liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andersson, Håkan
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    A Co-Simulation Approach for Hydraulic Percussion Units2018Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    This Licentiate of Engineering thesis concerns modelling and simulation of hydraulic percussion units. These units are often found in equipment for breaking or drilling in rock and concrete, and are also often driven by oil hydraulics, in which complex fluid-structure couplings are essential for their operation.

    Current methodologies used today when developing hydraulic percussion units are based on decoupled analyses, which are not correctly capturing the important coupled mechanisms. Hence, an efficient method for coupled simulations is of high importance, since these mechanisms are critical for the function of these units. Therefore, a co-simulation approach between a 1D system simulation model representing the fluid system and a structural 3D FE-model is proposed.

    This approach is presented in detail, implemented for two well-known simulation tools and evaluated for a simple but relevant model. The Hopsan simulation tool was used for the fluid system and the FE-simulation software LS-DYNA was used for the structural mechanics simulation. The co-simulation interface was implemented using the Functional Mock-up Interface-standard.

    The approach was further developed to also incorporate multiple components for coupled simulations. This was considered necessary when models for the real application are to be developed. The use of two components for co-simulation was successfully evaluated for two models, one using the simple rigid body representation, and a second where linear elastic representations of the structural material were implemented.

    An experimental validation of the co-simulation approach applied to an existing hydraulic hammer was performed. Experiments on the hydraulic hammer were performed using an in-house test rig, and responses were registered at four different running conditions. The co-simulation model was developed using the same approach as before. The corresponding running conditions were simulated and the responses were successfully validated against the experiments. A parameter study was also performed involving two design parameters with the objective to evaluate the effects of a parameter change.

    This thesis consists of two parts, where Part I gives an introduction to the application, the simulation method and the implementation, while Part II consists of three papers from this project.

    List of papers
    1. A co-simulation method for system-level simulation of fluid-structure couplings in hydraulic percussion units
    Open this publication in new window or tab >>A co-simulation method for system-level simulation of fluid-structure couplings in hydraulic percussion units
    Show others...
    2017 (English)In: Engineering with Computers, ISSN 0177-0667, E-ISSN 1435-5663, Vol. 33, no 2, p. 317-333Article in journal (Refereed) Published
    Abstract [en]

    This paper addresses a co-simulation method for fluid power driven machinery equipment, i.e. oil hydraulic machinery. In these types of machinery, the fluid-structure interaction affects the end-product performance to a large extent, hence an efficient co-simulation method is of high importance. The proposed method is based on a 1D system model representing the fluid components of the hydraulic machinery, within which structural 3D Finite Element (FE) models can be incorporated for detailed simulation of specific sub-models or complete structural assemblies. This means that the fluid system simulation will get a more accurate structural response, and that the structural simulation will get more correct fluid loads at every time step, compared to decoupled analysis. Global system parameters such as fluid flow, performance and efficiency can be evaluated from the 1D system model simulation results. From the 3D FE-models, it is possible to evaluate displacements, stresses and strains to be used in stress analysis, fatigue evaluation, acoustic analysis, etc. The method has been implemented using two well-known simulation tools for fluid power system simulations and FE-simulations, respectively, where the interface between the tools is realised by use of the Functional Mock-up Interface standard. A simple but relevant model is used to validate the method.

    Place, publisher, year, edition, pages
    SPRINGER, 2017
    Keywords
    Co-simulation; Fluid-structure coupling; System simulation; Functional mock-up interface; Fluid power machinery; Transmission line modelling
    National Category
    Computer Systems
    Identifiers
    urn:nbn:se:liu:diva-136875 (URN)10.1007/s00366-016-0476-8 (DOI)000398468100012 ()
    Note

    Funding Agencies|Atlas Copco Construction Tools

    Available from: 2017-04-30 Created: 2017-04-30 Last updated: 2018-09-11
    2. System level co-simulation of a control valve and hydraulic cylinder circuit in a hydraulic percussion unit
    Open this publication in new window or tab >>System level co-simulation of a control valve and hydraulic cylinder circuit in a hydraulic percussion unit
    Show others...
    2017 (English)In: Proceedings of 15:th Scandinavian International Conference on Fluid Power, June 7-9, 2017, Linköping, Sweden / [ed] Petter Krus, Liselott Ericson and Magnus Sethson, Linköping: Linköping University Electronic Press, 2017, Vol. 144, p. 225-235Conference paper, Published paper (Refereed)
    Abstract [en]

    In this study a previously developed co-simulation method that is based on a 1D system model representing the fluid components of a hydraulic machinery, within which structural 3D Finite Element (FE) models can be incorporated for detailed simulation of specific sub-models or complete structural assemblies, is further developed. The fluid system model consists of ordinary differential equation sub-models that are computationally very inexpensive, but still represents the fluid dynamics very well. The co-simulation method has been shown to work very well for a simple model representing a hydraulic driven machinery. A more complex model was set up in this work, in which two cylinders in the hydraulic circuit were evaluated. Such type of models, including both the main piston and control valves, are necessary as they represent the real application to a further extent than the simple model, of only one cylinder. Two models have been developed and evaluated, from the simple rigid body representation of the structural mechanics model, to the more complex model using linear elastic representation. The 3D FE-model facilitates evaluation of displacements, stresses, and strains on a local level of the model. The results can be utilised for fatigue assessment, wear analysis and for predictions of noise radiation.

    Place, publisher, year, edition, pages
    Linköping: Linköping University Electronic Press, 2017
    Series
    Linköping Electronic Conference Proceedings, ISSN 1650-3686, E-ISSN 1650-3740 ; 144
    Keywords
    Co-simulation, Fluid-structure coupling, System simulation, Functional mockup interface, Fluid power machinery, Transmission line modelling
    National Category
    Applied Mechanics Vehicle Engineering Control Engineering
    Identifiers
    urn:nbn:se:liu:diva-151015 (URN)10.3384/ecp17144225 (DOI)9789176853696 (ISBN)
    Conference
    15th Scandinavian International Conference on Fluid Power, June 7-9, 2017, Linköping, Sweden
    Available from: 2018-09-11 Created: 2018-09-11 Last updated: 2018-09-11Bibliographically approved
  • 2.
    Andersson, Håkan
    et al.
    Linköping University, Department of Management and Engineering. Linköping University, Faculty of Science & Engineering. Construct Tools PC AB, Sweden.
    Nordin, Peter
    Linköping University, Department of Management and Engineering. Linköping University, Faculty of Science & Engineering.
    Borrvall, Thomas
    DYNAmore Nordic AB, Brigadgatan 5, S-58758 Linkoping, Sweden.
    Simonsson, Kjell
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    Hilding, Daniel
    DYNAmore Nordic AB, Brigadgatan 5, S-58758 Linkoping, Sweden.
    Schill, Mikael
    DYNAmore Nordic AB, Brigadgatan 5, S-58758 Linkoping, Sweden.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Leidermark, Daniel
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    A co-simulation method for system-level simulation of fluid-structure couplings in hydraulic percussion units2017In: Engineering with Computers, ISSN 0177-0667, E-ISSN 1435-5663, Vol. 33, no 2, p. 317-333Article in journal (Refereed)
    Abstract [en]

    This paper addresses a co-simulation method for fluid power driven machinery equipment, i.e. oil hydraulic machinery. In these types of machinery, the fluid-structure interaction affects the end-product performance to a large extent, hence an efficient co-simulation method is of high importance. The proposed method is based on a 1D system model representing the fluid components of the hydraulic machinery, within which structural 3D Finite Element (FE) models can be incorporated for detailed simulation of specific sub-models or complete structural assemblies. This means that the fluid system simulation will get a more accurate structural response, and that the structural simulation will get more correct fluid loads at every time step, compared to decoupled analysis. Global system parameters such as fluid flow, performance and efficiency can be evaluated from the 1D system model simulation results. From the 3D FE-models, it is possible to evaluate displacements, stresses and strains to be used in stress analysis, fatigue evaluation, acoustic analysis, etc. The method has been implemented using two well-known simulation tools for fluid power system simulations and FE-simulations, respectively, where the interface between the tools is realised by use of the Functional Mock-up Interface standard. A simple but relevant model is used to validate the method.

  • 3.
    Andersson, Håkan
    et al.
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering. Epiroc, Sweden.
    Simonsson, Kjell
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    Hilding, D.
    Dynamore Nord AB, Brigadgatan 5, S-58758 Linkoping, Sweden.
    Schill, M.
    Dynamore Nord AB, Brigadgatan 5, S-58758 Linkoping, Sweden.
    Sigfridsson, E.
    Epiroc, Sweden.
    Leidermark, Daniel
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    Validation of a co-simulation approach for hydraulic percussion units applied to a hydraulic hammer2019In: Advances in Engineering Software, ISSN 0965-9978, E-ISSN 1873-5339, Vol. 131, p. 102-115Article in journal (Refereed)
    Abstract [en]

    In this study, a previously developed co-simulation approach has been adopted to simulate the responses of an existing hydraulic hammer product. This approach is based on a 1D system model representing the fluid components and a 3D finite element model representing the structural parts of the hydraulic hammer. The simulation model was validated against four experiments with different running conditions. The corresponding set-ups were analysed using the co-simulation method in order to evaluate the overall responses. A parameter study was also performed involving the working pressure and the restrictor diameter, with the objective to validate that a parameter change in the simulation model will affect the input and output power in the same direction as in the experiments. The experimental responses used in the validation were time history data of fluid pressure, component position and acceleration, and structural stresses. The experiments result in high frequency and high amplitude excitations of the hydraulic hammer and thus require a model with a high resolution of the model dynamics. The conclusion of the validation is that the simulation model is able to replicate the experimental responses with high accuracy including the high frequency dynamics. The favourable outcome of the validation makes the described co-simulation approach promising as an efficient tool for a wide range of other applications where short time duration mechanisms need to be studied.

  • 4.
    Andersson, Håkan
    et al.
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    Simonsson, Kjell
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    Hilding, Daniel
    DYNAmore Nordic AB, Brigadgatan 5, 587 58 Linköping, Sweden.
    Schill, Mikael
    DYNAmore Nordic AB, Brigadgatan 5, 587 58 Linköping, Sweden.
    Leidermark, Daniel
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    System level co-simulation of a control valve and hydraulic cylinder circuit in a hydraulic percussion unit2017In: Proceedings of 15:th Scandinavian International Conference on Fluid Power, June 7-9, 2017, Linköping, Sweden / [ed] Petter Krus, Liselott Ericson and Magnus Sethson, Linköping: Linköping University Electronic Press, 2017, Vol. 144, p. 225-235Conference paper (Refereed)
    Abstract [en]

    In this study a previously developed co-simulation method that is based on a 1D system model representing the fluid components of a hydraulic machinery, within which structural 3D Finite Element (FE) models can be incorporated for detailed simulation of specific sub-models or complete structural assemblies, is further developed. The fluid system model consists of ordinary differential equation sub-models that are computationally very inexpensive, but still represents the fluid dynamics very well. The co-simulation method has been shown to work very well for a simple model representing a hydraulic driven machinery. A more complex model was set up in this work, in which two cylinders in the hydraulic circuit were evaluated. Such type of models, including both the main piston and control valves, are necessary as they represent the real application to a further extent than the simple model, of only one cylinder. Two models have been developed and evaluated, from the simple rigid body representation of the structural mechanics model, to the more complex model using linear elastic representation. The 3D FE-model facilitates evaluation of displacements, stresses, and strains on a local level of the model. The results can be utilised for fatigue assessment, wear analysis and for predictions of noise radiation.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf