List decoding of block codes is an alternative approach to the decoding problem with appealing qualities. The fairly recent development of efficient algorithms for list decoding of Reed-Solomon codes spur new fuel to the study of this decoding strategy. In this paper we give a weight-based characterization of the set of correctable error patterns under list-of-2 decoding of (tau, 2)-list-decodable linear codes with known weight distribution. We apply our characterization of the set of correctable error patterns to a few codes in a family of low-rate list-of-2 decodable Reed-Solomon codes. We study the increase in error-correction performance obtained in a symmetric AWGN channel by using list-of-2 decoding instead of traditional decoding for these codes. Some simulation results for list-of-2 decoding on QAM channels using the Guruswami-Sudan algorithm for decoding of Reed-Solomon codes are also presented.
We study the problem of list decoding with focus on the case when we have a list size limited to two. Under this restriction we derive general lower bounds on the maximum possible size of a list-of-2-decodable code. We study the set of correctable error patterns in an attempt to obtain a characterization. For a special family of Reed-Solomon codes - which we identify and name 'class-I codes' - we give a weight-based characterization of the correctable error patterns under list-of-2 decoding. As a tool in this analysis we use the theoretical framework of Sudan's algorithm. The characterization is used in an exact calculation of the probability of transmission error in the symmetric channel when list-of-2 decoding is used. The results from the analysis and complementary simulations for QAM-systems show that a list-of-2 decoding gain of nearly 1 dB can be achieved.
Further we study Sudan's algorithm for list decoding of Reed-Solomon codes for the special case of the class-I codes. For these codes algorithms are suggested for both the first and second step of Sudan's algorithm. Hardware solutions for both steps based on the derived algorithms are presented.
Blind decoding, used on control channels of some multi-user wireless access systems, is a technique for achieving adaptive modulation and coding. The idea is to adapt the modulation and coding scheme to the channel quality but instead of signaling the parameters used explicitly, the receiver blindly tries a number of fixed parameter combinations until a successful decoding attempt is detected, with the help of a cyclic redundancy check. In this paper we suggest a new method for reducing the complexity and energy consumption associated with such blind decoding schemes. Our idea is to use a mini-CRC injected early in the data stream to determine if the current decoding attempt is using the correct modulation and coding parameters. We analyze and exemplify the complexity gain of this approach and also investigate the impact of the rearrangement of the CRC scheme in terms of the probability of undetected error. The presented results for the complexity gain are promising and the impact on the error detection capability turns out to be small if any.
Control signaling strategies for scheduling information in cellular OFDM systems are studied. A single-cell multiuser system model is formulated that provides system capacity estimates accounting for the signaling overhead. Different scheduling granularities are considered, including the one used in the specifications for the 3G Long Term Evolution (LTE). A greedy scheduling method is assumed, where each resource is assigned to the user for which it can support the highest number of bits. The simulation results indicate that the cost of control signaling does not outweigh the scheduling gain, when compared with a simple round-robin scheme that does not need signaling of scheduling information. Furthermore, in the studied scenario, joint coding and signaling of scheduling information over all selected users is found to be superior to separate coding and signaling for each user. The results also indicate that the scheduling granularity used for LTE provides better performance than the full granularity.
This paper considers the control signaling on the downlink in wireless multiple access systems, with focus on the part of the control signaling that carries information on the user's time/frequency scheduling assignments. A new idea is presented to reduce the amount of channel resources needed for this signaling. The idea is to exploit the fact that provided that only one single user is scheduled on each channel resource, then the different users' scheduling assignments are correlated. This correlation can be exploited by encoding the scheduling information differentially. In order to recover the scheduling information, a user must then decode the scheduling information of some of the others. This is possible, because on the downlink, all users can hear the transmission by the base station so that users with a high SNR may decode the control signaling sent to users with a lower SNR. We present a practical scheme to exploit this idea. Both analytical analysis and numerical examples illustrate that the proposed technique can provide a substantial reduction in signaling traffic.
This paper considers transmission of scheduling information in OFDMA-based cellular communication systems such as 3GPP long-term evolution (LTE). These systems provide efficient usage of radio resources by allowing users to be scheduled dynamically in both frequency and time. This requires considerable amounts of scheduling information to be sent to the users. The paper compares two basic transmission strategies: transmitting a separate scheduling message to each user versus broadcasting a joint scheduling message to all users. Different scheduling granularities are considered, as well as different scheduling algorithms. The schemes are evaluated in the context of the LTE downlink using multiuser system simulations, assuming a full-buffer situation. The results show that separate transmission of the scheduling information requires a slightly lower overhead than joint broadcasting, when proportional fair scheduling is employed and the users are spread out over the cell area. The results also indicate that the scheduling granularity standardized for LTE provides a good trade-off between scheduling granularity and overhead.