liu.seSearch for publications in DiVA
Endre søk
Begrens søket
1 - 2 of 2
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Jia, Zhenrong
    et al.
    Chinese Acad Sci, Peoples R China.
    Ma, Qing
    Chinese Acad Sci, Peoples R China.
    Chen, Zeng
    Zhejiang Univ, Peoples R China.
    Meng, Lei
    Chinese Acad Sci, Peoples R China.
    Jain, Nakul
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Angunawela, Indunil
    North Carolina State Univ, NC 27695 USA.
    Qin, Shucheng
    Chinese Acad Sci, Peoples R China.
    Kong, Xiaolei
    Chinese Acad Sci, Peoples R China; Univ Chinese Acad Sci, Peoples R China.
    Li, Xiaojun
    Chinese Acad Sci, Peoples R China; Univ Chinese Acad Sci, Peoples R China.
    Yang, Yang (Michael)
    Zhejiang Univ, Peoples R China.
    Zhu, Haiming
    Zhejiang Univ, Peoples R China.
    Ade, Harald
    North Carolina State Univ, NC 27695 USA.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Li, Yongfang
    Chinese Acad Sci, Peoples R China; Univ Chinese Acad Sci, Peoples R China; Soochow Univ, Peoples R China.
    Near-infrared absorbing acceptor with suppressed triplet exciton generation enabling high performance tandem organic solar cells2023Inngår i: Nature Communications, E-ISSN 2041-1723, Vol. 14, nr 1, artikkel-id 1236Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Reducing the energy loss of sub-cells is critical for high performance tandem organic solar cells, while it is limited by the severe non-radiative voltage loss via the formation of non-emissive triplet excitons. Herein, we develop an ultra-narrow bandgap acceptor BTPSeV-4F through replacement of terminal thiophene by selenophene in the central fused ring of BTPSV-4F, for constructing efficient tandem organic solar cells. The selenophene substitution further decrease the optical bandgap of BTPSV-4F to 1.17 eV and suppress the formation of triplet exciton in the BTPSV-4F-based devices. The organic solar cells with BTPSeV-4F as acceptor demonstrate a higher power conversion efficiency of 14.2% with a record high short-circuit current density of 30.1 mA cm(-2) and low energy loss of 0.55 eV benefitted from the low non-radiative energy loss due to the suppression of triplet exciton formation. We also develop a high-performance medium bandgap acceptor O1-Br for front cells. By integrating the PM6:O1-Br based front cells with the PTB7-Th:BTPSeV-4F based rear cells, the tandem organic solar cell demonstrates a power conversion efficiency of 19%. The results indicate that the suppression of triplet excitons formation in the near-infrared-absorbing acceptor by molecular design is an effective way to improve the photovoltaic performance of the tandem organic solar cells. Reducing energy loss of sub-cells is critical for high performance tandem organic solar cells. Here, the authors design and synthesize an ultra-narrow bandgap acceptor through replacement of terminal thiophene by selenophene in the central fused ring, achieving efficiency of 19% for tandem cells.

    Fulltekst (pdf)
    fulltext
  • 2.
    Wen, Tian-Jiao
    et al.
    Zhejiang Univ, Peoples R China.
    Xiang, Jiale
    Zhejiang Univ, Peoples R China.
    Jain, Nakul
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Liu, Zhi-Xi
    Zhejiang Univ, Peoples R China.
    Chen, Zeng
    Zhejiang Univ, Peoples R China.
    Xia, Xinxin
    Chinese Univ Hong Kong, Peoples R China.
    Lu, Xinhui
    Chinese Univ Hong Kong, Peoples R China.
    Zhu, Haiming
    Zhejiang Univ, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Li, Chang-Zhi
    Zhejiang Univ, Peoples R China.
    Non-fused medium bandgap electron acceptors for efficient organic photovoltaics2022Inngår i: Journal of Energy Challenges and Mechanics, E-ISSN 2056-9386, Vol. 70, s. 576-582Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The cost-effective organic semiconductors are strongly needed in organic photovoltaics (OPVs). Herein, two medium bandgap (MBG) electron acceptors, TPT4F and TPT4Cl are developed via the new design of multi-noncovalent interaction assisted unfused core, flanked with two electron withdrawing end groups. These fullly non-fused MBG acceptors adapt the planar and rigid conformation in solid, therefore exhibiting the ordered face-on stacking and strong photoluminescence in films. As results, TPT4Cl-based OPVs, upon blending with the PBDB-TF polymer donor, have achieved a power conversion efficiency of 10.16% with a low non-radiative loss of 0.27 eV, representing one of the best fullly non-fused medium bandgap acceptors with desirable cost-efficiency balance. (c) 2022 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.

1 - 2 of 2
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf