liu.seSearch for publications in DiVA
Endre søk
Begrens søket
1 - 13 of 13
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Bae, S. Sandra
    et al.
    Univ Colorado, CO 80309 USA.
    Fujiwara, Takanori
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Ynnerman, Anders
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Do, Ellen Yi-Luen
    Univ Colorado, CO 80309 USA.
    Rivera, Michael L.
    Univ Colorado, CO 80309 USA.
    Szafir, Danielle Albers
    Univ North Carolina Chapel Hill, NC USA.
    A Computational Design Pipeline to Fabricate Sensing Network Physicalizations2024Inngår i: IEEE Transactions on Visualization and Computer Graphics, ISSN 1077-2626, E-ISSN 1941-0506, Vol. 30, nr 1, s. 913-923Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Interaction is critical for data analysis and sensemaking. However, designing interactive physicalizations is challenging as it requires cross-disciplinary knowledge in visualization, fabrication, and electronics. Interactive physicalizations are typically produced in an unstructured manner, resulting in unique solutions for a specific dataset, problem, or interaction that cannot be easily extended or adapted to new scenarios or future physicalizations. To mitigate these challenges, we introduce a computational design pipeline to 3D print network physicalizations with integrated sensing capabilities. Networks are ubiquitous, yet their complex geometry also requires significant engineering considerations to provide intuitive, effective interactions for exploration. Using our pipeline, designers can readily produce network physicalizations supporting selection-the most critical atomic operation for interaction-by touch through capacitive sensing and computational inference. Our computational design pipeline introduces a new design paradigm by concurrently considering the form and interactivity of a physicalization into one cohesive fabrication workflow. We evaluate our approach using (i) computational evaluations, (ii) three usage scenarios focusing on general visualization tasks, and (iii) expert interviews. The design paradigm introduced by our pipeline can lower barriers to physicalization research, creation, and adoption.

  • 2.
    Fujiwara, Takanori
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Kucher, Kostiantyn
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Wang, Junpeng
    Visa Research, USA.
    Martins, Rafael M.
    Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM).
    Kerren, Andreas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten. Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM).
    Ynnerman, Anders
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Adversarial Attacks on Machine Learning-Aided Visualizations2024Inngår i: Journal of Visualization, ISSN 1343-8875, E-ISSN 1875-8975Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Research in ML4VIS investigates how to use machine learning (ML) techniques to generate visualizations, and the field is rapidly growing with high societal impact. However, as with any computational pipeline that employs ML processes, ML4VIS approaches are susceptible to a range of ML-specific adversarial attacks. These attacks can manipulate visualization generations, causing analysts to be tricked and their judgments to be impaired. Due to a lack of synthesis from both visualization and ML perspectives, this security aspect is largely overlooked by the current ML4VIS literature. To bridge this gap, we investigate the potential vulnerabilities of ML-aided visualizations from adversarial attacks using a holistic lens of both visualization and ML perspectives. We first identify the attack surface (i.e., attack entry points) that is unique in ML-aided visualizations. We then exemplify five different adversarial attacks. These examples highlight the range of possible attacks when considering the attack surface and multiple different adversary capabilities. Our results show that adversaries can induce various attacks, such as creating arbitrary and deceptive visualizations, by systematically identifying input attributes that are influential in ML inferences. Based on our observations of the attack surface characteristics and the attack examples, we underline the importance of comprehensive studies of security issues and defense mechanisms as a call of urgency for the ML4VIS community.

  • 3.
    Jung, Myeongwon
    et al.
    Sungkyunkwan University.
    Fujiwara, Takanori
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Jo, Jaemin
    Sungkyunkwan University.
    GhostUMAP: Measuring Pointwise Instability in Dimensionality Reduction2024Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Although many dimensionality reduction (DR) techniques employ stochastic methods for computational efficiency, such as negative sampling or stochastic gradient descent, their impact on the projection has been underexplored. In this work, we investigate how such stochasticity affects the stability of projections and present a novel DR technique, GhostUMAP, to measure the pointwise instability of projections. Our idea is to introduce clones of data points, "ghosts", into UMAP’s layout optimization process. Ghosts are designed to be completely passive: they do not affect any others but are influenced by attractive and repulsive forces from the original data points. After a single optimization run, GhostUMAP can capture the projection instability of data points by measuring the variance with the projected positions of their ghosts. We also present a successive halving technique to reduce the computation of GhostUMAP. Our results suggest that Ghost-UMAP can reveal unstable data points with a reasonable computational overhead.

  • 4.
    Lu, Hsiao-Ying
    et al.
    University of California, Davis, USA.
    Fujiwara, Takanori
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Chang, Ming-Yi
    Fu Jen Catholic University, Taiwan.
    Fu, Yang-chih
    Institute of Sociology, Academia Sinica, Taiwan.
    Ynnerman, Anders
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Ma, Kwan-Liu
    University of California, Davis, USA.
    Visual Analytics of Multivariate Networks with Representation Learning and Composite Variable Construction2024Inngår i: IEEE Transactions on Visualization and Computer Graphics, ISSN 1077-2626, E-ISSN 1941-0506, s. 1-16Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Multivariate networks are commonly found in realworld data-driven applications. Uncovering and understanding the relations of interest in multivariate networks is not a trivial task. This paper presents a visual analytics workflow for studying multivariate networks to extract associations between different structural and semantic characteristics of the networks (e.g., what are the combinations of attributes largely relating to the density of a social network?). The workflow consists of a neuralnetwork- based learning phase to classify the data based on the chosen input and output attributes, a dimensionality reduction and optimization phase to produce a simplified set of results for examination, and finally an interpreting phase conducted by the user through an interactive visualization interface. A key part of our design is a composite variable construction step that remodels nonlinear features obtained by neural networks into linear features that are intuitive to interpret. We demonstrate the capabilities of this workflow with multiple case studies on networks derived from social media usage and also evaluate the workflow with qualitative feedback from experts.

  • 5.
    Fujiwara, Takanori
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Liu, Tzu-Ping
    Univ Taipei, Taiwan.
    Contrastive multiple correspondence analysis (cMCA): Using contrastive learning to identify latent subgroups in political parties2023Inngår i: PLOS ONE, E-ISSN 1932-6203, Vol. 18, nr 7Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Scaling methods have long been utilized to simplify and cluster high-dimensional data. However, the general latent spaces across all predefined groups derived from these methods sometimes do not fall into researchers interest regarding specific patterns within groups. To tackle this issue, we adopt an emerging analysis approach called contrastive learning. We contribute to this growing field by extending its ideas to multiple correspondence analysis (MCA) in order to enable an analysis of data often encountered by social scientists-containing binary, ordinal, and nominal variables. We demonstrate the utility of contrastive MCA (cMCA) by analyzing two different surveys of voters in the U.S. and U.K. Our results suggest that, first, cMCA can identify substantively important dimensions and divisions among subgroups that are overlooked by traditional methods; second, for other cases, cMCA can derive latent traits that emphasize subgroups seen moderately in those derived by traditional methods.

  • 6.
    Fujiwara, Takanori
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Kuo, Yun-Hsin
    Univ Calif Davis, CA USA.
    Ynnerman, Anders
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Ma, Kwan-Liu
    Univ Calif Davis, CA USA.
    Feature Learning for Nonlinear Dimensionality Reduction toward Maximal Extraction of Hidden Patterns2023Inngår i: 2023 IEEE 16TH PACIFIC VISUALIZATION SYMPOSIUM, PACIFICVIS, IEEE COMPUTER SOC , 2023, s. 122-131Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Dimensionality reduction (DR) plays a vital role in the visual analysis of high-dimensional data. One main aim of DR is to reveal hidden patterns that lie on intrinsic low-dimensional manifolds. However, DR often overlooks important patterns when the manifolds are distorted or masked by certain influential data attributes. This paper presents a feature learning framework, FEALM, designed to generate a set of optimized data projections for nonlinear DR in order to capture important patterns in the hidden manifolds. These projections produce maximally different nearest-neighbor graphs so that resultant DR outcomes are significantly different. To achieve such a capability, we design an optimization algorithm as well as introduce a new graph dissimilarity measure, named neighbor-shape dissimilarity. Additionally, we develop interactive visualizations to assist comparison of obtained DR results and interpretation of each DR result. We demonstrate FEALMs effectiveness through experiments and case studies using synthetic and real-world datasets.

  • 7.
    Nonaka, Jorji
    et al.
    RIKEN R-CCS.
    Fujita, Keijiro
    Kobe University.
    Fujiwara, Takanori
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Sakamoto, Naohisa
    Kobe University.
    Yamamoto, Keiji
    RIKEN R-CCS.
    Terai, Masaaki
    RIKEN R-CCS.
    Tsukamoto, Toshiyuki
    RIKEN R-CCS.
    Shoji, Fumiyoshi
    RIKEN R-CCS.
    Reflections on the Developments of Visual Analytics Systems for the K Computer System Log Data2023Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Flagship-class high-performance computing (HPC) systems, also known as supercomputers, are large, complex systems that require particular attention for continuous and long-term stable operations. The K computer was a Japanese flagship-class supercomputer ranked as the fastest supercomputer in the Top500 ranking when it first appeared. It was composed of more than eighty thousand compute nodes and consumed more than 12 MW when running the LINPACK benchmark for the Top500 submission. A combined power substation, with a natural gas co-generation system (CGS), was used for the power supply, and also a large air/water cooling facility was used to extract the massive heat generated from this HPC system. During the years of its regular operation, a large log dataset has been generated from the K computer system and its facility, and several visual analytics systems have been developed to better understand the K computer's behavior during the operation as well as the probable correlation of operational temperature with the critical hardware failures. In this paper, we will reflect on these visual analytics systems, mainly developed by graduate students, intended to be used by different types of end users on the HPC site. In addition, we will discuss the importance of collaborative development involving the end users, and also the importance of technical people in the middle for assisting in the deployment and possible continuation of the developed systems.

  • 8.
    Li, Yiran
    et al.
    Univ Calif Davis, CA 95616 USA.
    Wang, Junpeng
    Visa Res, CA 94306 USA.
    Fujiwara, Takanori
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Ma, Kwan-Liu
    Univ Calif Davis, CA 95616 USA.
    Visual Analytics of Neuron Vulnerability to Adversarial Attacks on Convolutional Neural Networks2023Inngår i: ACM Transactions on Interactive Intelligent Systems, ISSN 2160-6455, E-ISSN 2160-6463, Vol. 13, nr 4, artikkel-id 20Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Adversarial attacks on a convolutional neural network (CNN)-injecting human-imperceptible perturbations into an input image-could fool a high-performance CNN into making incorrect predictions. The success of adversarial attacks raises serious concerns about the robustness of CNNs, and prevents them from being used in safety-critical applications, such asmedical diagnosis and autonomous driving. Ourwork introduces a visual analytics approach to understanding adversarial attacks by answering two questions: (1) Which neurons are more vulnerable to attacks? and (2) Which image features do these vulnerable neurons capture during the prediction? For the first question, we introduce multiple perturbation-based measures to break down the attacking magnitude into individual CNN neurons and rank the neurons by their vulnerability levels. For the second, we identify image features (e.g., cat ears) that highly stimulate a user-selected neuron to augment and validate the neuron's responsibility. Furthermore, we support an interactive exploration of a large number of neurons by aiding with hierarchical clustering based on the neurons' roles in the prediction. To this end, a visual analytics system is designed to incorporate visual reasoning for interpreting adversarial attacks. We validate the effectiveness of our system through multiple case studies aswell as feedback from domain experts.

  • 9.
    Fujiwara, Takanori
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten.
    ニューラルネットワークを用いた可視化 [Visualizations Using Neural Networks]2023Inngår i: Journal of The Japan Society for Simulation Technology, Vol. 42, nr 2, s. 83-88Artikkel i tidsskrift (Fagfellevurdert)
  • 10.
    Fujita, Keijiro
    et al.
    Kobe University.
    Sakamoto, Naohisa
    Kobe University.
    Fujiwara, Takanori
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Tsukamoto, Toshiyuki
    RIKEN R-CCS.
    Nonaka, Jorji
    RIKEN R-CCS.
    A Visual Analytics Method for Time-Series Log Data Using Multiple Dimensionality Reduction2022Inngår i: Journal of Advanced Simulation in Science and Engineering, E-ISSN 2188-5303, Vol. 9, nr 2, s. 206-219Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The size and complexity of supercomputer systems and their power and cooling facilities have continuously increased, thus posing additional challenge for long-term and stable operation. Supercomputers are shared computational resources and usually operate with different computational workloads at different locations (space) and timings (time). Better understanding of the supercomputer systems heat generation and cooling behavior is highly desired from the facility operational side for decision making and optimization planning. In this work, we present a dimensionality reduction-based visual analytics method for time-series log data, from supercomputer system and its facility, to capture characteristic spatio-temporal features and behaviors during the operation.

  • 11.
    Fujiwara, Takanori
    et al.
    University of California, Davis, United States.
    Zhao, Jian
    University of Waterloo, Canada.
    Chen, Francine
    Toyota Research Institute.
    Yu, Yaoliang
    University of Waterloo, Canada.
    Ma, Kwan-Liu
    University of California, Davis, United States.
    Network Comparison with Interpretable Contrastive Network Representation Learning2022Inngår i: Journal of Data Science, Statistics, and Visualisation, ISSN 2773-0689, Vol. 2, nr 5Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Identifying unique characteristics in a network through comparison with another network is an essential network analysis task. For example, with networks of protein interactions obtained from normal and cancer tissues, we can discover unique types of interactions in cancer tissues. This analysis task could be greatly assisted by contrastive learning, which is an emerging analysis approach to discover salient patterns in one dataset relative to another. However, existing contrastive learning methods cannot be directly applied to networks as they are designed only for high-dimensional data analysis. To address this problem, we introduce a new analysis approach called contrastive network representation learning (cNRL). By integrating two machine learning schemes, network representation learning and contrastive learning, cNRL enables embedding of network nodes into a low-dimensional representation that reveals the uniqueness of one network compared to another. Within this approach, we also design a method, named i-cNRL, which offers interpretability in the learned results, allowing for understanding which specific patterns are only found in one network. We demonstrate the effectiveness of i-cNRL for network comparison with multiple network models and real-world datasets. Furthermore, we compare i-cNRL and other potential cNRL algorithm designs through quantitative and qualitative evaluations.

  • 12.
    Fujita, Keijiro
    et al.
    Kobe University, Japan.
    Sakamoto, Naohisa
    Kobe University, Japan.
    Fujiwara, Takanori
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Nonaka, Jorji
    RIKEN R-CCS, Japan.
    Tsukamoto, Toshiyuki
    RIKEN R-CCS, Japan.
    次元削減技術を用いた視覚的テンソルデータ解析2022Rapport (Annet vitenskapelig)
    Abstract [ja]

    多次元時系列データから,そこに内在する特徴構造を抽出し解釈するためのデータ解析手法に対する要求が高まっている.本研究では、解析対象とするデータを時間・空間・変数を軸(モード)とするテンソルデータとして表現し,多段階次元削減技術を応用することで,特徴構造を効果的に視覚化し,対話的にデータ探索を行うことができる視覚的解析手法を開発する.開発した手法を,実世界上で計測された時系列データ(スパコンログデータなど)に適用し,その有効性を検証する.

  • 13.
    Fujiwara, Takanori
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Kuo, Yun-Hsin
    University of California, Davis.
    Ynnerman, Anders
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten.
    Ma, Kwan-Liu
    University of California, Davis.
    Feature Learning for Dimensionality Reduction toward Maximal Extraction of Hidden PatternsManuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    Dimensionality reduction (DR) plays a vital role in the visual analysis of high-dimensional data. One main aim of DR is to reveal hidden patterns that lie on intrinsic low-dimensional manifolds. However, DR often overlooks important patterns when the manifolds are strongly distorted or hidden by certain influential data attributes. This paper presents a feature learning framework, FEALM, designed to generate an optimized set of data projections for nonlinear DR in order to capture important patterns in the hidden manifolds. These projections produce maximally different nearest-neighbor graphs so that resultant DR outcomes are significantly different. To achieve such a capability, we design an optimization algorithm as well as introduce a new graph dissimilarity measure, called neighbor-shape dissimilarity. Additionally, we develop interactive visualizations to assist comparison of obtained DR results and interpretation of each DR result. We demonstrate FEALM's effectiveness through experiments using synthetic datasets and multiple case studies on real-world datasets.

1 - 13 of 13
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf