liu.seSearch for publications in DiVA
Endre søk
Begrens søket
1 - 3 of 3
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Bestill onlineKjøp publikasjonen >>
    Sundblad, Håkan
    Linköpings universitet, Institutionen för datavetenskap, NLPLAB - Laboratoriet för databehandling av naturligt språk. Linköpings universitet, Tekniska högskolan.
    Question Classification in Question Answering Systems2007Licentiatavhandling, monografi (Annet vitenskapelig)
    Abstract [en]

    Question answering systems can be seen as the next step in information retrieval, allowing users to pose questions in natural language and receive succinct answers. In order for a question answering system as a whole to be successful, research has shown that the correct classification of questions with regards to the expected answer type is imperative. Question classification has two components: a taxonomy of answer types, and a machinery for making the classifications.

    This thesis focuses on five different machine learning algorithms for the question classification task. The algorithms are k nearest neighbours, naïve bayes, decision tree learning, sparse network of winnows, and support vector machines. These algorithms have been applied to two different corpora, one of which has been used extensively in previous work and has been constructed for a specific agenda. The other corpus is drawn from a set of users' questions posed to a running online system. The results showed that the performance of the algorithms on the different corpora differs both in absolute terms, as well as with regards to the relative ranking of them. On the novel corpus, naïve bayes, decision tree learning, and support vector machines perform on par with each other, while on the biased corpus there is a clear difference between them, with support vector machines being the best and naïve bayes being the worst.

    The thesis also presents an analysis of questions that are problematic for all learning algorithms. The errors can roughly be divided as due to categories with few members, variations in question formulation, the actual usage of the taxonomy, keyword errors, and spelling errors. A large portion of the errors were also hard to explain.

    Fulltekst (pdf)
    FULLTEXT01
  • 2.
    Flycht-Eriksson (Silvervarg), Annika
    et al.
    Linköpings universitet, Institutionen för datavetenskap, NLPLAB - Laboratoriet för databehandling av naturligt språk. Linköpings universitet, Tekniska högskolan.
    Jönsson, Arne
    Linköpings universitet, Institutionen för datavetenskap, NLPLAB - Laboratoriet för databehandling av naturligt språk. Linköpings universitet, Tekniska högskolan.
    Merkel, Magnus
    Linköpings universitet, Institutionen för datavetenskap, NLPLAB - Laboratoriet för databehandling av naturligt språk. Linköpings universitet, Tekniska högskolan.
    Sundblad, Håkan
    Linköpings universitet, Institutionen för datavetenskap, NLPLAB - Laboratoriet för databehandling av naturligt språk. Linköpings universitet, Tekniska högskolan.
    Ontology-driven Information-providing Dialogue Systems2003Inngår i: Proceedings of the Americas Conference on Information Systems / [ed] Dennis Galletta and Jeanne Ross, Association for Information Systems , 2003Konferansepaper (Fagfellevurdert)
  • 3.
    Sundblad, Håkan
    Linköpings universitet, Institutionen för datavetenskap, NLPLAB - Laboratoriet för databehandling av naturligt språk. Linköpings universitet, Tekniska högskolan.
    Automatic Acquisition of Hyponyms and Meronyms from Question Corpora2002Inngår i: Proceedings of Workshop on Natural Language Processing and Machine Learning for Ontology Engineering at ECAI'2002. Lyon, France. 2002, 2002Konferansepaper (Annet vitenskapelig)
1 - 3 of 3
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf