow for the development of complementary circuits, dramatically advancing the sophistication of OECT-based technologies. Poor stability in air and aqueous electrolyte media, low electron mobility, and/or a lack of electrochemical reversibility, of available high-electron affinity conjugated polymers, has made the development of n-type OECTs troublesome. Here, it is shown that ladder-type polymers such as poly(benzimidazobenzophenanthroline) (BBL) can successfully work as stable and efficient n-channel material for OECTs. These devices can be easily fabricated by means of facile spray-coating techniques. BBL-based OECTs show high transconductance (up to 9.7 mS) and excellent stability in ambient and aqueous media. It is demonstrated that BBL-based n-type OECTs can be successfully integrated with p-type OECTs to form electrochemical complementary inverters. The latter show high gains and large worst-case noise margin at a supply voltage below 0.6 V.

  • 24.
    Che, Canyan
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten.
    Wijeratne, Kosala
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Zhao, Dan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Warczak, Magdalena
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Conducting Polymer Electrocatalysts for Proton-Coupled Electron Transfer Reactions: Toward Organic Fuel Cells with Forest Fuels2018Ingår i: Advanced Sustainable Systems, ISSN 2366-7486, Vol. 317Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Lignin is one of the most abundant biopolymers, constituting 25% of plants. The pulp and paper industries extract lignin in their process and today seek new applications for this by-product. Here, it is reported that the aromatic alcohols obtained from lignin depolymerization can be used as fuel in high power density electrical power sources. This study shows that the conducting polymer poly(3,4-ethylenedioxythiophene), fabricated from abundant ele-ments via low temperature synthesis, enables efficient, direct, and reversible chemical-to-electrical energy conversion of aromatic alcohols such as lignin residues in aqueous media. A material operation principle related to the rela-tively high molecular diffusion and ionic conductivity within the conducting polymer matrix, ensuring efficient uptake of protons in the course of proton-coupled electron transfers between organic molecules is proposed.

  • 25.
    Brooke, Robert
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Edberg, Jesper
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Iandolo, Donata
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten. Ecole Natl Super Mines, France.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Controlling the electrochromic properties of conductive polymers using UV-light2018Ingår i: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 6, nr 17, s. 4663-4670Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The phenomenon of electrochromism in conductive polymers is well known and has been exploited in many scientific reports. Using a newly developed patterning technique for conductive polymers, we manufactured high-resolution electrochromic devices from the complementary polymers PEDOT and polypyrrole. The technique, which combines UV-light exposure with vapor phase polymerization, has previously only been demonstrated with the conductive polymer PEDOT. We further demonstrated how the same technique can be used to control the optical properties and the electrochromic contrast in these polymers. Oxidant exposure to UV-light prior to vapor phase polymerization showed a reduction in polymer electrochromic contrast allowing high-resolution (100 mu m) patterns to completely disappear while applying a voltage bias due to their optical similarity in one redox state and dissimilarity in the other. This unique electrochromic property enabled us to construct devices displaying images that appear and disappear with the change in applied voltage. Finally, a modification of the electrochromic device architecture permitted a dual image electrochromic device incorporating patterned PEDOT and patterned polypyrrole on the same electrode, allowing the switching between two different images.

  • 26.
    Gomez-Carretero, S.
    et al.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Libberton, B.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Svennersten, K.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Persson, Kristin M.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Rhen, M.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Sweden.
    Richter-Dahlfors, A.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Correction: Redox-active conducting polymers modulate Salmonella biofilm formation by controlling availability of electron acceptors (vol 3, article number 19, 2017)2018Ingår i: npj Biofilms and Microbiomes, ISSN 2055-5008, Vol. 4, nr 1, artikel-id 19Artikel i tidskrift (Refereegranskat)
  • 27.
    Petsagkourakis, Ioannis
    et al.
    University of Bordeaux, France.
    Pavlopoulou, Eleni
    Institute Polytech Bordeaux Bordeaux INP, France.
    Cloutet, Eric
    University of Bordeaux, France.
    Fang Chen, Yan
    University of Bordeaux, France.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Dilhaire, Stefan
    University of Bordeaux, France.
    Fleury, Guillaume
    University of Bordeaux, France.
    Hadziioannou, Georges
    University of Bordeaux, France.
    Correlating the Seebeck coefficient of thermoelectric polymer thin films to their charge transport mechanism2018Ingår i: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 52, s. 335-341Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Room temperature flexible heat harvesters based on conducting polymers are ideally suited to cover the energy demands of the modern nomadic society. The optimization of their thermoelectric efficiency is usually sought by tuning the oxidation levels of the conducting polymers, even if such methodology is detrimental to the Seebeck coefficient (S) as both the Seebeck coefficient and the electrical conductivity (sigma) are antagonistically related to the carrier concentration. Here we report a concurrent increase of S and sigma and we experimentally derive the dependence of Seebeck coefficient on charge carrier mobility for the first time in organic electronics. Through specific control of the conducting polymer synthesis, we enabled the formation of a denser percolation network that facilitated the charge transport and the thermodiffusion of the charge carriers inside the conducting polymer layer, while the material shifted from a Fermi glass towards a semi-metal, as its crystallinity increased. This work sheds light upon the origin of the thermoelectric properties of conducting polymers, but also underlines the importance of enhanced charge carrier mobility for the design of efficient thermoelectric polymers.

  • 28.
    Kiefer, David
    et al.
    Chalmers Univ Technol, Sweden.
    Giovannitti, Alexander
    Imperial Coll London, England.
    Sun, Hengda
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Biskup, Till
    Albert Ludwigs Univ Freiburg, Germany.
    Hofmann, Anna
    Chalmers Univ Technol, Sweden.
    Koopmans, Marten
    Zernike Inst Adv Mat, Netherlands.
    Cendra, Camila
    Stanford Univ, CA 94304 USA.
    Weber, Stefan
    Albert Ludwigs Univ Freiburg, Germany.
    Koster, L. Jan Anton
    Zernike Inst Adv Mat, Netherlands.
    Olsson, Eva
    Chalmers Univ Technol, Sweden.
    Rivnay, Jonathan
    Northwestern Univ, IL 60035 USA.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    McCulloch, Iain
    Imperial Coll London, England; Imperial Coll London, England; King Abdullah Univ Sci and Technol, Saudi Arabia.
    Muller, Christian
    Chalmers Univ Technol, Sweden.
    Enhanced n-Doping Efficiency of a Naphthalenediimide-Based Copolymer through Polar Side Chains for Organic Thermoelectrics2018Ingår i: ACS ENERGY LETTERS, ISSN 2380-8195, Vol. 3, nr 2, s. 278-285Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    N-doping of conjugated polymers either requires a high dopant fraction or yields a low electrical conductivity because of their poor compatibility with molecular dopants. We explore n doping of the polar naphthalenediimide-bithiophene copolymer p(gNDI-gT2) that carries oligoethylene glycol-based side chains and show that the polymer displays superior miscibility with the benzimidazole-dimethylbenzenamine-based n-dopant N-DMBI. The good compatibility of p(gNDI-gT2) and N-DMBI results in a relatively high doping efficiency of 13% for n-dopants, which leads to a high electrical conductivity of more than 10(-1) S cm(-1) for a dopant concentration of only 10 mol % when measured in an inert atmosphere. We find that the doped polymer is able to maintain its electrical conductivity for about 20 min when exposed to air and recovers rapidly when returned to a nitrogen atmosphere. Overall, solution coprocessing of p(gNDI-gT2) and N-DMBI results in a larger thermoelectric power factor of up to 0.4 mu W K-2 m(-1) compared to other NDI-based polymers.

  • 29.
    Sung, Sang Hyun
    et al.
    Korea Adv Inst Sci and Technol, South Korea.
    Kim, Young Soo
    Korea Adv Inst Sci and Technol, South Korea.
    Joe, Daniel J.
    Korea Adv Inst Sci and Technol, South Korea.
    Mun, Beom Ho
    Korea Adv Inst Sci and Technol, South Korea.
    You, Byoung Kuk
    Korea Adv Inst Sci and Technol, South Korea.
    Keum, Do Hee
    Pohang Univ Sci and Technol POSTECH, South Korea.
    Hahn, Sei Kwang
    Pohang Univ Sci and Technol POSTECH, South Korea.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Kim, Daesoo
    Korea Adv Inst Sci and Technol, South Korea.
    Lee, Keon Jae
    Korea Adv Inst Sci and Technol, South Korea.
    Flexible wireless powered drug delivery system for targeted administration on cerebral cortex2018Ingår i: Nano Energy, ISSN 2211-2855, E-ISSN 2211-3282, Vol. 51, s. 102-112Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The controlled drug delivery devices helps timely drug administrations and maintenance of effective dose to maximize curing effects with minimal side effects. Application of this technology to various body parts has been limited, especially in organs with curved surface, such as the brain and the eye. Herein, we report a flexible drug delivery microdevice (f-DDM) for controlled administration on the curved organ surface. The unique structure of the f-DDM consists of freestanding gold membranes over the multireservoir array was implemented by reversing the typical fabrication order of the reservoir and sealing membrane. We optimized the design of the f-DDM by a finite element analysis to prevent thermal damage during the laser transfer and the applying current density for reliable drug release through an electrochemical analysis. The wireless power transfer system was applied to f-DDM, which shows stable wirelessly powered operation. The f-DDM was flexible enough to be implantable on the curved cerebral cortex and successfully adopted for delivery of two different chemicals or prevention of seizure activity using an anti-epileptic drug. Our study opens a new avenue for the controlled, region-specific, and combinatorial application of drugs, the key factors for precision medicine.

  • 30.
    Jo, Young Jin
    et al.
    Sungkyunkwan Univ SKKU, South Korea.
    Kwon, Ki Yoon
    Sungkyunkwan Univ SKKU, South Korea.
    Ullah Khan, Zia
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Kim, Tae-il
    Sungkyunkwan Univ SKKU, South Korea.
    Gelatin Hydrogel-Based Organic Electrochemical Transistors and Their Integrated Logic Circuits2018Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, nr 45, s. 39083-39090Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We suggest gelatin hydrogel as an electrolyte and demonstrate organic electrochemical transistors (OECTs) based on a sheet of gelatin. We also modulate electrical characteristics of the OECT with respect to pH condition of the gelatin hydrogel from acid to base and analyze its characteristics based on the electrochemical theory. Moreover, we extend the gelatin-based OECT to electrochemical logic circuits, for example, NOT, NOR, and NAND gates.

  • 31.
    Chaharsoughi, Mina Shiran
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Tordera, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Grimoldi, Andrea
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Hybrid Plasmonic and Pyroelectric Harvesting of Light Fluctuations2018Ingår i: Advanced Optical Materials, ISSN 2162-7568, E-ISSN 2195-1071Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    State-of-the-art solar energy harvesting systems based on photovoltaic technology require constant illumination for optimal operation. However, weather conditions and solar illumination tend to fluctuate. Here, a device is presented that extracts electrical energy from such light fluctuations. The concept combines light-induced heating of gold nanodisks (acting as plasmonic optical nanoantennas), and an organic pyroelectric copolymer film (poly(vinylidenefluoride-co-trifluoroethylene)), that converts temperature changes into electrical signals. This hybrid device can repeatedly generate current pulses, not only upon the onset of illumination, but also when illumination is blocked. Detailed characterization highlights the key role of the polarization state of the copolymer, while the copolymer thickness has minor influence on performance. The results are fully consistent with plasmon-assisted pyroelectric effects, as corroborated by combined optical and thermal simulations that match the experimental results. Owing to the tunability of plasmonic resonances, the presented concept is compatible with harvesting near infrared light while concurrently maintaining visible transparency.

  • 32.
    Derek, Vedran
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jakesova, Marie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Glowacki, Eric
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Micropatterning of organic electronic materials using a facile aqueous photolithographic process2018Ingår i: AIP Advances, ISSN 2158-3226, E-ISSN 2158-3226, Vol. 8, nr 10, artikel-id 105116Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Patterning organic semiconductors via traditional solution-based microfabrication techniques is precluded by undesired interactions between processing solvents and the organic material. Herein we show how to avoid these problems easily and introduce a simple lift-off method to pattern organic semiconductors. Positive tone resist is deposited on the substrate, followed by conventional exposure and development. After deposition of the organic semiconductor layer, the remaining photoresist is subjected to a flood exposure, rendering it developable. Lift-off is then performed using the same aqueous developer as before. We find that the aqueous developers do not compromise the integrity of the organic layer or alter its electronic performance. We utilize this technique to pattern four different organic electronic materials: epindo-lidione (EPI), a luminescent semiconductor, p-n photovoltaic bilayers of metal-free phthalocyanine and N, N-dimethyltetracarboxylic diimide, and finally the archetypical conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT). The result of our efforts is a facile method making use of well-established techniques that can be added to the toolbox of research and industrial scientists developing organic electronics technology. (c) 2018 Author(s).

  • 33.
    Modarresi, Mohsen
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Ferdowsi Univ Mashhad, Iran.
    Franco Gonzalez, Felipe
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Morphology and ion diffusion in PEDOT:Tos. A coarse grained molecular dynamics simulation2018Ingår i: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 20, nr 25, s. 17188-17198Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A Martini coarse-grained Molecular Dynamics (MD) model for the doped conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) is developed. The morphology of PEDOT:Tos (i.e. PEDOT doped with molecular tosylate) and its crystallization in aqueous solution for different oxidation levels were calculated using the developed method and compared with corresponding all atomistic MD simulations. The diffusion coefficients of Na+ and Cl- ions in PEDOT:Tos are studied using the developed coarse-grained MD approach. It is shown that the diffusion coefficients decrease exponentially as the hydration level is reduced. It is also predicted that the diffusion coefficients decrease when the doping level of PEDOT is increased. The observed behavior is related to the evolution of water clusters and trapping of ions around the polymer matrix as the hydration level changes. The predicted behavior of the ionic diffusion coefficients can be tested experimentally, and we believe that molecular picture of ionic diffusion in PEDOT unraveled in the present study is instrumental for the design of polymeric materials and devices for better and enhanced performance.

  • 34.
    Sun, Hengda
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Gerasimov, Jennifer
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    n-Type organic electrochemical transistors: materials and challenges2018Ingår i: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 6, nr 44, s. 11778-11784Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Organic electrochemical transistors (OECTs) have emerged as an enabling technology for the development of a variety of applications ranging from digital logic circuits to biosensors and artificial synapses for neuromorphic computing. To date, most of the reported OECTs rely on the use of p-type (hole transporting) conducting and semiconducting polymers as the channel material, while electron transporting (n-type) OECTs are yet immature, thus precluding the realization of advanced complementary circuitry. In this highlight, we review and discuss recent achievements in the area of n-type OECTs, in particular targeting recently reported n-type channel materials and how these have enabled a considerable advancement of OECT circuit capabilities. Further, the critical challenges currently limiting the performance of n-channel OECTs are summarized and discussed, setting material design guidelines for the next generation n-type and complementary OECTs.

  • 35.
    Rivnay, Jonathan
    et al.
    Northwestern Univ, IL 60208 USA.
    Inal, Sahika
    King Abdullah Univ Sci and Technol KAUST, Saudi Arabia.
    Salleo, Alberto
    Stanford Univ, CA 94305 USA.
    Owens, Roisin M.
    Univ Cambridge, England.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Univ Stellenbosch, South Africa.
    Malliaras, George G.
    Univ Cambridge, England.
    Organic electrochemical transistors2018Ingår i: NATURE REVIEWS MATERIALS, ISSN 2058-8437, Vol. 3, nr 2, artikel-id 17086Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Organic electrochemical transistors (OECTs) make effective use of ion injection from an electrolyte to modulate the bulk conductivity of an organic semiconductor channel. The coupling between ionic and electronic charges within the entire volume of the channel endows OECTs with high transconductance compared with that of field-effect transistors, but also limits their response time. The synthetic tunability, facile deposition and biocompatibility of organic materials make OECTs particularly suitable for applications in biological interfacing, printed logic circuitry and neuromorphic devices. In this Review, we discuss the physics and the mechanism of operation of OECTs, focusing on their identifying characteristics. We highlight organic materials that are currently being used in OECTs and survey the history of OECT technology. In addition, form factors, fabrication technologies and applications such as bioelectronics, circuits and memory devices are examined. Finally, we take a critical look at the future of OECT research and development.

  • 36.
    Zajdel, Tom J.
    et al.
    Univ Calif Berkeley, CA 94720 USA; Lawrence Berkeley Natl Lab, CA 94720 USA.
    Baruch, Moshe
    Lawrence Berkeley Natl Lab, CA 94720 USA.
    Méhes, Gábor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Lawrence Berkeley Natl Lab, CA 94720 USA.
    Stavrinidou, Eleni
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Maharbiz, Michel M.
    Univ Calif Berkeley, CA 94720 USA; Univ Calif Berkeley, CA 94720 USA; Chan Zuckerberg Biohub, CA USA.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ajo-Franklin, Caroline M.
    Lawrence Berkeley Natl Lab, CA 94720 USA.
    PEDOT:PSS-based Multilayer Bacterial-Composite Films for Bioelectronics2018Ingår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, artikel-id 15293Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Microbial electrochemical systems provide an environmentally-friendly means of energy conversion between chemical and electrical forms, with applications in wastewater treatment, bioelectronics, and biosensing. However, a major challenge to further development, miniaturization, and deployment of bioelectronics and biosensors is the limited thickness of biofilms, necessitating large anodes to achieve sufficient signal-to-noise ratios. Here we demonstrate a method for embedding an electroactive bacterium, Shewanella oneidensis MR-1, inside a conductive three-dimensional poly(3,4-ethylenedioxy thiophene): poly(styrenesulfonate) (PEDOT:PSS) matrix electropolymerized on a carbon felt substrate, which we call a multilayer conductive bacterial-composite film (MCBF). By mixing the bacteria with the PEDOT:PSS precursor in a flow-through method, we maintain over 90% viability of S. oneidensis during encapsulation. Microscopic analysis of the MCBFs reveal a tightly interleaved structure of bacteria and conductive PEDOT:PSS up to 80 mu m thick. Electrochemical experiments indicate S. oneidensis in MCBFs can perform both direct and riboflavin-mediated electron transfer to PEDOT:PSS. When used in bioelectrochemical reactors, the MCBFs produce 20 times more steady-state current than native biofilms grown on unmodified carbon felt. This versatile approach to control the thickness of bacterial composite films and increase their current output has immediate applications in microbial electrochemical systems, including field-deployable environmental sensing and direct integration of microorganisms into miniaturized organic electronics.

  • 37.
    Gomez-Carretero, S.
    et al.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Libberton, B.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Svennersten, K.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Persson, Kristin M.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Rhen, M.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Sweden.
    Richter-Dahlfors, A.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Redox-active conducting polymers modulate Salmonella biofilm formation by controlling availability of electron acceptors (vol 3, article number 19, 2017)2018Ingår i: npj Biofilms and Microbiomes, ISSN 2055-5008, Vol. 3, artikel-id 19Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Biofouling is a major problem caused by bacteria colonizing abiotic surfaces, such as medical devices. Biofilms are formed as the bacterial metabolism adapts to an attached growth state. We studied whether bacterial metabolism, hence biofilm formation, can be modulated in electrochemically active surfaces using the conducting conjugated polymer poly(3,4-ethylenedioxythiophene) (PEDOT). We fabricated composites of PEDOT doped with either heparin, dodecyl benzene sulfonate or chloride, and identified the fabrication parameters so that the electrochemical redox state is the main distinct factor influencing biofilm growth. PEDOT surfaces fitted into a custom-designed culturing device allowed for redox switching in Salmonella cultures, leading to oxidized or reduced electrodes. Similarly large biofilm growth was found on the oxidized anodes and on conventional polyester. In contrast, biofilm was significantly decreased (52-58%) on the reduced cathodes. Quantification of electrochromism in unswitched conducting polymer surfaces revealed a bacteria-driven electrochemical reduction of PEDOT. As a result, unswitched PEDOT acquired an analogous electrochemical state to the externally reduced cathode, explaining the similarly decreased biofilm growth on reduced cathodes and unswitched surfaces. Collectively, our findings reveal two opposing effects affecting biofilm formation. While the oxidized PEDOT anode constitutes a renewable electron sink that promotes biofilm growth, reduction of PEDOT by a power source or by bacteria largely suppresses biofilm formation. Modulating bacterial metabolism using the redox state of electroactive surfaces constitutes an unexplored method with applications spanning from antifouling coatings and microbial fuel cells to the study of the role of bacterial respiration during infection.

  • 38.
    Kang, Evan S. H.
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Chen, Shangzhi
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Sardar, Samim
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Tordera, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Armakavicius, Nerijus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Darakchieva, Vanya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Shegai, Timur
    Department of Physics, Chalmers University of Technology, Sweden.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Strong Plasmon–Exciton Coupling with Directional Absorption Features in Optically Thin Hybrid Nanohole Metasurfaces2018Ingår i: ACS Photonics, E-ISSN 2330-4022, s. 4046-4055Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Plasmons and excitons can interact to form new hybridized light–matter states, with a multitude of potential applications including optical logic circuits and single-photon switches. Here, we report the first observation of strong coupling based on optically thin plasmonic nanohole films. The absorptive plasmon resonances of these nanohole films lead to suppressed transmission and Fano-shaped extinction peaks. We prepared silver nanohole films by colloidal lithography, which enables large-scale fabrication of nanoholes distributed in a short-range order. When coated with J-aggregate molecules, both extinction and absorption spectra show clear formation of two separated polariton resonances, with vacuum Rabi splitting on the order of 300 meV determined from anticrossing experiments. In accordance with strong coupling theory, the splitting magnitude increases linearly with the square root of molecular concentration. The extinction peak positions are blue-shifted from the absorption polariton positions, as explained by additional Fano interference between the hybridized states and the metal film. This highlights that absorption measurements are important not only to prove strong coupling but also to correctly determine hybridized polariton positions and splitting magnitudes in hybrid plasmonic nanohole systems. The polariton absorption peaks also show strong dependence on illumination direction, as found related to inherent directionality of the plasmonic nanohole metasurface and differences in light interaction with nonhybridized molecules. Importantly, optical simulations could successfully reproduce the experimental results and all coupling features. Furthermore, simulated spatial distribution of the absorption provides additional evidence of strong coupling in the hybrid nanohole system. The work paves the way toward strong coupling applications based on optically thin nanohole systems, as further promoted by the scalable fabrication.

  • 39.
    Franco Gonzalez, Felipe
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Autonomous Univ Madrid, Spain.
    Rolland, Nicolas
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Substrate-Dependent Morphology and Its Effect on Electrical Mobility of Doped Poly(3,4-ethylenedioxythiophene) (PEDOT) Thin Films2018Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, nr 34, s. 29115-29126Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Deposition dynamics, crystallization, molecular packing, and electronic mobility of poly(3,4-ethylenedioxythiophene) (PEDOT) thin films are affected by the nature of the substrate. Computational microscopy has been carried out to reveal the morphology-substrate dependence for PEDOT thin films doped with molecular tosylate deposited on different substrates including graphite, Si3N4, silicon, and amorphous SiO2. It is shown that the substrate is instrumental in formation of the lamellar structure. PEDOT films on the ordered substrates (graphite, Si3N4, and silicon) exhibit preferential face-on orientation, with graphite showing the most ordered and pronounced face-on packing. In contrast, PEDOT on amorphous SiO2 exhibits the dominant edge-on orientation, except in the dry state where both packings are equally presented. The role of water and the porosity of the substrate in formation of the edge-on structure on SiO2 is outlined. On the basis of the calculated morphology, the multiscale calculations of the electronic transport and percolative analysis are performed outlining how the character of the substrate affects the electron mobility. It is demonstrated that good crystallinity (PEDOT on graphite substrate) and high content of edge-on (PEDOT on SiO2 substrate) are not enough to achieve the highest electrical in-plane mobility. Instead, the least ordered material with lower degree of the edge-on content (PEDOT on silicon substrate) provides the highest mobility because it exhibits an efficient network of pi-pi stacked chain extending throughout the entire sample.

  • 40.
    Petsagkourakis, Ioannis
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ohkubo, Isao
    Natl Inst Mat Sci, Japan.
    Satoh, Norifusa
    Natl Inst Mat Sci, Japan.
    Mori, Takao
    Natl Inst Mat Sci, Japan; Univ Tsukuba, Japan.
    Thermoelectric materials and applications for energy harvesting power generation2018Ingår i: Science and Technology of Advanced Materials, ISSN 1468-6996, E-ISSN 1878-5514, Vol. 19, nr 1, s. 836-862Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Thermoelectrics, in particular solid-state conversion of heat to electricity, is expected to be a key energy harvesting technology to power ubiquitous sensors and wearable devices in the future. A comprehensive review is given on the principles and advances in the development of thermoelectric materials suitable for energy harvesting power generation, ranging from organic and hybrid organic-inorganic to inorganic materials. Examples of design and applications are also presented. [GRAPHICS] .

  • 41.
    Rolland, Nicolas
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Franco Gonzalez, Juan Felipe
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Volpi, Riccardo
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Bioinformatik. Linköpings universitet, Tekniska fakulteten. RIST, Romania.
    Linares, Mathieu
    KTH Royal Inst Technol, Sweden.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Understanding morphology-mobility dependence in PEDOT:Tos2018Ingår i: PHYSICAL REVIEW MATERIALS, ISSN 2475-9953, Vol. 2, nr 4, artikel-id 045605Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The potential of conjugated polymers to compete with inorganic materials in the field of semiconductor is conditional on fine-tuning of the charge carriers mobility. The latter is closely related to the material morphology, and various studies have shown that the bottleneck for charge transport is the connectivity between well-ordered crystallites, with a high degree of pi-pi stacking, dispersed into a disordered matrix. However, at this time there is a lack of theoretical descriptions accounting for this link between morphology and mobility, hindering the development of systematic material designs. Here we propose a computational model to predict charge carriers mobility in conducting polymer PEDOT depending on the physicochemical properties of the system. We start by calculating the morphology using molecular dynamics simulations. Based on the calculated morphology we perform quantum mechanical calculation of the transfer integrals between states in polymer chains and calculate corresponding hopping rates using the Miller-Abrahams formalism. We then construct a transport resistive network, calculate the mobility using a mean-field approach, and analyze the calculated mobility in terms of transfer integrals distributions and percolation thresholds. Our results provide theoretical support for the recent study [Noriega et al., Nat Mater 12, 1038 (2013)] explaining why the mobility in polymers rapidly increases as the chain length is increased and then saturates for sufficiently long chains. Our study also provides the answer to the long-standing question whether the enhancement of the crystallinity is the key to designing high-mobility polymers. We demonstrate, that it is the effective pi-pi stacking, not the long-range order that is essential for the material design for the enhanced electrical performance. This generic model can compare the mobility of a polymer thin film with different solvent contents, solvent additives, dopant species or polymer characteristics, providing a general framework to design new high mobility conjugated polymer materials.

  • 42.
    Munoz, William Armando
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Understanding the Impact of Film Disorder and Local Surface Potential in Ultraviolet Photoelectron Spectroscopy of PEDOT2018Ingår i: Macromolecular rapid communications, ISSN 1022-1336, E-ISSN 1521-3927, Vol. 39, nr 4, artikel-id 1700533Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The spectra of conducting polymers obtained using ultraviolet photoelectron spectroscopy (UPS) exhibit a typical broadening of the tail sigma(UPS) approximate to 1 eV, which by an order of magnitude exceeds a commonly accepted value of the broadening of the tail of the density of states sigma(DOS) approximate to 0.1 eV obtained using transport measurements. In this work, an origin of this anomalous broadening of the tail of the UPS spectra in a doped conducting polymer, PEDOT (poly(3,4-ethylenedioxythiophene)), is discussed. Based on the semiempirical approach and using a realistic morphological model, the density of valence states in PEDOT doped with molecular counterions is computed. It is shown that due to a disordered character of the material with randomly distributed counterions, the localized charge carriers in PEDOT crystallites experience spatially varying electrostatic potential. This leads to spatially varying local vacuum levels and binding energies. Taking this variation into account the UPS spectrum is obtained with the broadening of the tail comparable to the experimentally observed one. The results imply that the observed broadening of the tail of the UPS spectra in PEDOT provides information about a disordered spatially varying potential in the material rather than the broadening of the DOS itself.

  • 43.
    Brooke, Robert
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Franco Gonzalez, Felipe
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Wijeratne, Kosala
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Pavlopoulou, Eleni
    Univ Bordeaux, France.
    Galliani, Daniela
    Univ Milano Bicocca, Italy.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Valiollahi Bisheh, Roudabeh
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Vapor phase synthesized poly(3,4-ethylenedioxy-thiophene)-trifluoromethanesulfonate as a transparent conductor material2018Ingår i: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 6, nr 43, s. 21304-21312Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Inorganic transparent conductive oxides have dominated the market as transparent electrodes due to their high conductivity and transparency. Here, we report the fabrication and optimization of the synthesis of poly(3,4-ethylenedioxythiophene) trifluoromethanesulfonate via vapor phase polymerization for the potential replacement of such inorganic materials. The parameters and conditions of the polymerization were investigated and an electrical conductivity of 3800 S cm(-1) and 4500 S cm(-1) after acid treatment were obtained while maintaining an absorbance similar to that of commercial indium tin oxide. This increase in electrical conductivity was rationalized experimentally and theoretically to an increase in the oxidation level and a higher order of crystallinity which does not disrupt the pi-pi stacking of PEDOT chains.

  • 44.
    Wang, Gang
    et al.
    Northwestern University, IL 60208 USA.
    Huang, Wei
    Northwestern University, IL 60208 USA.
    Eastham, Nicholas D.
    Northwestern University, IL 60208 USA.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Northwestern University, IL 60208 USA; Flexterra Inc, IL 60077 USA.
    Manley, Eric F.
    Northwestern University, IL 60208 USA; Argonne National Lab, IL 60439 USA.
    Zeng, Li
    Northwestern University, IL 60208 USA.
    Wang, Binghao
    Northwestern University, IL 60208 USA.
    Zhang, Xinan
    Northwestern University, IL 60208 USA.
    Chen, Zhihua
    Flexterra Inc, IL 60077 USA.
    Li, Ran
    Northwestern University, IL 60208 USA.
    Chang, Robert P. H.
    Northwestern University, IL 60208 USA.
    Chen, Lin X.
    Northwestern University, IL 60208 USA; Argonne National Lab, IL 60439 USA.
    Bedzyk, Michael J.
    Northwestern University, IL 60208 USA.
    Melkonyan, Ferdinand S.
    Northwestern University, IL 60208 USA.
    Facchetti, Antonio
    Northwestern University, IL 60208 USA; Flexterra Inc, IL 60077 USA.
    Marks, Tobin J.
    Northwestern University, IL 60208 USA.
    Aggregation control in natural brush-printed conjugated polymer films and implications for enhancing charge transport2017Ingår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 114, nr 47, s. E10066-E10073Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Shear-printing is a promising processing technique in organic electronics for microstructure/charge transport modification and large-area film fabrication. Nevertheless, the mechanism by which shear-printing can enhance charge transport is not well-understood. In this study, a printing method using natural brushes is adopted as an informative tool to realize direct aggregation control of conjugated polymers and to investigate the interplay between printing parameters, macromolecule backbone alignment and aggregation, and charge transport anisotropy in a conjugated polymer series differing in architecture and electronic structure. This series includes (i) semicrystalline hole-transporting P3HT, (ii) semicrystalline electron transporting N2200, (iii) low-crystallinity hole-transporting PBDTT-FTTE, and (iv) low-crystallinity conducting PEDOT:PSS. The (semi-)conducting films are characterized by a battery of morphology and microstructure analysis techniques and by charge transport measurements. We report that remarkably enhanced mobilities/conductivities, as high as 5.7x/3.9x, are achieved by controlled growth of nanofibril aggregates and by backbone alignment, with the adjusted R-2 (R-adj(2)) correlation between aggregation and charge transport as high as 95%. However, while shear-induced aggregation is important for enhancing charge transport, backbone alignment alone does not guarantee charge transport anisotropy. The correlations between efficient charge transport and aggregation are clearly shown, while mobility and degree of orientation are not always well-correlated. These observations provide insights into macroscopic charge transport mechanisms in conjugated polymers and suggest guidelines for optimization.

  • 45.
    Gabrielsson, Erik
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Biocompatible Circuits for Human–Machine Interfacing2017Ingår i: Green Materials for Electronics / [ed] Mihai Irimia-Vladu, Eric D. Głowacki, Niyazi Sariciftci, Siegfried Bauer, Wiley-VCH Verlagsgesellschaft, 2017, s. 91-118Kapitel i bok, del av antologi (Övrigt vetenskapligt)
    Abstract [en]

    Conventional electronic devices have evolved from the first transistors introduced in the 1940s to integrated circuits and today's modern (CMOS) computer chips fabricated on silicon wafers using photolithography. This chapter reviews such iontronic devices for signal translation and their application in bioelectronics. It begins with a brief description of the ion transport mechanisms that lay the conceptual groundwork for this type of iontronic devices. The chapter presents various iontronic devices aimed at bioelectronic applications. It outlines the future possible developments of iontronics for human-machine interfacing. The physical interface between electronic devices and biological tissues is of particular interest, as this interface bridges the gap between artificial, humanmade technologies and biological "circuits". Ion-conducting diodes and transistors can be used to build circuits for modulation of ion flow, with the possibility of mimicking the dynamic and nonlinear processes occurring in the body.

  • 46.
    Tybrandt, Klas
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Chemical potential-electric double layer coupling in conjugated polymer-polyelectrolyte blends2017Ingår i: Science Advances, ISSN 0036-8156, E-ISSN 2375-2548, Vol. 3, nr 12, artikel-id eaao3659Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Conjugated polymer-polyelectrolyte blends combine and couple electronic semiconductor functionality with selective ionic transport, making them attractive as the active material in organic biosensors and bioelectronics, electrochromic displays, neuromorphic computing, and energy conversion and storage. Although extensively studied and explored, fundamental knowledge and accurate quantitative models of the coupled ion-electron functionality and transport are still lacking to predict the characteristics of electrodes and devices based on these blends. We report on a two-phase model, which couples the chemical potential of the holes, in the conjugated polymer, with the electric double layer residing at the conjugated polymer-polyelectrolyte interface. The model reproduces a wide range of experimental charging and transport data and provides a coherent theoretical framework for the system as well as local electrostatic potentials, energy levels, and charge carrier concentrations. This knowledge is crucial for future developments and optimizations of bioelectronic and energy devices based on the electronic-ionic interaction within these materials.

  • 47.
    Jiao, Fei
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Naderi, Ali
    Innventia AB, Sweden.
    Zhao, Dan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Schlueter, Joshua
    University of Kentucky, KY 40506 USA.
    Shahi, Maryam
    University of Kentucky, KY 40506 USA.
    Sundstrom, Jonas
    Innventia AB, Sweden.
    Granberg, Hjalmar
    Innventia AB, Sweden.
    Edberg, Jesper
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ail, Ujwala
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Brill, Joseph
    University of Kentucky, KY 40506 USA.
    Lindstrom, Tom
    Innventia AB, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Correction: Ionic thermoelectric paper (vol 5, pg 16883, 2017)2017Ingår i: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 5, nr 37, s. 20053-20053Artikel i tidskrift (Övrigt vetenskapligt)
    Abstract [en]

    n/a

  • 48.
    Arbring Sjöström, Theresia
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Amanda
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Stanford University, CA 94305 USA.
    Gabrielsson, Erik
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Kergoat, Loig
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Aix Marseille University, France.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Cross-Linked Polyelectrolyte for Improved Selectivity and Processability of lontronic Systems2017Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, nr 36, s. 30247-30252Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    On-demand local release of biomolecules enables fine-tuned stimulation for the next generation of neuromodulation therapies. Such chemical stimulation is achievable using iontronic devices based on microfabricated, highly selective ion exchange membranes (IEMs). Current limitations in processability and performance of thin film LEMs hamper future developments of this technology. Here we address this limitation by developing a cationic IEM with excellent processability and ionic selectivity: poly(4-styrenesulfonic acidco-maleic acid) (PSS-co-MA) cross-linked with polyethylene glycol (PEG). This enables new design opportunities and provides enhanced compatibility with in vitro cell studies. PSSA-co-MA/PEG is shown to out-perform the cation selectivity of the previously used iontronic material.

  • 49.
    Håkansson, Anna
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Han, Shaobo
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Wang, Suhao
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Lu, Jun
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Braun, Slawomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Effect of (3-Glycidyloxypropyl)Trimethoxysilane (GOPS) on the Electrical Properties of PEDOT:PSS Films2017Ingår i: Journal of Polymer Science Part B: Polymer Physics, ISSN 0887-6266, E-ISSN 1099-0488, Vol. 55, nr 10, s. 814-820Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) has been reported as a successful functional material in a broad variety of applications. One of the most important advantages of PEDOT:PSS is its water-solubility, which enables simple and environmental friendly manufacturing processes. Unfortunately, this also implies that pristine PEDOT:PSS films are unsuitable for applications in aqueous environments. To reach stability in polar solvents, (3-glycidyloxypropyl)trimethoxysilane (GOPS) is typically used to cross-link PEDOT:PSS. Although this strategy is widely used, its mechanism and effect on PEDOT:PSS performance have not been articulated yet. Here, we present a broad study that provides a better understanding of the effect of GOPS on the electrical and electronic properties of PEDOT:PSS. We show that the GOPS reacts with the sulfonic acid group of the excess PSS, causing a change in the PEDOT:PSS film morphology, while the oxidation level of PEDOT remains unaffected. This is at the origin of the observed conductivity changes. (c) 2017 Wiley Periodicals, Inc.

  • 50.
    Edberg, Jesper
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Malti, Abdellah
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Granberg, Hjalmar
    RISE Bioeconomy.
    Hamedi, Mahiar M.
    KTH Royal Institute of Technology.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Electrochemical circuits from ‘cut and stick’ PEDOT:PSS-nanocellulose composite2017Ingår i: Flexible and printed electronics, E-ISSN 2058-8585, Vol. 4, nr 2, artikel-id 045010Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We report a flexible self-standing adhesive composite made from PEDOT:PSS and nanofibrillated cellulose. The material exhibits good combined mechanical and electrical characteristics(an elastic modulus of 4.4 MPa, and an electrical conductivity of 30 S cm−1 ). The inherent self-adhesiveness of the material enables it to be laminated and delaminated repeatedly to form and reconfigure devices and circuits. This modular property opens the door for a plethora of applications where reconfigurability and ease-of-manufacturing are of prime importance. We also demonstrate a paper composite with ionic conductivity and combine the two materials to construct electrochemical devices, namely transistors, capacitors and diodes with high values of transconductance, charge storage capacity and current rectification. We have further used these devices to construct digital circuits such as NOT, NAND and NOR logic.

1234567 1 - 50 av 477
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat