liu.seSearch for publications in DiVA
Endre søk
Begrens søket
12 1 - 50 of 53
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Romanov, Pavel
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten. Univ Gavle, Sweden.
    Jahedi, Arvid
    Univ Gavle, Sweden; Ericsson AB, Sweden.
    Backstrom, Anders
    Vaderstad Components AB, Sweden.
    Moshfegh, Bahram
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Energisystem. Linköpings universitet, Tekniska fakulteten. Univ Gavle, Sweden.
    Kubena, Ivo
    Inst Phys Mat ASCR, Czech Republic.
    Calmunger, Mattias
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten. Univ Gavle, Sweden.
    Differential Microstructure and Properties of Boron Steel Plates Obtained by Water Impinging Jet Quenching Technique2023Inngår i: Steel Research International, ISSN 1611-3683, E-ISSN 1869-344XArtikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Soil-working tools in agriculture are made of boron-containing steels with high wear resistance and hardenability. Nevertheless, these tools are subject to high impacts, abrasive wear, and fatigue and are therefore prone to failure. To combine varying levels of properties within one component in as-quenched condition can be beneficial for such products. To obtain this property variation, a component must undergo a complex and controllable cooling. Therefore, the aim of this work is to obtain a microstructure gradient along two 15 mm-thick steel plates in a newly developed test rig by water jet impingement technique to confirm its controllability and flexibility. Furthermore, a quenching simulation model is created for hardness prediction using phase transformation data from a machine learning tool. Microstructure variation is observed using light optical microscopy and the electron backscatter diffraction technique. Mechanical properties are studied through tensile tests and hardness measurements and are also compared with simulation results. The 0.27 mass% C steel sample is obtained in almost fully martensitic state transitioning to a softer ferritic/bainitic condition, while the 0.38 mass% C steel sample results predominantly into a fully hardened martensitic state and slightly shows ferritic and bainitic features along the sample. The quenching simulation model shows promising hardness prediction for both steels. A newly developed impinging jet quenching technique is used for differential quenching of 15 mm-thick boron steel sheets with the aim of obtaining microstructure and property gradients along their lengths. As a result, combinations of differential hardness profiles along with varying hardening degrees are produced and metallurgically characterized through microstructure observations and mechanical tests.

  • 2.
    Romanov, Pavel
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten. University of Gävle, Sweden.
    Jahedi, Mohammad
    University of Gävle, Sweden.
    Petersson, Anders
    Väderstad Components AB, Överum, Sweden.
    Moshfegh, Bahram
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Energisystem. Linköpings universitet, Tekniska fakulteten. University of Gävle, Sweden.
    Calmunger, Mattias
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten. University of Gävle, Sweden.
    Quenching of Carbon Steel Plates with Water Impinging Jets: Differential Properties and Fractography2023Inngår i: Procedia Structural Integrity, ISSN 2452-3216, Vol. 43, s. 154-159Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The demand for steel components with tailored properties is constantly growing. To obtain a specific variation of microstructures and mechanical properties along the component it must undergo a controllable cooling. One way to control the cooling rates along the component is by using different simultaneous water jet impingements on a hot austenitized surface. This can be done by a newly developed test rig for water Impinging Jet Quenching Technique (IJQT). This work discusses the effect of IJQT on mechanical properties and fracture behavior of 15 mm steel plates containing 0.27 and 0.38 mass-% carbon. The samples were cooled in a specifically designed setup of the technique to obtain simultaneous water and air cooling resulting in diverse microstructures. The mechanical property gradients of both steels were analyzed through hardness measurements and tensile tests. The fracture surfaces and the near fracture regions were observed using scanning electron microscope and light optical microscope respectively. The results from tensile tests showed that the larger part of the sample with higher carbon content was fully hardened, however smoothly transitioning to a more ductile region. The sample with lower carbon content combined various degrees of hardening and transitioned from higher to lower ultimate tensile strength values. Fracture behavior of higher carbon steel was predominantly brittle transitioning to a ductile, while the lower carbon steel had a small region showing brittle fracture transitioning to a larger region of predominant ductile fracture behavior.

    Fulltekst (pdf)
    fulltext
  • 3.
    Calmunger, Mattias
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Wärner, Hugo
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Chai, Guocai
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten. Alleima AB, Stragetic research, Sandviken, Sweden.
    Segersäll, Mikael
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Thermomechanical Fatigue of Heat Resistant Austenitic Alloys2023Inngår i: Procedia Structural Integrity, ISSN 2452-3216, Vol. 43, s. 130-135Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Rising global energy consumption and the increase in emissions of greenhouse gases (e.g. CO2) causing global warming, make need for more sustainable power generation. This could be accomplished by increasing the efficiency of the biomass-fired power plants, which is achieved by increasing the temperature and pressure. In addition, flexible generation of power is critical if only renewable power generation is to be achieved and this will increase the number of start-and stop cycles. Cyclic condition in a long-term high temperature environment is an operation process that such materials must withstand, in order to satisfy the needs for future power generation.

    Commonly austenitic stainless steel are used for critical components of power plants. Because of future change in operating conditions, further investigations are needed to verify that the demands on safety for cyclic long-term usage is fulfilled. This work includes investigation of two commercial austenitic steels: Esshete 1250 and Sanicro 25. The materials were exposed to thermomechanical fatigue (TMF) in strain control under In-Phase and Out-of-Phase conditions and main testing temperature ranges of 100-650°C and 100-800°C respectively. Some of the specimens were pre-aged to simulate prolonged service condition. Mechanical test data were obtained and analysed in order to define the TMF performance of the investigated alloys. The differences in performance were discussed in relation to mechanical and microstructural characterization.

  • 4.
    Wärner, Hugo
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Chai, Guocai
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten. AB Sandvik Materials Technology R and D Center, Sandviken, Sweden.
    Moverare, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Calmunger, Mattias
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    High Temperature Fatigue of Aged Heavy Section Austenitic Stainless Steels2022Inngår i: Materials, ISSN 1996-1944, E-ISSN 1996-1944, Vol. 15, nr 1, artikkel-id 84Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This work investigates two austenitic stainless steels, Sanicro 25 which is a candidate for high temperature heavy section components of future power plants and Esshete 1250 which is used as a reference material. The alloys were subjected to out-of-phase (OP) thermomechanical fatigue (TMF) testing under strain-control in the temperature range of 100 ∘C to 650 ∘C. Both unaged and aged (650 ∘C, 3000 h) TMF specimens were tested to simulate service degradation resulting from long-term usage. The scanning electron microscopy methods electron backscatter diffraction (EBSD) and energy dispersive spectroscopy (EDS) were used to analyse and discuss active failure and deformation mechanisms. The Sanicro 25 results show that the aged specimens suffered increased plastic straining and shorter TMF-life compared to the unaged specimens. The difference in TMF-life of the two test conditions was attributed to an accelerated microstructural evolution that provided decreased the effectiveness for impeding dislocation motion. Ageing did not affect the OP-TMF life of the reference material, Esshete 1250. However, the structural stability and its resistance for cyclic deformation was greatly reduced due to coarsening and cracking of the strengthening niobium carbide precipitates. Sanicro 25 showed the higher structural stability during OP-TMF testing compare with the reference material.

  • 5.
    Norman, Viktor
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Calmunger, Mattias
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    An Accelerated Creep Assessment Method Based on Inelastic Strain Partitioning and Slow Strain Rate Testing2021Inngår i: Materials & design, ISSN 0264-1275, E-ISSN 1873-4197, Materials & Design, Vol. 205, artikkel-id 109697Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A new accelerated creep assessment method to evaluate the creep performance of metals and alloys from high-temperature tensile tests, i.e. slow-strain-rate testing (SSRT), is proposed and evaluated. The method consists of decomposing the inelastic strain into a plastic and creep component by adopting general assumptions on the inelastic strain behaviour of materials, formulated using a state variable formalism and verified by tensile tests with intermediate dwell times at constant stress. Either, the plastic and creep strain components are considered non-interacting and additive, as observed in the stainless steel AISI 316L at 600 °C. Or, as in the case of the ductile cast iron EN-GJS-SiMo5-1 at 500 °C and the nickel-base superalloy Hastelloy X at 800 °C, the components are considered unified, meaning that the effect of inelastic straining is the same irrespective of whether it is caused through creep at constant stress or by plastic deformation due to an instantaneous stress increase. Based on these assumptions, the proposed method is used to assess the creep strain from SSRT in good agreement with conventional creep test results.

    Fulltekst (pdf)
    fulltext
  • 6.
    Wärner, Hugo
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Xu, Jinghao
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Chai, Guocai
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Moverare, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Calmunger, Mattias
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Microstructural Evolution During High Temperature Dwell-fatigue of Austenitic Stainless Steels2021Inngår i: International Journal of Fatigue, ISSN 0142-1123, E-ISSN 1879-3452, Vol. 143, artikkel-id 105990Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Microstructural evolution related to the mechanical response from isothermal dwell-fatigue testing at 700 °C of two austenitic steels, Esshete 1250 and Sanicro 25, is reported. Coherent Cu-precipitates and incoherent Nb-carbides were found to impede dislocation motion, increase hardening and improving the high temperature properties of Sanicro 25. Sparsely placed intergranular Cr- and Nb-carbides made Esshete 1250 susceptible to creep damage and intergranular crack propagation, mainly from interaction of the carbides and fatigue induced slip bands. Dynamic recrystallization of the plastic zone at the crack tip appeared to affect crack propagation of Sanicro 25 by providing an energetically privileged path.

    Fulltekst (pdf)
    fulltext
  • 7.
    Romanov, Pavel
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Jahedi, Mohammad
    Moshfegh, Bahram
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Energisystem. Linköpings universitet, Tekniska fakulteten.
    Calmunger, Mattias
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Water Impinging Jet Quenching of Boron Steels by Different Simultaneous Cooling Rates2021Konferansepaper (Fagfellevurdert)
  • 8.
    Yu, Cheng-Han
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Peng, Ru Lin
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Calmunger, Mattias
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Luzin, Vladimir
    Australian Nuclear Science Technology Organization (ANSTO), Sydney, Australia; School of Engineering, The University of Newcastle, Callaghan, Australia.
    Brodin, Håkan
    Siemens Industrial Turbomachinery AB, Finspång, Sweden.
    Moverare, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Anisotropic Deformation and Fracture Mechanisms of an Additively Manufactured Ni-Based Superalloy2020Inngår i: Superalloys 2020 / [ed] Tin, Sammy; Hardy, Mark; Clews, Justin; Cormier, Jonathan; Feng, Qiang; Marcin, John; O'Brien, Chris; Suzuki, Akane, Springer International Publishing , 2020, s. 1003-1013Konferansepaper (Fagfellevurdert)
    Abstract [en]

    This study investigates the anisotropic mechanical and microstructural behavior of the laser powder bed fusionLaser powder bed fusion (LPBF) manufactured Ni-based superalloy Hastelloy X (HX) by using slow strain rate (10−5 and 10−6s−1) tensile testing (SSRT) at 700 °C. LPBF HX typically exhibits an elongated grain structure along the building direction (BD) and the texture analysis from the combination of neutron diffractionNeutron diffraction and EBSD discloses a major texture component <011> and a minor texture component <001> along BD, and a texture component <001> in the other two sample directions perpendicular to BD. Two types of tests have been performed, the horizontal tests where the loading direction (LD) is applied perpendicular to BD, and the vertical tests where LD is applied parallel to BD. The vertical tests exhibit lower strength but better ductility, which is explained by the texture effect and the elongated grain structure. A comparison of the mechanical behavior to the wrought HX shows that LPBF HX has better yield strength due to the high dislocation density as proved by TEM images. Creep voids are observed at grain boundaries in SSRT for both directions and are responsible for the poor ductility of the horizontal tests. The vertical ductility in SSRT maintains the same level as the reference tensile test at the strain rate of 10−3s−1, due to the extra deformation capacity contributed by the discovered deformation twinningDeformation twinning and lattice rotation. The deformation twinningDeformation twinning, which is only observed in the vertical tests and has not been found in the conventionally manufactured HX, is beneficial to maintain the ductility but does not strengthen the material.

  • 9.
    Lindström, Thomas
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Calmunger, Mattias
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Eriksson, Robert
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Leidermark, Daniel
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Fatigue Behaviour of an Additively Manufactured Ductile Gas Turbine Superalloy2020Inngår i: Theoretical and applied fracture mechanics (Print), ISSN 0167-8442, E-ISSN 1872-7638, nr 108, artikkel-id 102604Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Additive manufacturing (AM) offers new possibilities in gas turbine technology by allowing for more complex geometries. However, the fatigue performance, including crack initiation and crack propagation of AM gas turbine material, is not fully known. In addition, AM materials shows anisotropic properties due to the columnar grain growth in the building direction during the AM process, which needs to be accounted for. Also, an AM component often solidifies with a cellular dendritic structure during the manufacturing process. In the present study, the bulk material of an AM adopted nickel-based superalloy based on Hastelloy X was subjected to low-cycle fatigue (LCF) loading at room temperature. The LCF tests were conducted in strain control on additively manufactured smooth bars,with two different build orientations (with an angle of 0° and 90° relative to the building platform). The LCF results showed that the major part of the fatigue life is spent in the crack initiation phase, namely 78% to 99% of the total fatigue life. Based on the experiments, a model to predict the crack initiation life was developed that takes the anisotropic material behaviour into account. The last part of the fatigue life, the crack propagation phase, was studied on a microstructural level, where initial fractography of the ruptured LCF specimens revealed that the dendritic structure was visible on the fracture surface. It was noted that the dendritic structure could easily be mistaken for regular striations although they represent a different fracture mechanism. The fracture surfaces were therefore cross sectioned and possible correlations between fracture surface characteristics and underlying microstructure were studied using electron backscatter diffraction and electron channelling contrast imaging. The outcome showed that the dendritic structure had some effect on the LCF crack propagation behaviour by interdendritic tearing, which was discussed.

  • 10.
    Azeez, Ahmed
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Eriksson, Robert
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära.
    Leidermark, Daniel
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Calmunger, Mattias
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Low cycle fatigue life modelling using finite element strain range partitioning for a steam turbine rotor steel2020Inngår i: Theoretical and applied fracture mechanics (Print), ISSN 0167-8442, E-ISSN 1872-7638, Vol. 107, artikkel-id 102510Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Materials made for modern steam power plants are required to withstand high temperatures and flexible operational schedule. Mainly to achieve high efficiency and longer components life. Nevertheless, materials under such conditions experience crack initiations and propagations. Thus, life prediction must be made using accurate fatigue models to allow flexible operation. In this study, fully reversed isothermal low cycle fatigue tests were performed on a turbine rotor steel called FB2. The tests were done under strain control with different total strain ranges and temperatures (20 °C to 625 °C). Some tests included dwell time to calibrate the short-time creep behaviour of the material. Different fatigue life models were evaluated based on total life approach. The stress-based fatigue life model was found unusable at 600 °C, while the strain-based models in terms of total strain or inelastic strain amplitudes displayed inconsistent behaviour at 500 °C. To construct better life prediction, the inelastic strain amplitudes were separated into plastic and creep components by modelling the deformation behaviour of the material, including creep. Based on strain range partitioning approach, the fatigue life depends on different damage mechanisms at different strain ranges at 500 °C. This allows for the formulation of life curves based on either plasticity-dominated damage or creep-dominated damage. At 600 °C, creep dominated while at 500 °C creep only dominates for higher strain ranges. The deformation mechanisms at different temperatures and total strain ranges were characterised by scanning electron microscopy and by quantifying the amount of low angle grain boundaries. The quantification of low angle grain boundaries was done by electron backscatter diffraction. Microscopy revealed that specimens subjected to 600 °C showed signs of creep damage in the form of voids close to the fracture surface. In addition, the amount of low angle grain boundaries seems to decrease with the increase in temperature even though the inelastic strain amplitude was increased. The study indicates that a significant amount of the inelastic strain comes from creep strain as opposed of being all plastic strain, which need to be taken into consideration when constructing a life prediction model.

    Fulltekst (pdf)
    fulltext
  • 11.
    Yu, Cheng-Han
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Peng, Ru Lin
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Luzin, Vladimir
    ANSTO Australian Nuclear Science and Technology Organization, Australia.
    Sprengel, Maximilian
    Bundesanstalt für Materialforschung and -prüfung (BAM), Berlin, Germany.
    Calmunger, Mattias
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Lundgren, Jan-Erik
    Siemens Energy AB, Finspång, Sweden.
    Brodin, Håkan
    Siemens Energy AB, Finspång, Sweden.
    Kromm, Arne
    Bundesanstalt für Materialforschung and -prüfung (BAM), Berlin, Germany.
    Moverare, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Thin-wall Effects and Anisotropic Deformation Mechanisms of an Additively Manufactured Ni-based Superalloy2020Inngår i: Additive Manufacturing, ISSN 2214-8604, E-ISSN 2214-7810, Vol. 36, artikkel-id 101672Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Laser powder bed fusion (LPBF) of Ni-based superalloys shows great potential for high temperature applications, for example, as a burner repair application for gas turbines where the thin-walled structure is important. It motivates this work to investigate the evolution of microstructure and the anisotropic mechanical behavior when plate-like specimens are built with a thickness from 4 mm down to 1 mm. By performing texture analysis using neutron diffraction, a clear transition in fiber texture from <011> to <001> is indicated when the specimen becomes thinner. The residual stress shows no thickness dependence, and at the subsurface the residual stress reaches the same level as the yield strength. Due to the rough as-built surface, a roughness compensation method for mechanical properties of thin-walled structures is outlined and demonstrated. Tensile tests from room temperature up to 700 °C have been carried out. Anisotropic mechanical behavior is found at all temperatures, which is strongly related to the anisotropic texture evolution. Stronger texture evolution and grain rotations are discovered when the tensile loading is applied along the building direction. The mechanical behavior has been compared to a wrought material, where the high dislocation density and the subgrain structure of the LPBF material result in a higher yield strength. Combining the statistical texture analysis by neutron diffraction with mechanical testing, EBSD grain orientation mapping and the investigation of dislocation structures using transmission electron microscopy, this work illustrates the significance of texture for the thin-wall effect and anisotropic mechanical behavior of LPBF materials.

  • 12.
    Azeez, Ahmed
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Eriksson, Robert
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Filosofiska fakulteten. Linköpings universitet, Tekniska fakulteten.
    Calmunger, Mattias
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Characterisation of Deformation and Damage in a Steam Turbine Steel Subjected to Low Cycle Fatigue2019Inngår i: Structural Integrity Procedia / [ed] Elsevier, 2019, Vol. 23, s. 155-160Konferansepaper (Fagfellevurdert)
    Abstract [en]

    The increased use of renewable energy pushes steam turbines toward a more frequent operation schedule. Consequently, components must endure more severe fatigue loads which, in turn, requires an understanding of the deformation and damage mechanisms under high-temperature cyclic loading. Based on this, low cycle fatigue tests were performed on a creep resistant steel, FB2, used in ultra-supercritical steam turbines. The fatigue tests were performed in strain control with 0.8-1.2 % strain range and at temperatures of 400 °C and 600 °C. The tests at 600 °C were run with and without dwell time. The deformation mechanisms at different temperatures and strain ranges were characterised by scanning electron microscopy and by quantifying the amount of low angle grain boundaries. The quantification of low angle grain boundaries was done by electron backscatter diffraction. Microscopy revealed that specimens subjected to 600 °C showed signs of creep damage, in the form of voids close to fracture surface, regardless of whether the specimen had been exposed to dwell time or been purely cycled. In addition, the amount of low angle grain boundaries was lower at 600 °C than at 400 °C. The study indicates that a significant amount of the inelastic strain comes from creep strain as opposed to being all plastic strain.

    Fulltekst (pdf)
    fulltext
  • 13.
    Calmunger, Mattias
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Eriksson, Robert
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Filosofiska fakulteten. Linköpings universitet, Tekniska fakulteten.
    Lindström, Thomas
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Leidermark, Daniel
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Hållfasthetslära. Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Effect of Additive Manufacturing on Fatigue Crack Propagation of a Gas Turbine Superalloy2019Inngår i: Procedia Structural Integrity, Elsevier, 2019, Vol. 23, s. 215-220Konferansepaper (Fagfellevurdert)
  • 14.
    Calmunger, Mattias
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Wärner, Hugo
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Chai, Guocai
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Johansson, Sten
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Moverare, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    High Temperature Properties of Austenitic Stainless Steels for Future Power Plant Applications2019Konferansepaper (Fagfellevurdert)
  • 15.
    Wärner, Hugo
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Eriksson, Robert
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Chai, Guocai
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Moverare, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Johansson, Sten
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Calmunger, Mattias
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Influence of Ageing on Thermomechanical Fatigue of Austenitic Stainless Steels2019Inngår i: Procedia Structural Integrity / [ed] Elsevier, Elsevier, 2019, Vol. 23, s. 354-359Konferansepaper (Fagfellevurdert)
  • 16. Bergwall, Mats
    et al.
    Hederberg, Hampus
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Calmunger, Mattias
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Murtagh, Timothy
    Rinn, Florence
    Loukil, Mohamed Sahbi
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Innovative Out-of-Autoclave Composite Manufacturing Method for Saving Cost2019Konferansepaper (Fagfellevurdert)
  • 17.
    Azeez, Ahmed
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Eriksson, Robert
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Calmunger, Mattias
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Lindström, Stefan B
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Simonsson, Kjell
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Low Cycle Fatigue Modelling of Steam Turbine Rotor Steel2019Inngår i: 9th International Conference Materials Structure & Micromechanics of Fracture (MSMF9) / [ed] Jaroslav Pokluda, Pavel Šandera, Elsevier, 2019, Vol. 23, s. 149-154Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Materials in steam turbine rotors are subjected to cyclic loads at high temperature, causing cracks to initiate and grow. To allow for more flexible operation, accurate fatigue models for life prediction must not be overly conservative. In this study, fully reversed low cycle fatigue tests were performed on a turbine rotor steel called FB2. The tests were done isothermally, within temperature range of room temperature to 600 °C, under strain control with 0.8-1.2 % total strain range. Some tests included hold time to calibrate the short-time creep behaviour of the material. Different fatigue life models were constructed. The life curve in terms of stress amplitude was found unusable at 600 °C, while the life curve in terms of total strain or inelastic strain amplitudes displayed inconsistent behaviour at 500 °C. To construct better life model, the inelastic strain amplitudes were separated into plastic and creep components by modelling the deformation behaviour of the material, including creep. Based on strain range partitioning approach, the fatigue life depends on different damage mechanisms at different strain ranges. This allowed the formulation of life curves based on plasticity or creep domination, which showed creep domination at 600 °C, while at 500 °C, creep only dominates for higher strain range.

    Fulltekst (pdf)
    fulltext
  • 18.
    Wärner, Hugo
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Calmunger, Mattias
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Chai, Guocai
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Moverare, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Microscopic Evaluation of Creep-Fatigue Interaction in Heat Resistant Austenic Alloys2019Konferansepaper (Fagfellevurdert)
  • 19.
    Norman, Viktor
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Calmunger, Mattias
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    On the micro- and macroscopic elastoplastic deformation behaviour of cast iron when subjected to cyclic loading2019Inngår i: International journal of plasticity, ISSN 0749-6419, E-ISSN 1879-2154, Vol. 115, s. 200-215Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The complicated constitutive behaviour of cast iron, involving a non-linear elastic regime, tension-compression stress asymmetry, varying elastic modulus and an inflection in the tension-to-compression hardening curve, is investigated using a micromechanical modelling approach. In this way, it is demonstrated that the abnormalities observed in the constitutive behaviour are qualitatively and quantitatively explained by the interaction behaviour between the matrix and graphite constituents. In initial tension, the absence of linearity is rationalised by the successive loss in load-carrying capacity of the graphite phase due to debonding, which in subsequent cycling, results in the opening and re-contact of the matrix-graphite interface. This effect is demonstrated to result in tension-compression asymmetry in stress and elastic modulus, as well as the inflection in tension-to-compression loading. The given model of explanation is validated by comparison to the experimentally acquired microscopic strain field in EN-GJV-400 at locations where stress concentrations are generated due to the matrix-graphite debonding, using high-resolution digital image correlation of scanning electron images.

    Fulltekst (pdf)
    fulltext
  • 20.
    Wärner, Hugo
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Calmunger, Mattias
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Chai, Guocai
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Johansson, Sten
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Moverare, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Structural Integrity and Impact Toughness of Austenitic Stainless Steels2019Inngår i: Proceedings of the 13th International Conference on the Mechanical Behaviour of Materials, International Congress on Mechanical Behavior of Materials , 2019, s. 270-275Konferansepaper (Fagfellevurdert)
  • 21.
    Wärner, Hugo
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Calmunger, Mattias
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Chai, Guocai
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten. Sandvik Materials Technology, Sandviken, Sweden.
    Johansson, Sten
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Moverare, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Thermomechanical Fatigue Behaviour of Aged Heat Resistant Austenitic Alloys2019Inngår i: International Journal of Fatigue, ISSN 0142-1123, E-ISSN 1879-3452, nr 127, s. 509-521Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The increasing demands for efficiency and flexibility result in more severe operating conditions for the materials used in critical components of biomass power plants. These operating conditions involve higher temperature ranges, more pronounced environmental effects and cyclic operations. Austenitic stainless steels have shown to possess promising high temperature properties which makes them suitable as candidates for critical components in biomass power plant. However, their behaviour under such conditions is not yet fully understood. This work investigates three commercial austenitic alloys: Esshete 1250, Sanicro 25 and Sanicro 31HT. The alloys were subjected to in-phase (IP) thermomechanical fatigue (TMF) testing under strain-control in the temperature range of 100–800 °C. Both virgin and pre-aged TMF specimens were tested in order to simulate service degradation resulting from long-term usage. The results show that the pre-aged specimens suffered shorter TMF-life compared to the virgin specimens. The scanning electron microscopy methods electron backscatter diffraction (EBSD) and energy dispersive spectroscopy (EDS) were used to analyse and discuss active failure and deformation mechanisms. The difference in TMF-life produced by the two testing conditions was attributed to an embrittling effect by precipitation, reduced creep properties and oxidation assisted cracking.

    Fulltekst (pdf)
    Thermomechanical Fatigue Behaviour of Aged Heat Resistant Austenitic Alloys
  • 22.
    Nordström, Joakim
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Siriki, Raveendra
    Calmunger, Mattias
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Moverare, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Chai, Guocai
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    TWIP and Fracture Behaviour in the Superalloy 625 at Room and Cryogenic Temperatures2019Inngår i: Procedia Structural Integrity / [ed] Elsevier, Elsevier, 2019, Vol. 23, s. 457-462Konferansepaper (Fagfellevurdert)
  • 23.
    Wärner, Hugo
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Calmunger, Mattias
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Chai, Guocai
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Moverare, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Creep-Fatigue Interaction in Heat Resistant Austenitic Alloys2018Inngår i: MATEC Web of Conferences 165 , 05001 (2018) / [ed] Henaff, G, EDP Sciences, 2018, Vol. 165Konferansepaper (Fagfellevurdert)
    Abstract [en]

    This work includes an investigation of two commercial austenitic steels: UNS S21500 (Esshete 1250) and UNS S31035 (Sandvik Sanicro (TM) 25). The materials were exposed to isothermal strain controlled fatigue with load controlled dwell time at maximum strain. The testing temperature used was 700 degrees C and the test cycles were performed in tension. Mechanical test data were obtained and analysed in order to define creep-fatigue damage diagrams at failure for the investigated austenitic alloys. During the given conditions, Sanicro 25 showed superior creep-fatigue life, suffered less amount of creep elongation for the same amount of strain amplitude and dwell times compared to Esshete 1250. Both alloys showed creep-fatigue interaction damage for specific test configurations.

  • 24.
    Wärner, Hugo
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Calmunger, Mattias
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Chai, Guocai
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten. Sandvik Mat Technol, Sweden.
    Polak, Jaroslav
    Acad Sci Czech Republ, Czech Republic.
    Petras, Roman
    Acad Sci Czech Republ, Czech Republic.
    Heczko, Milan
    Acad Sci Czech Republ, Czech Republic.
    Kruml, Tomas
    Acad Sci Czech Republ, Czech Republic.
    Johansson, Sten
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Moverare, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Fracture and Damage Behavior in an Advanced Heat Resistant Austenitic Stainless Steel During LCF, TMF and CF2018Inngår i: ECF22 - LOADING AND ENVIRONMENTAL EFFECTS ON STRUCTURAL INTEGRITY, ELSEVIER SCIENCE BV , 2018, Vol. 13, s. 843-848Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Future advanced ultra-supercritical power plant will be run at higher temperature and pressure. New materials will be used to meet the requirements. However, the structure integrity of these materials needs to be evaluated. Sanicro 25 is a newly developed advanced austenitic heat resistant stainless steel with the aim to be used in future 700 degrees C or 650 degrees C power plants to replace part of Ni based alloys. This paper provides an overview on the fracture and damage behavior in this material during LCF, TMF and CF. The cyclic hardening and fatigue life during LCF, TMF and CF will be discussed. The influence of prolonged service degradation has been analyzed by the use of pre-aged material for TMF and CF loading conditions. (C) 2018 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the ECF22 organizers.

  • 25.
    Calmunger, Mattias
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Temperaturpåverkan på egenskaperna hos högtemperaturtåliga austenitiska rostfria stål KME 7012018Rapport (Fagfellevurdert)
    Abstract [sv]

    Den globala ökningen av energianvändning och sammanhängande ökning i CO2-utsläpp vid förbränning har skärpt kraven på energileverantörer att i större utsträckning använda hållbara biobränslen samt att höja verkningsgraden på energiomvandlingsprocesserna. Detta kan uppnås genom att höja tryck och temperatur i biomasseldade förbränningspannor. Sådana omställningar leder oftast till nya utmaningar kopplade till materialegenskaper.

    I framtiden kommer behovet av reglerkraft att öka för att kompensera för väderbaserade energianläggningar, såsom sol- och vindkraft. Detta leder till att anläggningarna måste stoppas och startas betydlig oftare än nu. Det skapar ett behov av provningsmetoder som tar hänsyn till cykliska mekaniska och temperaturbaserade laster. Tillsammans med att framtidens material måste tåla högre temperaturer och tuffare miljöer, relaterat till bränsleflexibiliteten, innebär detta att befintliga austenitiska rostfria stål måste förbättras. Inte bara genom en ökning av andelen nickel och andra verksamma legeringselement utan även genom att generera ny kunskap om hur de mekaniska egenskaperna påverkas av den tuffare högtemperatursmiljön.

    Syftet med detta projekt var att utvärdera mekaniska beteenden relaterade till kombinerad cyklisk och statisk belastning, långtidsåldring samt cyklisk mekanisk och temperaturbelastning vid höga temperaturer. Detta uppnåddes genom att:

    1. Utvärdera kryp-utmattningsinteraktion beteendet hos pannmaterial.
    2. Utvärdera den strukturella stabiliteten hos de austenitiska rostfria stålen efter långtidsåldring vid hög temperatur.
    3. Utvärdera termomekaniska utmattningsegenskaper hos pannmaterial.
    4. Utvärdera spänningsrelaxation sprickningsbeteenden hos pannmaterial.

    Mekanisk provning enligt ovan har utförts och analyserats vid Linköpings universitet samt Sandvik Materials Technology för att få en ökad förståelse för hur mekaniska egenskaper påverkas av den tuffare högtemperatursmiljön som framtidens biomasseldade pannor utgör. Detta kan användas i materialutveckling samt vidare för att förbättra konstruktionen av framtidens biomasseldade pannor.

    Resultaten visade att:

    1. De undersökta pannmaterialen uppvisar kryp-utmattningsinteraktion skador och längre cykliskt liv är relaterat till högt krypmotstånd.
    2. Austenitiska rostfria stål uppvisar försprödning på grund av intermetalliska utskiljningar efter långtidsåldring vid höga temperaturer.
    3. De austenitiska rostfria stålen med högst högtemperaturshållfasthet uppvisade bäst termomekaniska utmattningsegenskaper.
    4. Mer metodutveckling och undersökning krävs för att utvärdera spänningsrelaxation sprickningsbeteendet hos pannmaterialen.
    Fulltekst (pdf)
    Temperaturpåverkan på egenskaperna hos högtemperaturtåliga austenitiska rostfria stål KME 701
    Download (png)
    presentationsbild
  • 26.
    Calmunger, Mattias
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Chai, Guocai
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten. Sandvik Materials Technology, Sandviken, Sweden.
    Eriksson, Robert
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Johansson, Sten
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Moverare, Johan J.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Characterization of austenitic stainless steels deformed at elevated temperature2017Inngår i: Metallurgical and Materials Transactions. A, ISSN 1073-5623, E-ISSN 1543-1940, Vol. 48A, nr 10, s. 4525-4538Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Highly alloyed austenitic stainless steels are promising candidates to replace more expansive nickel-based alloys within the energy-producing industry. The present study investigates the deformation mechanisms by microstructural characterisation, mechanical properties and stress-strain response of three commercial austenitic stainless steels and two commercial nickel-based alloys using uniaxial tensile tests at elevated temperatures from 400 C up to 700 C. The materials showed different influence of temperature on ductility, where the ductility at elevated temperatures increased with increasing nickel and solid solution hardening element content. The investigated materials showed planar dislocation driven deformation at elevated temperature. Scanning electron microscopy showed that deformation twins were an active deformation mechanism in austenitic stainless steels during tensile deformation at elevated temperatures up to 700 C.

    Fulltekst (pdf)
    fulltext
  • 27.
    Calmunger, Mattias
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Eriksson, Robert
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Chai, Guocai
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Johansson, Sten
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Moverare, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Influence of Cyclic Oxidation in Moist Air on Surface Oxidation-Affected Zones2017Konferansepaper (Fagfellevurdert)
  • 28.
    Calmunger, Mattias
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Eriksson, Robert
    Siemens Industrial Turbomachinery AB, Berlin.
    Chai, Guocai
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Johansson, Sten
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Högberg, Jan
    AB Sandvik Materials Technology R&D Center Sandviken.
    Moverare, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Local Surface Phase Stability During Cyclic Oxidation Process2017Konferansepaper (Fagfellevurdert)
  • 29.
    Lundberg, Mattias
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Saarimäki, Jonas
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Moverare, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Calmunger, Mattias
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Surface Integrity and Fatigue Behaviour of Electric Discharged Machined and Milled Austenitic Stainless Steel2017Inngår i: Materials Characterization, ISSN 1044-5803, E-ISSN 1873-4189, Vol. 124, s. 215-222Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Machining of austenitic stainless steels can result in different surface integrities and different machining process parameters will have a great impact on the component fatigue life. Understanding how machining processes affect the cyclic behaviour and microstructure are of outmost importance in order to improve existing and new life estimation models. Milling and electrical discharge machining (EDM) have been used to manufacture rectangular four-point bend fatigue test samples; subjected to high cycle fatigue. Before fatigue testing, surface integrity characterisation of the two surface conditions was conducted using scanning electron microscopy, surface roughness, residual stress profiles, and hardness profiles. Differences in cyclic behaviour were observed between the two surface conditions by the fatigue testing. The milled samples exhibited a fatigue limit. EDM samples did not show the same behaviour due to ratcheting. Recrystallized nano sized grains were identified at the severely plastically deformed surface of the milled samples. Large amounts of bent mechanical twins were observed ~ 5 μm below the surface. Grain shearing and subsequent grain rotation from milling bent the mechanical twins. EDM samples showed much less plastic deformation at the surface. Surface tensile residual stresses of ~ 500 MPa and ~ 200 MPa for the milled and EDM samples respectively were measured.

    Fulltekst (pdf)
    fulltext
  • 30.
    Wärner, Hugo
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Calmunger, Mattias
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Chai, Guocai
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Johansson, Sten
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Moverare, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Thermomechanical Fatigue Behavior of Aged Heat Resistant Austenitic Alloys2017Konferansepaper (Fagfellevurdert)
  • 31.
    Chai, Guocai
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Calmunger, Mattias
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Johansson, Sten
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Moverare, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Toughening Behavior in Alloy 617 with Long Term Ageing2017Inngår i: Solid State Phenomena, ISSN 1012-0394, E-ISSN 1662-9779, Vol. 258, s. 302-305Artikkel i tidsskrift (Fagfellevurdert)
  • 32.
    Calmunger, Mattias
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Chai, Guocai
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten. Sandvik Materials Technology,Sandviken, Sweden.
    Johansson, Sten
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Moverare, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Creep and Fatigue Interaction Behavior in Sanicro 25 Heat Resistant Austenitic Stainless Steel2016Inngår i: Transactions of the Indian Institute of Metals, ISSN 0972-2815, E-ISSN 0975-1645, Vol. 69, nr 2, s. 337-342Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Sanicro 25 is a newly developed advanced high strength heat resistant austenitic stainless steel. The material shows good resistance to steam oxidation and flue gas corrosion, and has higher creep rupture strength than other austenitic stainless steels available today. It is thus an excellent candidate for superheaters and reheaters for advanced ultra-super critical power plants with efficiency higher than 50 %. This paper provides a study on the creep–fatigue interaction behavior of Sanicro 25 at 700 °C. Two strain ranges, 1 and 2 %, and two dwell times, 10 and 30 min, were used. The influences of dwell time on the cyclic deformation behavior and life has been evaluated. Due to stress relaxation the dwell time causes a larger plastic strain range compared to the tests without dwell time. The results also show that the dwell time leads to a shorter fatigue life for the lower strain range, but has no or small effect on the life for the higher strain range. Fracture investigations show that dwell times result in more intergranular cracking. With the use of the electron channeling contrast imaging technique, the influences of dwell time on the cyclic plastic deformation, precipitation behavior, recovery phenomena and local plasticity exhaustion have also been studied.

    Fulltekst (pdf)
    fulltext
  • 33.
    Chai, Guocai
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten. Sandvik Materials Technology, Strategy research, Sandviken, Sweden.
    Calmunger, Mattias
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Johansson, Sten
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Moverare, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Odqvist, Joakim
    Sandvik Materials Technology, Strategy research, Sandviken, Sweden.
    Influence of Dynamic Strain Ageing and Long Term Ageing on Deformation and Fracture Behaviors of Alloy 6172016Inngår i: THERMEC 2016 / [ed] C. Sommitsch, M. Ionescu, B. Mishra, E. Kozeschnik and T. Chandra, Trans Tech Publications, 2016, Vol. 879, s. 306-311Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Influences of dynamic strain ageing and long term ageing on deformation, damage and fracture behaviors of Alloy 617 material have been studied. Dynamic strain ageing can occur in this alloy at temperature from 400 to 700°C, which leads to a strain hardening and also an increase in fracture strain due to plastic deformation caused by twinning. Long term ageing at 700°C for up to 20 000 hours can cause different precipitation such as γ ́, M6C (Mo-rich) and M23C6 (Cr-rich) carbides. These carbides are both inter-and intra-granular particles. The long term ageing reduces the fracture toughness of the material, but the alloy can still have rather high impact toughness and fracture toughness even with an ageing at 700°C for 20 000 hour. The mechanisms have been studied using electron backscatter detection and electron channeling contrast imaging. It shows that besides dislocation slip, twinning is another main deformation mechanism in these aged Alloy 617 materials. At the crack front, plenty of micro or nanotwins can be observed. The formation of these twins leads to a high ductility and toughness which is a new observation or a new concept for this type of material.

  • 34.
    Calmunger, Mattias
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Moverare, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Johansson, Sten
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Chai, Guocai
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten. Sandvik Materials Technology, Sandviken, Sweden.
    Characterisation of creep deformation during slow strain rate tensile testing2015Manuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    The strain-rate dependent deformation of the superalloy Haynes 282 during slow strain-rate tensile testing (SSRT) at 700 C has been investigated. The stress-strain response is remarkably well described by a simple constitutive model over a wide range of different strain-rates. The microstructure development is characterised and related to the influence of both strainrate dependent and independent deformation. Damage and cracking similar to what has been observed previously during conventional creep testing of Haynes 282 was found and explained. The model and the microstructure investigations show that the deformation and damage mechanisms during SSRT are essentially the same as under creep.

  • 35.
    Calmunger, Mattias
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Moverare, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Evaluation of Creep Properties Using Slow Strain Rate Tensile Testing2015Konferansepaper (Annet vitenskapelig)
  • 36.
    Calmunger, Mattias
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Chai, Guocai
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan. Sandvik Materials Technology, Sandviken, Sweden.
    Johansson, Sten
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Moverare, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Long Term High-Temperature Environmental Effect on Impact Toughness in Austenitic Alloys2015Inngår i: / [ed] Key Engineering Materials Vol 627 (2015),pp 205-208., 2015, s. 205-308Konferansepaper (Fagfellevurdert)
  • 37. Bestill onlineKjøp publikasjonen >>
    Calmunger, Mattias
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    On High-Temperature Behaviours of Heat Resistant Austenitic Alloys2015Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Advanced heat resistant materials are important to achieve the transition to long term sustainable power generation. The global increase in energy consumption and the global warming from greenhouse gas emissions create the need for more sustainable power generation processes. Biomass-fired power plants with higher efficiency could generate more power but also reduce the emission of greenhouse gases, e.g. CO2. Biomass offers no net contribution of CO2 to the atmosphere. To obtain greater efficiency of power plants, one option is to increase the temperature and the pressure in the boiler section of the power plant. This requires improved material properties, such as higher yield strength, creep strength and high-temperature corrosion resistance, as well as structural integrity and safety.

    Today, some austenitic stainless steels are design to withstand temperatures up to 650 °C in tough environments. Nickel-based alloys are designed to withstand even higher temperatures. Austenitic stainless steels are more cost effective than nickel-based alloys due to a lower amount of expensive alloying elements. However, the performance of austenitic stainless steels at the elevated temperatures of future operation conditions in biomass-red power plants is not yet fully understood.

    This thesis presents research on the influence of long term high-temperature ageing on mechanical properties, the influence of very slow deformation rates at high-temperature on deformation, damage and fracture, and the influence of high-temperature environment and cyclic operation conditions on the material behaviour. Mechanical and thermal testing have been performed followed by subsequent studies of the microstructure, using scanning electron microscopy, to investigate the material behaviours.

    Results shows that long term ageing at high temperatures leads to the precipitation of intermetallic phases. These intermetallic phases are brittle at room temperature and become detrimental for the impact toughness of some of the austenitic stainless steels. During slow strain rate tensile deformation at elevated temperature time dependent deformation and recovery mechanisms are pronounced. The creep-fatigue interaction behaviour of an austenitic stainless steel show that dwell time gives shorter life at a lower strain range, but has none or small effect on the life at a higher strain range.

    Finally, this research results in an increased knowledge of the structural, mechanical and chemical behaviour as well as a deeper understanding of the deformation, damage and fracture mechanisms that occur in heat resistant austenitic alloys at high-temperature environments. It is believed that in the long term, this can contribute to material development achieving the transition to more sustainable power generation in biomass-red power plants.

    Delarbeid
    1. Long Term High-Temperature Environmental Effect on Impact Toughness in Austenitic Alloys
    Åpne denne publikasjonen i ny fane eller vindu >>Long Term High-Temperature Environmental Effect on Impact Toughness in Austenitic Alloys
    2015 (engelsk)Inngår i: / [ed] Key Engineering Materials Vol 627 (2015),pp 205-208., 2015, s. 205-308Konferansepaper, Publicerat paper (Fagfellevurdert)
    Serie
    KEY ENGINEERING MATERIALS, ISSN 1662-9795 ; 627
    Emneord
    high-temperature environment, precipitation, impact toughness, austenitic stainless steel, nickel-base alloy
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-109512 (URN)10.4028/www.scientific.net/KEM.627.205 (DOI)
    Konferanse
    13th International Conference on Fracture and Damage Mechanics, Azorerna, 23-25 September 2014
    Tilgjengelig fra: 2014-08-21 Laget: 2014-08-21 Sist oppdatert: 2018-03-09
    2. Damage and Fracture Behaviours in Aged Austentic Materials During High-Temperature Slow Strain Rate Testing
    Åpne denne publikasjonen i ny fane eller vindu >>Damage and Fracture Behaviours in Aged Austentic Materials During High-Temperature Slow Strain Rate Testing
    2014 (engelsk)Konferansepaper, Publicerat paper (Fagfellevurdert)
    Abstract [en]

    Biomass power plants with high efficiency are desired as a renewable energy resource. High efficiency can be obtained by increasing temperature and pressure. An upgrade of the material performance to high temperature material is therefore required in order to meet the increased demands due to the higher temperature and the more corrosive environment. In this study, the material’s high-temperature behaviours of AISI 304 and Alloy617 under slow deformation rate are evaluated using high-temperature long-term aged specimens subjected to slow strain rate tensile testing (SSRT) with strain rates down to 10-6/s at 700°C. Both materials show decreasing stress levels and elongation to fracture when tensile deformed using low strain rate and elevated temperature. At high-temperature and low strain rates cracking in grain boundaries due to larger precipitates formed during deformation is the most common fracture mechanism.

    sted, utgiver, år, opplag, sider
    Trans Tech Publications Inc., 2014
    Serie
    Key Engineering Materials, ISSN 1662-9795
    Emneord
    High-temperature, ageing, slow strain rate, biomass power plant, austenitic stainless steel, nickel base alloy and dynamic strain ageing
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-96028 (URN)10.4028/www.scientific.net/KEM.592-593.590 (DOI)000336694400133 ()
    Konferanse
    MSMF7 Materials Structure & Micromechanics of Fracture , July 13, Brno, Czech Republic
    Tilgjengelig fra: 2013-08-13 Laget: 2013-08-13 Sist oppdatert: 2015-11-30bibliografisk kontrollert
    3. Advanced Microstructure Studies of an Austenitic Material Using EBSD in Elevated Temperature In-Situ Tensile Testing in SEM
    Åpne denne publikasjonen i ny fane eller vindu >>Advanced Microstructure Studies of an Austenitic Material Using EBSD in Elevated Temperature In-Situ Tensile Testing in SEM
    Vise andre…
    2014 (engelsk)Konferansepaper, Publicerat paper (Fagfellevurdert)
    Abstract [en]

    In this study an advanced method for investigation of the microstructure such as electron backscatter diffraction (EBSD) together with in-situ tensile test in a scanning electron microscope (SEM) has been used at room temperature and 300°C. EBSD analyses provide information about crystallographic orientation in the microstructure and dislocation structures caused by deformation. The in-situ tensile tests enabled the same area to be investigated at different strain levels. For the same macroscopic strain values a lower average misorientation in individual grains at elevated temperature indicates that less residual strain at grain level are developed compared to room temperature. For both temperatures, while large scatters in grain average misorientation are observed for grains of similar size, there seems to be a tendency showing that larger grains may accumulate somewhat more strains.

    sted, utgiver, år, opplag, sider
    Trans Tech Publications Inc., 2014
    Serie
    Key Engineering Materials, ISSN 1662-9795
    Emneord
    Austenitic stainless steel, electron backscatter diffraction, in-situ tensile test, Schmid factor, grain wsize and slip system
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-97015 (URN)10.4028/www.scientific.net/KEM.592-593.497 (DOI)000336694400111 ()
    Konferanse
    MSMF7 Materials Structure & Micromechanics of Fracture, July 1-3, Brno, Czech Republic
    Tilgjengelig fra: 2013-09-03 Laget: 2013-09-03 Sist oppdatert: 2015-11-30bibliografisk kontrollert
    4. Mechanical Behaviours of Alloy 617 with Varied Strain Rate at High Temperatures
    Åpne denne publikasjonen i ny fane eller vindu >>Mechanical Behaviours of Alloy 617 with Varied Strain Rate at High Temperatures
    2014 (engelsk)Inngår i: Materials Science Forum, ISSN 0255-5476, E-ISSN 1662-9752, Vol. 783-786, s. 1182-1187Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    Nickel-base alloys due to their high performances have been widely used in biomass and coal fired power plants. They can undertake plastic deformation with different strain rates such as those typically seen during creep and fatigue at elevated temperatures. In this study, the mechanical behaviours of Alloy 617 with strain rates from 10-2/s down to 10-6/s at temperatures of 650°C and 700°C have been studied using tensile tests. Furthermore, the microstructures have been investigated using electron backscatter detection and electron channeling contrast imaging. At relatively high strain rate, the alloy shows higher fracture strains at these temperatures. The microstructure investigation shows that it is caused by twinning induced plasticity due to DSA. The fracture strain reaches the highest value at a strain rate of 10-4/s and then it decreases  dramatically. At strain rate of 10-6/s, the fracture strain at high temperature is now smaller than that at room temperature, and the strength also decreases with further decreasing strain rate. Dynamic recrystallization can also be observed usually combined with crack initiation and propagation. This is a new type of observation and the mechanisms involved are discussed.

    Emneord
    Nickel-base superalloy, twinning, Dynamic strain ageing, elevated temperature
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-98241 (URN)10.4028/www.scientific.net/MSF.783-786.1182 (DOI)
    Konferanse
    THERMEC '2013, International Conference on Processing & Manufacturing of Advanced Materials. Processing, Fabrication, Properties, Applications. December 2-6, Las Vegas, USA
    Tilgjengelig fra: 2013-10-04 Laget: 2013-10-04 Sist oppdatert: 2017-12-06bibliografisk kontrollert
    5. Deformation behaviour in advanced heat resistant materials during slow strain rate testing at elevated temperature
    Åpne denne publikasjonen i ny fane eller vindu >>Deformation behaviour in advanced heat resistant materials during slow strain rate testing at elevated temperature
    2014 (engelsk)Inngår i: Theoretical and Applied Mechanics Letters, ISSN 2095-0349, Vol. 4, nr 041004Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    In this study, slow strain rate tensile testing at elevated temperature is used to evaluate the influence of temperature and strain rate on deformation behaviour in two different austenitic alloys. One austenitic stainless steel (AISI 316L) and one nickel-base alloy (Alloy 617) have been investigated. Scanning electron microscopy related techniques as electron channelling contrast imaging and electron backscattering diffraction have been used to study the damage and fracture micromechanisms. For both alloys the dominante damage micromechanisms are slip bands and planar slip interacting with grain bounderies or precipitates causing strain concentrations. The dominante fracture micromechanism when using a slow strain rate at elevated temperature, is microcracks at grain bounderies due to grain boundery embrittlement caused by precipitates. The decrease in strain rate seems to have a small influence on dynamic strain ageing at 650°C.

    sted, utgiver, år, opplag, sider
    American Institute of Physics (AIP), 2014
    Emneord
    dynamic strain ageing, slow strain rate tensile testing, fracture, damage
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-109511 (URN)10.1063/2.1404104 (DOI)
    Tilgjengelig fra: 2014-08-21 Laget: 2014-08-21 Sist oppdatert: 2017-12-05bibliografisk kontrollert
    6. Characterization of austenitic stainless steels deformed at elevated temperature
    Åpne denne publikasjonen i ny fane eller vindu >>Characterization of austenitic stainless steels deformed at elevated temperature
    Vise andre…
    2017 (engelsk)Inngår i: Metallurgical and Materials Transactions. A, ISSN 1073-5623, E-ISSN 1543-1940, Vol. 48A, nr 10, s. 4525-4538Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    Highly alloyed austenitic stainless steels are promising candidates to replace more expansive nickel-based alloys within the energy-producing industry. The present study investigates the deformation mechanisms by microstructural characterisation, mechanical properties and stress-strain response of three commercial austenitic stainless steels and two commercial nickel-based alloys using uniaxial tensile tests at elevated temperatures from 400 C up to 700 C. The materials showed different influence of temperature on ductility, where the ductility at elevated temperatures increased with increasing nickel and solid solution hardening element content. The investigated materials showed planar dislocation driven deformation at elevated temperature. Scanning electron microscopy showed that deformation twins were an active deformation mechanism in austenitic stainless steels during tensile deformation at elevated temperatures up to 700 C.

    sted, utgiver, år, opplag, sider
    Springer-Verlag New York, 2017
    Emneord
    Austenitic stainless steel, Nickel-based alloy, Microstructural characterization, Deformation twinning, Stress-strain response
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-122942 (URN)10.1007/s11661-017-4212-9 (DOI)000408884300012 ()
    Merknad

    Previous status of this publication was manuscript

    Funding agencies: AB Sandvik Materials Technology in Sweden; Swedish National Energy Administration through the Research Consortium of Materials Technology for Thermal Energy Processes [KME-701]; AFM Strategic Faculty Grant SFO-MAT-LiU at Linkoping University [2009-00971]

    Tilgjengelig fra: 2015-11-30 Laget: 2015-11-30 Sist oppdatert: 2017-09-22bibliografisk kontrollert
    7. Characterisation of creep deformation during slow strain rate tensile testing
    Åpne denne publikasjonen i ny fane eller vindu >>Characterisation of creep deformation during slow strain rate tensile testing
    2015 (engelsk)Manuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    The strain-rate dependent deformation of the superalloy Haynes 282 during slow strain-rate tensile testing (SSRT) at 700 C has been investigated. The stress-strain response is remarkably well described by a simple constitutive model over a wide range of different strain-rates. The microstructure development is characterised and related to the influence of both strainrate dependent and independent deformation. Damage and cracking similar to what has been observed previously during conventional creep testing of Haynes 282 was found and explained. The model and the microstructure investigations show that the deformation and damage mechanisms during SSRT are essentially the same as under creep.

    Emneord
    Slow strain-rate tensile testing, Creep, Norton equation, Constitutive modelling, Cavity
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-122943 (URN)
    Tilgjengelig fra: 2015-11-30 Laget: 2015-11-30 Sist oppdatert: 2015-11-30bibliografisk kontrollert
    8. Creep and Fatigue Interaction Behavior in Sanicro 25 Heat Resistant Austenitic Stainless Steel
    Åpne denne publikasjonen i ny fane eller vindu >>Creep and Fatigue Interaction Behavior in Sanicro 25 Heat Resistant Austenitic Stainless Steel
    2016 (engelsk)Inngår i: Transactions of the Indian Institute of Metals, ISSN 0972-2815, E-ISSN 0975-1645, Vol. 69, nr 2, s. 337-342Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    Sanicro 25 is a newly developed advanced high strength heat resistant austenitic stainless steel. The material shows good resistance to steam oxidation and flue gas corrosion, and has higher creep rupture strength than other austenitic stainless steels available today. It is thus an excellent candidate for superheaters and reheaters for advanced ultra-super critical power plants with efficiency higher than 50 %. This paper provides a study on the creep–fatigue interaction behavior of Sanicro 25 at 700 °C. Two strain ranges, 1 and 2 %, and two dwell times, 10 and 30 min, were used. The influences of dwell time on the cyclic deformation behavior and life has been evaluated. Due to stress relaxation the dwell time causes a larger plastic strain range compared to the tests without dwell time. The results also show that the dwell time leads to a shorter fatigue life for the lower strain range, but has no or small effect on the life for the higher strain range. Fracture investigations show that dwell times result in more intergranular cracking. With the use of the electron channeling contrast imaging technique, the influences of dwell time on the cyclic plastic deformation, precipitation behavior, recovery phenomena and local plasticity exhaustion have also been studied.

    sted, utgiver, år, opplag, sider
    Springer, 2016
    Emneord
    Sanicro 25, advanced ultra-super critical power plant, creep, low cycle fatigue, cyclic plastic deformation
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-123646 (URN)10.1007/s12666-015-0806-3 (DOI)000368032700027 ()
    Konferanse
    7th International Conference on Creep, 19-22 January 2016, IGCAR, Kalpakkam, India
    Merknad

    At the time for thesis presentation publication was in status: Manuscript

    Funding agencies: AB Sandvik Materials Technology in Sweden; Swedish National Energy Administration through the Research Consortium of Materials Technology for Thermal Energy Processes [KME-701]; AFM Strategic Faculty Grant SFO-MAT-LiU at Linkoping University [2009-00971]

    Tilgjengelig fra: 2016-01-04 Laget: 2016-01-04 Sist oppdatert: 2017-12-01
    9. Surface Phase Transformation in Austenitic Stainless Steel Induced by Cyclic Oxidation in Humidified Air
    Åpne denne publikasjonen i ny fane eller vindu >>Surface Phase Transformation in Austenitic Stainless Steel Induced by Cyclic Oxidation in Humidified Air
    Vise andre…
    2015 (engelsk)Inngår i: Corrosion Science, ISSN 0010-938X, E-ISSN 1879-0496, Vol. 100, s. 524-534Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    The formation of α’ martensite at the surface of an AISI 304 stainless steel subjected to cyclic heating in humidified air is reported. The α’ martensite formed during the cooling part of the cyclic tests due to local depletion of Cr and Mn and transformed back to austenite when the temperature again rose to 650 °C. The size of the α’ martensite region increased with increasing number of cycles. Thermodynamical simulations were used as basis for discussing the formation of α’ martensite. The effect of the α’ martensite on corrosion is also discussed.

    sted, utgiver, år, opplag, sider
    Pergamon Press, 2015
    Emneord
    Stainless steel, thermal cycling, SEM, oxidation, high temperature corrosion
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-122008 (URN)10.1016/j.corsci.2015.08.030 (DOI)000363070100049 ()
    Merknad

    Funding agencies: AB Sandvik Materials Technology in Sweden; Swedish National Energy Administration through the Research Consortium of Materials Technology for Thermal Energy Processes [KME-701]; Agora Materiae and AFM Strategic Faculty Grant SFO-MAT-LiU at Linkoping Unive

    Tilgjengelig fra: 2015-10-15 Laget: 2015-10-15 Sist oppdatert: 2017-12-01
    Fulltekst (pdf)
    fulltext
    Download (pdf)
    omslag
    Download (jpg)
    presentationsbild
  • 38.
    Segersäll, Mikael
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Calmunger, Mattias
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Norman, Viktor
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Fredriksson, Claes
    Student Reactions to CES EduPack in an Undergraduate Materials Selection Course2015Konferansepaper (Fagfellevurdert)
  • 39.
    Calmunger, Mattias
    et al.
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial.
    Eriksson, Robert
    Siemens AG, Huttenstr. 12, 10553 Berlin, Germany.
    Chai, Guocai
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten. Sandviken, Sweden.
    Johansson, Sten
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Moverare, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
    Surface Phase Transformation in Austenitic Stainless Steel Induced by Cyclic Oxidation in Humidified Air2015Inngår i: Corrosion Science, ISSN 0010-938X, E-ISSN 1879-0496, Vol. 100, s. 524-534Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The formation of α’ martensite at the surface of an AISI 304 stainless steel subjected to cyclic heating in humidified air is reported. The α’ martensite formed during the cooling part of the cyclic tests due to local depletion of Cr and Mn and transformed back to austenite when the temperature again rose to 650 °C. The size of the α’ martensite region increased with increasing number of cycles. Thermodynamical simulations were used as basis for discussing the formation of α’ martensite. The effect of the α’ martensite on corrosion is also discussed.

    Fulltekst (pdf)
    fulltext
  • 40.
    Calmunger, Mattias
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Peng, Ru
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Chai, Guocai
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan. Sandvik Materials Technology, Sandviken, Sweden.
    Johansson, Sten
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Moverare, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Advanced Microstructure Studies of an Austenitic Material Using EBSD in Elevated Temperature In-Situ Tensile Testing in SEM2014Konferansepaper (Fagfellevurdert)
    Abstract [en]

    In this study an advanced method for investigation of the microstructure such as electron backscatter diffraction (EBSD) together with in-situ tensile test in a scanning electron microscope (SEM) has been used at room temperature and 300°C. EBSD analyses provide information about crystallographic orientation in the microstructure and dislocation structures caused by deformation. The in-situ tensile tests enabled the same area to be investigated at different strain levels. For the same macroscopic strain values a lower average misorientation in individual grains at elevated temperature indicates that less residual strain at grain level are developed compared to room temperature. For both temperatures, while large scatters in grain average misorientation are observed for grains of similar size, there seems to be a tendency showing that larger grains may accumulate somewhat more strains.

    Fulltekst (pdf)
    fulltext
  • 41.
    Calmunger, Mattias
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Chai, Guocai
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan. Sandvik Materials Technology, Sandviken, Sweden.
    Johansson, Sten
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Moverare, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Damage and Fracture Behaviours in Aged Austentic Materials During High-Temperature Slow Strain Rate Testing2014Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Biomass power plants with high efficiency are desired as a renewable energy resource. High efficiency can be obtained by increasing temperature and pressure. An upgrade of the material performance to high temperature material is therefore required in order to meet the increased demands due to the higher temperature and the more corrosive environment. In this study, the material’s high-temperature behaviours of AISI 304 and Alloy617 under slow deformation rate are evaluated using high-temperature long-term aged specimens subjected to slow strain rate tensile testing (SSRT) with strain rates down to 10-6/s at 700°C. Both materials show decreasing stress levels and elongation to fracture when tensile deformed using low strain rate and elevated temperature. At high-temperature and low strain rates cracking in grain boundaries due to larger precipitates formed during deformation is the most common fracture mechanism.

    Fulltekst (pdf)
    fulltext
  • 42.
    Calmunger, Mattias
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Chai, Guocai
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan. Sandvik Materials Technology, Sandviken, Sweden.
    Johansson, Sten
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Moverare, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Deformation behaviour in advanced heat resistant materials during slow strain rate testing at elevated temperature2014Inngår i: Theoretical and Applied Mechanics Letters, ISSN 2095-0349, Vol. 4, nr 041004Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this study, slow strain rate tensile testing at elevated temperature is used to evaluate the influence of temperature and strain rate on deformation behaviour in two different austenitic alloys. One austenitic stainless steel (AISI 316L) and one nickel-base alloy (Alloy 617) have been investigated. Scanning electron microscopy related techniques as electron channelling contrast imaging and electron backscattering diffraction have been used to study the damage and fracture micromechanisms. For both alloys the dominante damage micromechanisms are slip bands and planar slip interacting with grain bounderies or precipitates causing strain concentrations. The dominante fracture micromechanism when using a slow strain rate at elevated temperature, is microcracks at grain bounderies due to grain boundery embrittlement caused by precipitates. The decrease in strain rate seems to have a small influence on dynamic strain ageing at 650°C.

  • 43.
    Kahl, Sören
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan. Gränges Technology, Gränges AB, Finspång, Sweden.
    Peng, Ru
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Calmunger, Mattias
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Olsson, Björn
    Sapa Technology, Sapa AB, Finspång, Sweden.
    Johansson, Sten
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    In Situ EBSD During Tensile Test of Aluminum AA3003 Sheet2014Inngår i: Micron, ISSN 0968-4328, E-ISSN 1878-4291, ISSN 0968-4328, Vol. 58, s. 15-24Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Miniature tensile-test specimens of soft-annealed, weakly textured AA3003 aluminum sheet in 0.9 mm thickness were deformed until fracture inside a scanning electron microscope. Tensile strength measured by the miniature tensile test stage agreed well with the tensile strength by regular tensile testing. Strain over the microscope field of view was determined from changes in positions of constituent particles. Slip lines were visible in secondary electron images already at 0.3% strain; activity from secondary slip systems became apparent at 2% strain. Orientation rotation behavior of the tensile load axis with respect to the crystallographic axes agreed well with previously reported trends for other aluminum alloys. Start of the fracture and tensile crack propagation were documented in secondary electron images. The region of fracture nucleation included and was surrounded by many grains that possessed high Schmid factors at zero strain. Crystal lattice rotation angles in the grains surrounding the initial fracture zone were higher than average while rotations inside the initial fracture zone were lower than average for strains from zero to 31%. The orientation rotation behavior of the tensile load axes of the grains around the fracture zone deviated from the average behavior in this material.

  • 44.
    Calmunger, Mattias
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Chai, Guocai
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Johansson, Sten
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Moverare, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Influence of deformation rate on mechanical response of an AISI 316L austenitic stainless steel2014Inngår i: Advanced Materials Research, ISSN 1022-6680, E-ISSN 1662-8985, Vol. 922, s. 49-54Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Austenitic stainless steels are often used for components in demanding environment. These materials can withstand elevated temperatures and corrosive atmosphere like in energy producing power plants. They can be plastically deformed at slow strain rates and high alternating or constant tensile loads such as fatigue and creep at elevated temperatures. This study investigates how deformation rates influence mechanical properties of an austenitic stainless steel. The investigation includes tensile testing using strain rates of 2*10-3/ and 10-6/s at elevated temperatures up to 700°C. The material used in this study is AISI 316L. When the temperature is increasing the strength decreases. At a slow strain rate and elevated temperature the stress level decreases gradually with increasing plastic deformation probably due to dynamic recovery and dynamic recrystallization. However, with increasing strain rate elongation to failure is decreasing. AISI 316L show larger elongation to failure when using a strain rate of 10-6/s compared with 2*10-3/s at each temperature. Electron channelling contrast imaging is used to characterize the microstructure and discuss features in the microstructure related to changes in mechanical properties. Dynamic recrystallization has been observed and is related to damage and cavity initiation and propagation.

  • 45.
    Calmunger, Mattias
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Chai, Guocai
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan. Sandvik Materials Technology, Strategy research, SE-81181 Sandviken, Sweden.
    Johansson, Sten
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Moverare, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Mechanical behaviors of alloy 617 with varied strain rates at high temperatures2014Inngår i: THERMEC 2013, Trans Tech Publications Ltd , 2014, Vol. 783-786, s. 1182-1187Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Nickel base alloys due to their high performances have been widely used in biomass and coal fired power plants. They can undertake plastic deformation with different strain rates such as those typically seen during creep and fatigue at elevated temperatures. In this study, the mechanical behaviors of Alloy 617 with strain rates from 10-2/s down to 10-6/s at temperatures of 650C and 700C have been studied using tensile tests. Furthermore, the microstructures have been investigated using electron backscatter detection and electron channeling contrast imaging. At relatively high strain rate, the alloy shows higher fracture strains at these temperatures. The microstructure investigation shows that it is caused by twinning induced plasticity due to DSA. The fracture strain reaches the highest value at a strain rate of 10-4/s and then it decreases dramatically. At strain rate of 10-6/s, the fracture strain at high temperature is now smaller than that at room temperature, and the strength also decreases with further decreasing strain rate. Dynamic recrystallization can also be observed usually combined with crack initiation and propagation. This is a new type of observation and the mechanisms involved are discussed. © (2014) Trans Tech Publications, Switzerland.

  • 46.
    Calmunger, Mattias
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Chai, Guocai
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Johansson, Sten
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Moverare, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Mechanical Behaviours of Alloy 617 with Varied Strain Rate at High Temperatures2014Inngår i: Materials Science Forum, ISSN 0255-5476, E-ISSN 1662-9752, Vol. 783-786, s. 1182-1187Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Nickel-base alloys due to their high performances have been widely used in biomass and coal fired power plants. They can undertake plastic deformation with different strain rates such as those typically seen during creep and fatigue at elevated temperatures. In this study, the mechanical behaviours of Alloy 617 with strain rates from 10-2/s down to 10-6/s at temperatures of 650°C and 700°C have been studied using tensile tests. Furthermore, the microstructures have been investigated using electron backscatter detection and electron channeling contrast imaging. At relatively high strain rate, the alloy shows higher fracture strains at these temperatures. The microstructure investigation shows that it is caused by twinning induced plasticity due to DSA. The fracture strain reaches the highest value at a strain rate of 10-4/s and then it decreases  dramatically. At strain rate of 10-6/s, the fracture strain at high temperature is now smaller than that at room temperature, and the strength also decreases with further decreasing strain rate. Dynamic recrystallization can also be observed usually combined with crack initiation and propagation. This is a new type of observation and the mechanisms involved are discussed.

  • 47.
    Calmunger, Mattias
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Segersäll, Mikael
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Using the Student Diversity as a Strength in a Material Selection Course2014Konferansepaper (Annet (populærvitenskap, debatt, mm))
  • 48.
    Calmunger, Mattias
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Chai, Guocai
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan. Sandvik Materials Technology, Sandviken, Sweden.
    Johansson, Sten
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Moverare, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Damage and Fracture Behaviours in Advanced Heat Resistant Materials During Slow Strain Rate Test at High Temperature2013Konferansepaper (Annet vitenskapelig)
    Abstract [en]

    As a renewable energy resource, biomass or biomass co-firing in coal-fired power plants with high efficiency are desired which corresponding to elevated temperature and high pressure. An upgrade of the material performance to austenitic stainless steels is therefore required in order to meet the increased demands due to the higher temperature and the more corrosive environment. These materials suffer from creep and fatigue damage during the service. In this study, these behaviours are evaluated using slow strain rate testing (SSRT) with strain rate down to 1*10-6/s at temperature up to 700°C. The influence of temperature and strain rate on strength and ductility in one austenitic stainless steel and one nickel base alloys are investigated. The damage and fracture due to the interaction between moving dislocations and precipitates are studied using electron channelling contrast imaging (ECCI) and electron backscattering diffraction (EBSD). The deformation and damage mechanisms active during SSRT are essentially the same as under creep. The influence of dynamic strain ageing (DSA) phenomena that appears in the tested temperature and strain rate regime is also discussed, DSA is intensified by increased temperature and decreased strain rate.

  • 49. Bestill onlineKjøp publikasjonen >>
    Calmunger, Mattias
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    High-Temperature Behaviour of Austenitic Alloys: Influence of Temperature and Strain Rate on Mechanical Properties and Microstructural Development2013Licentiatavhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    The global increase in energy consumption and the global warming from greenhouse gas emission creates the need for more environmental friendly energy production processes. Biomass power plants with higher efficiency could generate more energy but also reduce the emission of greenhouse gases, e.g. CO2. Biomass is the largest global contributor to renewable energy and offers no net contribution of CO2 to the atmosphere. One way to increase the efficiency of the power plants is to increase temperature and pressure in the boiler parts of the power plant.

    The materials used for the future biomass power plants, with higher temperature and pressure, require improved properties, such as higher yield strength, creep strength and high-temperature corrosion resistance. Austenitic stainless steels and nickel-base alloys have shown good mechanical and chemical properties at the operation temperatures of today’s biomass power plants. However, the performance of austenitic stainless steels at the future elevated temperatures is not fully understood.

    The aim of this licentiate thesis is to increase our knowledge about the mechanical performance of austenitic stainless steels at the demanding conditions of the new generation power plants. This is done by using slow strain rate tensile deformation at elevated temperature and long term hightemperature ageing together with impact toughness testing. Microscopy is used to investigate deformation, damage and fracture behaviours during slow deformation and the long term influence of temperature on toughness in the microstructure of these austenitic alloys. Results show that the main deformation mechanisms are planar dislocation deformations, such as planar slip and slip bands. Intergranular fracture may occur due to precipitation in grain boundaries both in tensile deformed and impact toughness tested alloys. The shape and amount of σ-phase precipitates have been found to strongly influence the fracture behaviour of some of the austenitic stainless steels. In addition, ductility is affected differently by temperature depending on alloy tested and dynamic strain ageing may not always lead to a lower ductility.

    Delarbeid
    1. Deformation and damage behaviours of austenitic alloys in the dynamic strain ageing regime
    Åpne denne publikasjonen i ny fane eller vindu >>Deformation and damage behaviours of austenitic alloys in the dynamic strain ageing regime
    (engelsk)Manuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    Deformation and damage behaviours influenced by dynamic strain ageing (DSA) in three austenitic stainless steels and two nickel-base alloys have been investigated using tensile tests at elevated temperatures. The deformation and damage behaviours have been analysed using electron channeling contrast imaging and electron backscatter diffraction. The results from this study show that DSA not always reduce ductility, in fact for some materials the ductility can increase in the DSA regime. This is attributed to the formation of nano twins by DSA stimulated twinning induced plasticity. Damage mechanisms due to DSA were also investigated and discussed.

    Emneord
    Dynamic strain ageing, austenitic stainless steel, nickel-base alloy, TWIP, damage
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-98239 (URN)
    Tilgjengelig fra: 2013-10-04 Laget: 2013-10-04 Sist oppdatert: 2013-10-04bibliografisk kontrollert
    2. Influence of deformation rate on mechanical response of an AISI 316L austenitic stainless steel
    Åpne denne publikasjonen i ny fane eller vindu >>Influence of deformation rate on mechanical response of an AISI 316L austenitic stainless steel
    2014 (engelsk)Inngår i: Advanced Materials Research, ISSN 1022-6680, E-ISSN 1662-8985, Vol. 922, s. 49-54Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    Austenitic stainless steels are often used for components in demanding environment. These materials can withstand elevated temperatures and corrosive atmosphere like in energy producing power plants. They can be plastically deformed at slow strain rates and high alternating or constant tensile loads such as fatigue and creep at elevated temperatures. This study investigates how deformation rates influence mechanical properties of an austenitic stainless steel. The investigation includes tensile testing using strain rates of 2*10-3/ and 10-6/s at elevated temperatures up to 700°C. The material used in this study is AISI 316L. When the temperature is increasing the strength decreases. At a slow strain rate and elevated temperature the stress level decreases gradually with increasing plastic deformation probably due to dynamic recovery and dynamic recrystallization. However, with increasing strain rate elongation to failure is decreasing. AISI 316L show larger elongation to failure when using a strain rate of 10-6/s compared with 2*10-3/s at each temperature. Electron channelling contrast imaging is used to characterize the microstructure and discuss features in the microstructure related to changes in mechanical properties. Dynamic recrystallization has been observed and is related to damage and cavity initiation and propagation.

    sted, utgiver, år, opplag, sider
    Trans Tech Publications Inc., 2014
    Emneord
    Austenitic stainless steel, elevated temperature, ageing, dynamic recrystallization
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-98240 (URN)10.4028/www.scientific.net/AMR.922.49 (DOI)
    Konferanse
    THERMEC '2013, International Conference on Processing & Manufacturing of Advanced Materials. Processeing, Fabrication, Properties, Applications. December 2-6, Las Vegas, USA
    Tilgjengelig fra: 2013-10-04 Laget: 2013-10-04 Sist oppdatert: 2017-12-06bibliografisk kontrollert
    3. Mechanical Behaviours of Alloy 617 with Varied Strain Rate at High Temperatures
    Åpne denne publikasjonen i ny fane eller vindu >>Mechanical Behaviours of Alloy 617 with Varied Strain Rate at High Temperatures
    2014 (engelsk)Inngår i: Materials Science Forum, ISSN 0255-5476, E-ISSN 1662-9752, Vol. 783-786, s. 1182-1187Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    Nickel-base alloys due to their high performances have been widely used in biomass and coal fired power plants. They can undertake plastic deformation with different strain rates such as those typically seen during creep and fatigue at elevated temperatures. In this study, the mechanical behaviours of Alloy 617 with strain rates from 10-2/s down to 10-6/s at temperatures of 650°C and 700°C have been studied using tensile tests. Furthermore, the microstructures have been investigated using electron backscatter detection and electron channeling contrast imaging. At relatively high strain rate, the alloy shows higher fracture strains at these temperatures. The microstructure investigation shows that it is caused by twinning induced plasticity due to DSA. The fracture strain reaches the highest value at a strain rate of 10-4/s and then it decreases  dramatically. At strain rate of 10-6/s, the fracture strain at high temperature is now smaller than that at room temperature, and the strength also decreases with further decreasing strain rate. Dynamic recrystallization can also be observed usually combined with crack initiation and propagation. This is a new type of observation and the mechanisms involved are discussed.

    Emneord
    Nickel-base superalloy, twinning, Dynamic strain ageing, elevated temperature
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-98241 (URN)10.4028/www.scientific.net/MSF.783-786.1182 (DOI)
    Konferanse
    THERMEC '2013, International Conference on Processing & Manufacturing of Advanced Materials. Processing, Fabrication, Properties, Applications. December 2-6, Las Vegas, USA
    Tilgjengelig fra: 2013-10-04 Laget: 2013-10-04 Sist oppdatert: 2017-12-06bibliografisk kontrollert
    4. Damage and Fracture Behaviours in Aged Austentic Materials During High-Temperature Slow Strain Rate Testing
    Åpne denne publikasjonen i ny fane eller vindu >>Damage and Fracture Behaviours in Aged Austentic Materials During High-Temperature Slow Strain Rate Testing
    2014 (engelsk)Konferansepaper, Publicerat paper (Fagfellevurdert)
    Abstract [en]

    Biomass power plants with high efficiency are desired as a renewable energy resource. High efficiency can be obtained by increasing temperature and pressure. An upgrade of the material performance to high temperature material is therefore required in order to meet the increased demands due to the higher temperature and the more corrosive environment. In this study, the material’s high-temperature behaviours of AISI 304 and Alloy617 under slow deformation rate are evaluated using high-temperature long-term aged specimens subjected to slow strain rate tensile testing (SSRT) with strain rates down to 10-6/s at 700°C. Both materials show decreasing stress levels and elongation to fracture when tensile deformed using low strain rate and elevated temperature. At high-temperature and low strain rates cracking in grain boundaries due to larger precipitates formed during deformation is the most common fracture mechanism.

    sted, utgiver, år, opplag, sider
    Trans Tech Publications Inc., 2014
    Serie
    Key Engineering Materials, ISSN 1662-9795
    Emneord
    High-temperature, ageing, slow strain rate, biomass power plant, austenitic stainless steel, nickel base alloy and dynamic strain ageing
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-96028 (URN)10.4028/www.scientific.net/KEM.592-593.590 (DOI)000336694400133 ()
    Konferanse
    MSMF7 Materials Structure & Micromechanics of Fracture , July 13, Brno, Czech Republic
    Tilgjengelig fra: 2013-08-13 Laget: 2013-08-13 Sist oppdatert: 2015-11-30bibliografisk kontrollert
    5. Advanced Microstructure Studies of an Austenitic Material Using EBSD in Elevated Temperature In-Situ Tensile Testing in SEM
    Åpne denne publikasjonen i ny fane eller vindu >>Advanced Microstructure Studies of an Austenitic Material Using EBSD in Elevated Temperature In-Situ Tensile Testing in SEM
    Vise andre…
    2014 (engelsk)Konferansepaper, Publicerat paper (Fagfellevurdert)
    Abstract [en]

    In this study an advanced method for investigation of the microstructure such as electron backscatter diffraction (EBSD) together with in-situ tensile test in a scanning electron microscope (SEM) has been used at room temperature and 300°C. EBSD analyses provide information about crystallographic orientation in the microstructure and dislocation structures caused by deformation. The in-situ tensile tests enabled the same area to be investigated at different strain levels. For the same macroscopic strain values a lower average misorientation in individual grains at elevated temperature indicates that less residual strain at grain level are developed compared to room temperature. For both temperatures, while large scatters in grain average misorientation are observed for grains of similar size, there seems to be a tendency showing that larger grains may accumulate somewhat more strains.

    sted, utgiver, år, opplag, sider
    Trans Tech Publications Inc., 2014
    Serie
    Key Engineering Materials, ISSN 1662-9795
    Emneord
    Austenitic stainless steel, electron backscatter diffraction, in-situ tensile test, Schmid factor, grain wsize and slip system
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-97015 (URN)10.4028/www.scientific.net/KEM.592-593.497 (DOI)000336694400111 ()
    Konferanse
    MSMF7 Materials Structure & Micromechanics of Fracture, July 1-3, Brno, Czech Republic
    Tilgjengelig fra: 2013-09-03 Laget: 2013-09-03 Sist oppdatert: 2015-11-30bibliografisk kontrollert
    6. Influence of High Temperature Ageing on the Toughness of Advanced Heat Resistant Materials
    Åpne denne publikasjonen i ny fane eller vindu >>Influence of High Temperature Ageing on the Toughness of Advanced Heat Resistant Materials
    2013 (engelsk)Konferansepaper, Publicerat paper (Fagfellevurdert)
    Abstract [en]

    Advanced biomass, biomass co-firing in coal-fired and future advanced USC coal-fired power plants with high efficiency require the materials to be used at even higher temperature under higher pressure. The reliability and integrity of the material used are therefore of concern. In this study, the influence of ageing at temperatures up to 700°C for up to 3 000 hours on the toughness of two advanced heat resistant austenitic steels and one nickel alloy are investigated. The influence on toughness due to differences in the chemical composition as well as the combined effect of precipitation and growth of the precipitates has been analysed by using SEM techniques. The fracture mechanisms that are active for the different ageing treatments are identified as a function of temperature and time. Local approach methods are used to discuss the influence of the precipitation and growth of precipitates on the toughness or fracture in  the different aged materials.

    Emneord
    high-temperature, ageing, toughness, austnitic stainless steel, incke base alloy
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-95440 (URN)
    Konferanse
    13th International Conference on Fracture (ICF13), June 16-21, Beijing, China
    Tilgjengelig fra: 2013-07-03 Laget: 2013-07-03 Sist oppdatert: 2013-12-13bibliografisk kontrollert
    Fulltekst (pdf)
    High-Temperature Behaviour of Austenitic Alloys: Influence of Temperature and Strain Rate on Mechanical Properties and Microstructural Development
    Download (pdf)
    omslag
  • 50.
    Calmunger, Mattias
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Chai, Guocai
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan. Sandvik Materials Technology, Sandviken, sweden.
    Johansson, Sten
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial.
    Moverare, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
    Influence of High Temperature Ageing on the Toughness of Advanced Heat Resistant Materials2013Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Advanced biomass, biomass co-firing in coal-fired and future advanced USC coal-fired power plants with high efficiency require the materials to be used at even higher temperature under higher pressure. The reliability and integrity of the material used are therefore of concern. In this study, the influence of ageing at temperatures up to 700°C for up to 3 000 hours on the toughness of two advanced heat resistant austenitic steels and one nickel alloy are investigated. The influence on toughness due to differences in the chemical composition as well as the combined effect of precipitation and growth of the precipitates has been analysed by using SEM techniques. The fracture mechanisms that are active for the different ageing treatments are identified as a function of temperature and time. Local approach methods are used to discuss the influence of the precipitation and growth of precipitates on the toughness or fracture in  the different aged materials.

12 1 - 50 of 53
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf