liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Jönsson, Daniel
    et al.
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Steneteg, Peter
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Sundén, Erik
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Englund, Rickard
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Kottravel, Sathish
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Falk, Martin
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Ynnerman, Anders
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Hotz, Ingrid
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Ropinski, Timo
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Inviwo - A Visualization System with Usage Abstraction Levels2019In: IEEE Transactions on Visualization and Computer Graphics, ISSN 1077-2626Article in journal (Refereed)
  • 2.
    Sundén, Erik
    et al.
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Lundgren, Ingemar
    Ocean Discovery, Västervik, Sweden.
    Ynnerman, Anders
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Hybrid Virtual Reality Touch Table: An immersive collaborative platform for public explanatory use of cultural objects and sites.2017In: GCH'17 proceedings, EUROGRAPHICS Workshop on Graphics and Cultural Heritage / [ed] R. Sablatnig and B. Štular, Eurographics - European Association for Computer Graphics, 2017Conference paper (Refereed)
    Abstract [en]

    In this work we present an interactive and immersive solution for scientific data exploration which target visitors to museums and science centers, where the visitors themselves can conduct self-guided tours of scientific data, such as 3D scans of objects with cultural, historical or archaeological importance. The solution consist of a interactive multi-touch table with intuitive user interfaces, combined with head-mounted display and optional wireless controller. A visitor can explore the scientific data, but also a virtually created environment of the historical object(s), where found and acquired, which may be impossible for the visitor to visit and explore in real life. Visitors can work together to explore the data in close detail as well as guide other visitors in an explanatory manor. This interactive learning experience is designed to be versatile and suitable for visitors of various ages or with disabilities, by combining numerous views of the data as well as numerous interaction techniques to explore the data. Our approach and realization was created for the use case of an exploration application with reconstructed data of a sunken 16th century ship, which physically still lies on the seabed. Our motivation to create interactive stories along with as useful explanatory tool for domain experts lead us to this multi-purpose approach.

  • 3.
    Jönsson, Daniel
    et al.
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Sundén, Erik
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Läthén, Gunnar
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Science and Technology, Media and Information Technology.
    W. Hachette, Isabelle
    Method and system for volume rendering of medical images2017Patent (Other (popular science, discussion, etc.))
  • 4.
    Kottravel, Sathish
    et al.
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Falk, Martin
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Sundén, Erik
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Ropinski, Timo
    Visual Computing Research Group, Ulm University. Germany.
    Coverage-Based Opacity Estimation for Interactive Depth of Field in Molecular Visualization2015In: IEEE Pacific Visualization Symposium (PacificVis 2015), IEEE Computer Society, 2015, p. 255-262Conference paper (Refereed)
    Abstract [en]

    In this paper, we introduce coverage-based opacity estimation to achieve Depth of Field (DoF) effects when visualizing molecular dynamics (MD) data. The proposed algorithm is a novel object-based approach which eliminates many of the shortcomings of state-of-the-art image-based DoF algorithms. Based on observations derived from a physically-correct reference renderer, coverage-based opacity estimation exploits semi-transparency to simulate the blur inherent to DoF effects. It achieves high quality DoF effects, by augmenting each atom with a semi-transparent shell, which has a radius proportional to the distance from the focal plane of the camera. Thus, each shell represents an additional coverage area whose opacity varies radially, based on our observations derived from the results of multi-sampling DoF algorithms. By using the proposed technique, it becomes possible to generate high quality visual results, comparable to those achieved through ground-truth multi-sampling algorithms. At the same time, we obtain a significant speedup which is essential for visualizing MD data as it enables interactive rendering. In this paper, we derive the underlying theory, introduce coverage-based opacity estimation and demonstrate how it can be applied to real world MD data in order to achieve DoF effects. We further analyze the achieved results with respect to performance as well as quality and show that they are comparable to images generated with modern distributed ray tracing engines.

  • 5.
    Sundén, Erik
    et al.
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Ropinski, Timo
    University of Ulm, Germany.
    Efficient Volume Illumination with Multiple Light Sources through Selective Light Updates2015In: 2015 IEEE Pacific Visualization Symposium (PacificVis), IEEE , 2015, p. 231-238Conference paper (Refereed)
    Abstract [en]

    Incorporating volumetric illumination into rendering of volumetric data increases visual realism, which can lead to improved spatial comprehension. It is known that spatial comprehension can be further improved by incorporating multiple light sources. However, many volumetric illumination algorithms have severe drawbacks when dealing with multiple light sources. These drawbacks are mainly high performance penalties and memory usage, which can be tackled with specialized data structures or data under sampling. In contrast, in this paper we present a method which enables volumetric illumination with multiple light sources without requiring precomputation or impacting visual quality. To achieve this goal, we introduce selective light updates which minimize the required computations when light settings are changed. We will discuss and analyze the novel concepts underlying selective light updates, and demonstrate them when applied to real-world data under different light settings.

  • 6.
    Sundén, Erik
    et al.
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Steneteg, Peter
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Kottravel, Sathish
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Jönsson, Daniel
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Englund, Rickard
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Falk, Martin
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Ropinski, Timo
    University of Ulm, Germany.
    Inviwo - An Extensible, Multi-Purpose Visualization Framework2015In: 2015 IEEE Scientific Visualization Conference (SciVis), IEEE , 2015, p. 163-164Conference paper (Refereed)
    Abstract [en]

    To enable visualization research impacting other scientific domains, the availability of easy-to-use visualization frameworks is essential. Nevertheless, an easy-to-use system also has to be adapted to the capabilities of modern hardware architectures, as only this allows for realizing interactive visualizations. With this trade-off in mind, we have designed and realized the cross-platform Inviwo (Interactive Visualization Workshop) visualization framework, that supports both interactive visualization research as well as efficient visualization application development and deployment. In this poster we give an overview of the architecture behind Inviwo, and show how its design enables us and other researchers to realize their visualization ideas efficiently. Inviwo consists of a modern and lightweight, graphics independent core, which is extended by optional modules that encapsulate visualization algorithms, well-known utility libraries and commonly used parallel-processing APIs (such as OpenGL and OpenCL). The core enables a simplistic structure for creating bridges between the different modules regarding data transfer across architecture and devices with an easy-to-use screen graph and minimalistic programming. Making the base structures in a modern way while providing intuitive methods of extending the functionality and creating modules based on other modules, we hope that Inviwo can help the visualization community to perform research through a rapid-prototyping design and GUI, while at the same time allowing users to take advantage of the results implemented in the system in any way they desire later on. Inviwo is publicly available at www.inviwo.org, and can be used freely by anyone under a permissive free software license (Simplified BSD).

  • 7.
    Sundén, Erik
    et al.
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Kottravel, Sathish
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Ropinski, Timo
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering. University of Ulm, Germany.
    Multimodal volume illumination2015In: Computers & graphics, ISSN 0097-8493, E-ISSN 1873-7684, Vol. 50, p. 47-60Article in journal (Refereed)
    Abstract [en]

    Despite the increasing importance of multimodal volumetric data acquisition and the recent progress in advanced volume illumination, interactive multimodal volume illumination remains an open challenge. As a consequence, the perceptual benefits of advanced volume illumination algorithms cannot be exploited when visualizing multimodal data - a scenario where increased data complexity urges for improved spatial comprehension. The two main factors hindering the application of advanced volumetric illumination models to multimodal data sets are rendering complexity and memory consumption. Solving the volume rendering integral by considering multimodal illumination increases the sampling complexity. At the same time, the increased storage requirements of multimodal data sets forbid to exploit precomputation results, which are often facilitated by advanced volume illumination algorithms to reduce the amount of per-frame computations. In this paper, we propose an interactive volume rendering approach that supports advanced illumination when visualizing multimodal volumetric data sets. The presented approach has been developed with the goal to simplify and minimize per-sample operations, while at the same time reducing the memory requirements. We will show how to exploit illumination-importance metrics, to compress and transform multimodal data sets into an illumination-aware representation, which is accessed during rendering through a novel light-space-based volume rendering algorithm. Both, data transformation and rendering algorithm, are closely intervened by taking compression errors into account during rendering. We describe and analyze the presented approach in detail, and apply it to real-world multimodal data sets from biology, medicine, meteorology and engineering.

  • 8.
    Jönsson, Daniel
    et al.
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    Sundén, Erik
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    Ynnerman, Anders
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    Ropinski, Timo
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    A Survey of Volumetric Illumination Techniques for Interactive Volume Rendering2014In: Computer graphics forum (Print), ISSN 0167-7055, E-ISSN 1467-8659, Vol. 33, no 1, p. 27-51Article in journal (Refereed)
    Abstract [en]

    Interactive volume rendering in its standard formulation has become an increasingly important tool in many application domains. In recent years several advanced volumetric illumination techniques to be used in interactive scenarios have been proposed. These techniques claim to have perceptual benefits as well as being capable of producing more realistic volume rendered images. Naturally, they cover a wide spectrum of illumination effects, including varying shading and scattering effects. In this survey, we review and classify the existing techniques for advanced volumetric illumination. The classification will be conducted based on their technical realization, their performance behaviour as well as their perceptual capabilities. Based on the limitations revealed in this review, we will define future challenges in the area of interactive advanced volumetric illumination.

  • 9.
    Lindholm, Stefan
    et al.
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    Falk, Martin
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    Sundén, Erik
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    Bock, Alexander
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    Ynnerman, Anders
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, The Institute of Technology.
    Ropinski, Timo
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    Hybrid Data Visualization Based On Depth Complexity Histogram Analysis2014In: Computer graphics forum (Print), ISSN 0167-7055, E-ISSN 1467-8659, Vol. 34, no 1, p. 74-85Article in journal (Refereed)
    Abstract [en]

    In many cases, only the combination of geometric and volumetric data sets is able to describe a single phenomenon under observation when visualizing large and complex data. When semi-transparent geometry is present, correct rendering results require sorting of transparent structures. Additional complexity is introduced as the contributions from volumetric data have to be partitioned according to the geometric objects in the scene. The A-buffer, an enhanced framebuffer with additional per-pixel information, has previously been introduced to deal with the complexity caused by transparent objects. In this paper, we present an optimized rendering algorithm for hybrid volume-geometry data based on the A-buffer concept. We propose two novel components for modern GPUs that tailor memory utilization to the depth complexity of individual pixels. The proposed components are compatible with modern A-buffer implementations and yield performance gains of up to eight times compared to existing approaches through reduced allocation and reuse of fast cache memory. We demonstrate the applicability of our approach and its performance with several examples from molecular biology, space weather, and medical visualization containing both, volumetric data and geometric structures.

  • 10.
    Sundén, Erik
    et al.
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    Bock, Alexander
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    Jönsson, Daniel
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    Ynnerman, Anders
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Ropinski, Timo
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    Interaction Techniques as a Communication Channel when Presenting 3D Visualizations2014Conference paper (Refereed)
    Abstract [en]

    In this position paper we discuss the usage of various interaction technologies with focus on the presentations of 3D visualizations involving a presenter and an audience. While an interaction technique is commonly evaluated from a user perspective, we want to shift the focus from a sole analysis of the naturalness and the ease-of-use for the user, to focus on how expressive and understandable the interaction technique is when witnessed by the audience. The interaction process itself can be considered to be a communication channel and a more expressive interaction technique might make it easier for the audience to comprehend the presentation. Thus, while some natural interaction techniques for interactive visualization are easy to perform by the presenter, they may be less beneficial when interacting with the visualization in front of (and for) an audience. Our observations indicate that the suitability of an interaction technique as a communication channel is highly dependent on the setting in which the interaction takes place. Therefore, we analyze different presentation scenarios in an exemplary fashion and discuss how beneficial and comprehensive the involved techniques are for the audience. We argue that interaction techniques complement the visualization in an interactive presentation scenario as they also serve as an important communication channel, and should therefore also be observed from an audience perspective rather than exclusively a user perspective.

  • 11.
    Bock, Alexander
    et al.
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    Sundén, Erik
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    Liu, Bingchen
    University of Auckland, New Zealand .
    Wuensche, Burkhard
    University of Auckland, New Zealand .
    Ropinski, Timo
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    Coherency-Based Curve Compression for High-Order Finite Element Model Visualization2012In: IEEE Transactions on Visualization and Computer Graphics, ISSN 1077-2626, E-ISSN 1941-0506, Vol. 18, no 12, p. 2315-2324Article in journal (Refereed)
    Abstract [en]

    Finite element (FE) models are frequently used in engineering and life sciences within time-consuming simulations. In contrast with the regular grid structure facilitated by volumetric data sets, as used in medicine or geosciences, FE models are defined over a non-uniform grid. Elements can have curved faces and their interior can be defined through high-order basis functions, which pose additional challenges when visualizing these models. During ray-casting, the uniformly distributed sample points along each viewing ray must be transformed into the material space defined within each element. The computational complexity of this transformation makes a straightforward approach inadequate for interactive data exploration. In this paper, we introduce a novel coherency-based method which supports the interactive exploration of FE models by decoupling the expensive world-to-material space transformation from the rendering stage, thereby allowing it to be performed within a precomputation stage. Therefore, our approach computes view-independent proxy rays in material space, which are clustered to facilitate data reduction. During rendering, these proxy rays are accessed, and it becomes possible to visually analyze high-order FE models at interactive frame rates, even when they are time-varying or consist of multiple modalities. Within this paper, we provide the necessary background about the FE data, describe our decoupling method, and introduce our interactive rendering algorithm. Furthermore, we provide visual results and analyze the error introduced by the presented approach.

  • 12.
    Jönsson, Daniel
    et al.
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    Sundén, Erik
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    Ynnerman, Anders
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    Ropinski, Timo
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    State of The Art Report on Interactive Volume Rendering with Volumetric Illumination2012In: Eurographics 2012 - State of the Art Reports / [ed] Marie-Paule Cani and Fabio Ganovelli, Eurographics - European Association for Computer Graphics, 2012, p. 53-74Conference paper (Other academic)
    Abstract [en]

    Interactive volume rendering in its standard formulation has become an increasingly important tool in many application domains. In recent years several advanced volumetric illumination techniques to be used in interactive scenarios have been proposed. These techniques claim to have perceptual benefits as well as being capable of producing more realistic volume rendered images. Naturally, they cover a wide spectrum of illumination effects, including varying shadowing and scattering effects. In this article, we review and classify the existing techniques for advanced volumetric illumination. The classification will be conducted based on their technical realization, their performance behavior as well as their perceptual capabilities. Based on the limitations revealed in this review, we will define future challenges in the area of interactive advanced volumetric illumination.

  • 13.
    Sundén, Erik
    et al.
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    Ynnerman, Anders
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    Ropinski, Timo
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    Image Plane Sweep Volume Illumination2011In: IEEE Transactions on Visualization and Computer Graphics, ISSN 1077-2626, E-ISSN 1941-0506, Vol. 17, no 12, p. 2125-2134Article in journal (Refereed)
    Abstract [en]

    In recent years, many volumetric illumination models have been proposed, which have the potential to simulate advanced lighting effects and thus support improved image comprehension. Although volume ray-casting is widely accepted as the volume rendering technique which achieves the highest image quality, so far no volumetric illumination algorithm has been designed to be directly incorporated into the ray-casting process. In this paper we propose image plane sweep volume illumination (IPSVI), which allows the integration of advanced illumination effects into a GPU-based volume ray-caster by exploiting the plane sweep paradigm. Thus, we are able to reduce the problem complexity and achieve interactive frame rates, while supporting scattering as well as shadowing. Since all illumination computations are performed directly within a single rendering pass, IPSVI does not require any preprocessing nor does it need to store intermediate results within an illumination volume. It therefore has a significantly lower memory footprint than other techniques. This makes IPSVI directly applicable to large data sets. Furthermore, the integration into a GPU-based ray-caster allows for high image quality as well as improved rendering performance by exploiting early ray termination. This paper discusses the theory behind IPSVI, describes its implementation, demonstrates its visual results and provides performance measurements.

1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf