liu.seSearch for publications in DiVA
Endre søk
Begrens søket
1234 1 - 50 of 166
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Han, Shaobo
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Alvi, Naveed
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Granlof, Lars
    RISE Bioecon, Sweden.
    Granberg, Hjalmar
    RISE Bioecon, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    A Multiparameter Pressure-Temperature-Humidity Sensor Based on Mixed Ionic-Electronic Cellulose Aerogels2019Inngår i: ADVANCED SCIENCE, ISSN 2198-3844, Vol. 6, nr 8, artikkel-id 1802128Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Pressure (P), temperature (T), and humidity (H) are physical key parameters of great relevance for various applications such as in distributed diagnostics, robotics, electronic skins, functional clothing, and many other Internet-of-Things (IoT) solutions. Previous studies on monitoring and recording these three parameters have focused on the integration of three individual single-parameter sensors into an electronic circuit, also comprising dedicated sense amplifiers, signal processing, and communication interfaces. To limit complexity in, e.g., multifunctional IoT systems, and thus reducing the manufacturing costs of such sensing/communication outposts, it is desirable to achieve one single-sensor device that simultaneously or consecutively measures P-T-H without cross-talks in the sensing functionality. Herein, a novel organic mixed ion-electron conducting aerogel is reported, which can sense P-T-H with minimal cross-talk between the measured parameters. The exclusive read-out of the three individual parameters is performed electronically in one single device configuration and is enabled by the use of a novel strategy that combines electronic and ionic Seebeck effect along with mixed ion-electron conduction in an elastic aerogel. The findings promise for multipurpose IoT technology with reduced complexity and production costs, features that are highly anticipated in distributed diagnostics, monitoring, safety, and security applications.

  • 2.
    Håkansson, Anna
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Shahi, Maryam
    Univ Kentucky, KY 40506 USA.
    Brill, Joseph W.
    Univ Kentucky, KY 40506 USA.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Conducting-Polymer Bolometers for Low-Cost IR-Detection Systems2019Inngår i: ADVANCED ELECTRONIC MATERIALS, ISSN 2199-160X, Vol. 5, nr 6, artikkel-id 1800975Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Semiconducting polymers are promising materials for manufacturing optoelectronic devices, such as large-area solar cells or small light-emitting diodes, through the use of printing technologies. In their oxidized form, pi-conjugated polymers become good electrical conductors and their optical absorption shifts to the infrared region. It is demonstrated that conducting polymers can be integrated in bolometers for IR detection. A bolometer is a thermally isolated thin device that absorbs IR radiation and translates a temperature change into a change in electrical resistance. While commercial bolometers are usually made of complex architectures comprising several materials (that is, an IR absorbing layer, a conducting layer, and a thermally insulating layer), the first polymer bolometer is demonstrated with a freestanding layer of poly(3,4-ethylene-dioxythiophene) having high IR absorption, low thermal conductivity, and good thermistor action in one single layer. The solution processability of conducting polymers, their compatibility with high-resolution printing technologies, and their unique combination of optoelectronic properties can lead to a breakthrough for low-cost uncooled IR cameras, which are in high demand for security and safety applications.

  • 3.
    Kim, Nara
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Petsagkourakis, Ioannis
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Chen, Shangzhi
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Electric Transport Properties in PEDOT Thin Films2019Inngår i: Conjugated Polymers: Properties, Processing, and Applications / [ed] John R. Reynolds; Barry C. Thompson; Terje A. Skotheim, Boca Raton: CRC Press, 2019, s. 45-128Kapittel i bok, del av antologi (Fagfellevurdert)
    Abstract [en]

    In this chapter, the authors summarize their understanding of Poly(3,4-ethylenedioxythiophene) (PEDOT), with respect to its chemical and physical fundamentals. They focus upon the structure of several PEDOT systems, from the angstrom level and up, and the impact on both electronic and ionic transport. The authors discuss the structural properties of PEDOT:X and PEDOT:poly(styrenesulfonate) based on experimental data probed at the scale ranging from angstrom to submicrometer. The morphology of PEDOT is influenced by the nature of counter-ions, especially at high oxidation levels. The doping anions intercalate between PEDOT chains to form a “sandwich” structure to screen the positive charges in PEDOT chains. The authors provide the main transport coefficients such as electrical conductivity s, Seebeck coefficient S, and Peltier coefficient σ, starting from a general thermodynamic consideration. The optical conductivity of PEDOT has also been examined based on the effective medium approximation, which is normally used to describe microscopic permittivity properties of composites made from several different constituents.

  • 4.
    Brooke, Robert
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Acreo, Sweden.
    Edberg, Jesper
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Acreo, Sweden.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Greyscale and Paper Electrochromic Polymer Displays by UV Patterning2019Inngår i: Polymers, ISSN 2073-4360, E-ISSN 2073-4360, Vol. 11, nr 2, artikkel-id 267Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Electrochromic devices have important implications as smart windows for energy efficient buildings, internet of things devices, and in low-cost advertising applications. While inorganics have so far dominated the market, organic conductive polymers possess certain advantages such as high throughput and low temperature processing, faster switching, and superior optical memory. Here, we present organic electrochromic devices that can switch between two high-resolution images, based on UV-patterning and vapor phase polymerization of poly(3,4-ethylenedioxythiophene) films. We demonstrate that this technique can provide switchable greyscale images through the spatial control of a UV-light dose. The color space was able to be further altered via optimization of the oxidant concentration. Finally, we utilized a UV-patterning technique to produce functional paper with electrochromic patterns deposited on porous paper, allowing for environmentally friendly electrochromic displays.

  • 5.
    Fahlman, Mats
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gueskine, Viktor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel T
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik.
    Interfaces in organic electronics2019Inngår i: Nature Reviews Materials, E-ISSN 2058-8437, Vol. 4, nr 10, s. 627-650Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    Undoped, conjugated, organic molecules and polymers possess properties of semiconductors, including the electronic structure and charge transport, which can be readily tuned by chemical design. Moreover, organic semiconductors (OSs) can be n-doped or p-doped to become organic conductors and can exhibit mixed electronic and ionic conductivity. Compared with inorganic semiconductors and metals, organic (semi)conductors possess a unique feature: no insulating oxide forms on their surface when exposed to air. Thus, OSs form clean interfaces with many materials, including metals and other OSs. OS–metal and OS–OS interfaces have been intensely investigated over the past 30 years, from which a consistent theoretical description has emerged. Since the 2000s, increased attention has been paid to interfaces in organic electronics that involve dielectrics, electrolytes, ferroelectrics and even biological organisms. In this Review, we consider the central role of these interfaces in the function of organic electronic devices and discuss how the physico-chemical properties of the interfaces govern the interfacial transport of light, excitons, electrons and ions, as well as the transduction of electrons into the molecular language of cells.

    Fulltekst tilgjengelig fra 2020-01-25 15:13
  • 6.
    Berggren, Magnus
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Stavrinidou, Eleni
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ion Electron-Coupled Functionality in Materials and Devices Based on Conjugated Polymers2019Inngår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 31, nr 22, artikkel-id 1805813Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    The coupling between charge accumulation in a conjugated polymer and the ionic charge compensation, provided from an electrolyte, defines the mode of operation in a vast array of different organic electrochemical devices. The most explored mixed organic ion-electron conductor, serving as the active electrode in these devices, is poly(3,4-ethyelenedioxythiophene) doped with polystyrelensulfonate (PEDOT:PSS). In this progress report, scientists of the Laboratory of Organic Electronics at Linkoping University review some of the achievements derived over the last two decades in the field of organic electrochemical devices, in particular including PEDOT:PSS as the active material. The recently established understanding of the volumetric capacitance and the mixed ion-electron charge transport properties of PEDOT are described along with examples of various devices and phenomena utilizing this ion-electron coupling, such as the organic electrochemical transistor, ionic-electronic thermodiffusion, electrochromic devices, surface switches, and more. One of the pioneers in this exciting research field is Prof. Olle Inganas and the authors of this progress report wish to celebrate and acknowledge all the fantastic achievements and inspiration accomplished by Prof. Inganas all since 1981.

    Fulltekst tilgjengelig fra 2020-01-08 15:37
  • 7.
    Chen, Shangzhi
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Kuhne, Philipp
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Stanishev, Vallery
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Knight, Sean
    Univ Nebraska, NE 68588 USA.
    Brooke, Robert
    RISE Acreo, Sweden.
    Petsagkourakis, Ioannis
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Schubert, Mathias
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten. Univ Nebraska, NE 68588 USA; Leibniz Inst Polymerforsch Dresden eV, Germany.
    Darakchieva, Vanya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    On the anomalous optical conductivity dispersion of electrically conducting polymers: ultra-wide spectral range ellipsometry combined with a Drude-Lorentz model2019Inngår i: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 7, nr 15, s. 4350-4362Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Electrically conducting polymers (ECPs) are becoming increasingly important in areas such as optoelectronics, biomedical devices, and energy systems. Still, their detailed charge transport properties produce an anomalous optical conductivity dispersion that is not yet fully understood in terms of physical model equations for the broad range optical response. Several modifications to the classical Drude model have been proposed to account for a strong non-Drude behavior from terahertz (THz) to infrared (IR) ranges, typically by implementing negative amplitude oscillator functions to the model dielectric function that effectively reduce the conductivity in those ranges. Here we present an alternative description that modifies the Drude model via addition of positive-amplitude Lorentz oscillator functions. We evaluate this so-called Drude-Lorentz (DL) model based on the first ultra-wide spectral range ellipsometry study of ECPs, spanning over four orders of magnitude: from 0.41 meV in the THz range to 5.90 eV in the ultraviolet range, using thin films of poly(3,4-ethylenedioxythiophene): tosylate (PEDOT: Tos) as a model system. The model could accurately fit the experimental data in the whole ultrawide spectral range and provide the complex anisotropic optical conductivity of the material. Examining the resonance frequencies and widths of the Lorentz oscillators reveals that both spectrally narrow vibrational resonances and broader resonances due to localization processes contribute significantly to the deviation from the Drude optical conductivity dispersion. As verified by independent electrical measurements, the DL model accurately determines the electrical properties of the thin film, including DC conductivity, charge density, and (anisotropic) mobility. The ellipsometric method combined with the DL model may thereby become an effective and reliable tool in determining both optical and electrical properties of ECPs, indicating its future potential as a contact-free alternative to traditional electrical characterization.

  • 8.
    Zozoulenko, Igor
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Singh, Amritpal
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Chalmers Univ Technol, Sweden.
    Singh, Sandeep Kumar
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Gueskine, Viktor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Polarons, Bipolarons, And Absorption Spectroscopy of PEDOT2019Inngår i: ACS APPLIED POLYMER MATERIALS, ISSN 2637-6105, Vol. 1, nr 1, s. 83-94Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Electronic structure and optical absorption spectra of poly(3,4-ethyl-enedioxythiophene) (PEDOT) for different oxidation levels were studied using density functional theory (DFT) and time-dependent DFT. It is shown, that the DFT-based predictions for the polaronic and bipolaronic states and the nature of corresponding optical transitions are qualitatively different from the widely used traditional picture based on semi-empirical pre-DFT approaches that still dominate the current literature. On the basis of the results of our calculations, the experimental Vis/NIR absorbance spectroscopy and the electron paramagnetic resonance spectroscopy are re-examined, and a new interpretation of the measured spectra and the spin signal, which is qualitatively different from the traditional interpretation, is provided. The findings and conclusions concerning the nature of polaronic and bipolaronic states, band structure and absorption spectra presented for PEDOT, are generic for a wide class of conducting polymers (such as polythiophenes and their derivatives) that have a similar structure of monomer units.

  • 9.
    Zhao, Dan
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Martinelli, Anna
    Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg.
    Willfahrt, Andreas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Fischer, Thomas
    Innovative Applications of The Printing Technologies, Stuttgart Media University.
    Bernin, Diana
    Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg.
    Ullah Khan, Zia
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Shahi, Maryam
    Department of Physics and Astronomy, University of Kentucky.
    Brill, Joseph
    Department of Physics and Astronomy, University of Kentucky.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Polymer gels with tunable ionic Seebeck coefficient for ultra-sensitive printed thermopiles2019Inngår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 10, artikkel-id 1093Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Measuring temperature and heat flux is important for regulating any physical, chemical, and biological processes. Traditional thermopiles can provide accurate and stable temperature reading but they are based on brittle inorganic materials with low Seebeck coefficient, and are difficult to manufacture over large areas. Recently, polymer electrolytes have been proposed for thermoelectric applications because of their giant ionic Seebeck coefficient, high flexibility and ease of manufacturing. However, the materials reported to date have positive Seebeck coefficients, hampering the design of ultra-sensitive ionic thermopiles. Here we report an “ambipolar” ionic polymer gel with giant negative ionic Seebeck coefficient. The latter can be tuned from negative to positive by adjusting the gel composition. We show that the ion-polymer matrix interaction is crucial to control the sign and magnitude of the ionic Seebeck coefficient. The ambipolar gel can be easily screen printed, enabling large-area device manufacturing at low cost.

  • 10.
    Willfahrt, Andreas
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Stuttgart Media Univ, Germany.
    Steiner, Erich
    Stuttgart Media Univ, Germany.
    Hoetzel, Jonas
    Stuttgart Media Univ, Germany.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Printable acid-modified corn starch as non-toxic, disposable hydrogel-polymer electrolyte in supercapacitors2019Inngår i: Applied Physics A: Materials Science & Processing, ISSN 0947-8396, E-ISSN 1432-0630, Vol. 125, nr 7, artikkel-id 474Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Corn starch and citric acid, two low-cost and abundant materials, were used for establishing a novel screen printable hydrogel for printed electronics applications. Corn starch was modified with citric acid by melt-blending; the so obtained thermoplastic starch was ground to powder and added to a water-starch suspension. Ultrasonication was used to prepare hydrogels of different citric acid concentrations. The most promising hydrogel contained 10% citric acid by weight, provided an ionic conductivity of (2.30 +/- 0.07)mScm(-1) and appropriate rheological properties for screen and stencil printing. The hydrogel shows superb printability and prolonged stability against degradation. The corn starch hydrogel was used as printable gel polymer electrolyte in fully printed supercapacitors. The specific capacitance of the printed supercapacitor reached 54Fg(-1). The printable hydrogel-polymer electrolyte is easy to produce without in-depth chemical knowledge, is based on widely used and non-toxic materials, and may be used as a functional layer in other printed electronics applications such as printed batteries.

    Fulltekst tilgjengelig fra 2020-06-22 07:23
  • 11.
    Shiran Chaharsoughi, Mina
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zhao, Dan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Thermodiffusion-Assisted Pyroelectrics-Enabling Rapid and Stable Heat and Radiation Sensing2019Inngår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 29, nr 28, artikkel-id 1900572Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Sensors for monitoring temperature, heat flux, and thermal radiation are essential for applications such as electronic skin. While pyroelectric and thermoelectric effects are suitable candidates as functional elements in such devices, both concepts show individual drawbacks in terms of zero equilibrium signals for pyroelectric materials and small or slow response of thermoelectric materials. Here, these drawbacks are overcome by introducing the concept of thermodiffusion-assisted pyroelectrics, which combines and enhances the performance of pyroelectric and ionic thermoelectric materials. The presented integrated concept provides both rapid initial response upon heating and stable synergistically enhanced signals upon prolonged exposure to heat stimuli. Likewise, incorporation of plasmonic metasurfaces enables the concept to provide both rapid and stable signals for radiation-induced heating. The performance of the concept and its working mechanism can be explained by ion-electron interactions at the interface between the pyroelectric and ionic thermoelectric materials.

  • 12.
    Che, Canyan
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Institutionen för fysik, kemi och biologi.
    Ail, Ujwala
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gueskine, Viktor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Phopase, Jaywant
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi.
    Brooke, Robert
    RISE, Norrköping, Sweden.
    Gabrielsson, Roger
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus P.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Mak, Wing Cheung
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Twinning Lignosulfonate with a Conducting Polymer via Counter-Ion Exchange for Large-Scale Electrical Storage2019Inngår i: Advanced Sustainable Systems, ISSN 2366-7486, Vol. 3, nr 9, artikkel-id 1900039Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Abstract Lignosulfonate (LS) is a large-scale surplus product of the forest and paper industries, and has primarily been utilized as a low-cost plasticizer in making concrete for the construction industry. LS is an anionic redox-active polyelectrolyte and is a promising candidate to boost the charge capacity of the positive electrode (positrode) in redox-supercapacitors. Here, the physical-chemical investigation of how this biopolymer incorporates into the conducting polymer PEDOT matrix, of the positrode, by means of counter-ion exchange is reported. Upon successful incorporation, an optimal access to redox moieties is achieved, which provides a 63% increase of the resulting stored electrical charge by reversible redox interconversion. The effects of pH, ionic strength, and concentrations, of included components, on the polymer?polymer interactions are optimized to exploit the biopolymer-associated redox currents. Further, the explored LS-conducting polymer incorporation strategy, via aqueous synthesis, is evaluated in an up-scaling effort toward large-scale electrical energy storage technology. By using an up-scaled production protocol, integration of the biopolymer within the conducting polymer matrix by counter-ion exchange is confirmed and the PEDOT-LS synthesized through optimized strategy reaches an improved charge capacity of 44.6 mAh g?1.

  • 13.
    Wang, Suhao
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Sun, Hengda
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Erdmann, Tim
    Tech Univ Dresden, Germany; Leibniz Inst Polymerforsch Dresden eV, Germany; Flexterra Corp, IL 60077 USA; IBM Almaden Res Ctr, CA 95120 USA.
    Wang, Gang
    Northwestern Univ, IL 60208 USA.
    Fazzi, Daniele
    Max Planck Inst Kohlenforsch, Germany; Univ Cologne, Germany.
    Lappan, Uwe
    Leibniz Inst Polymerforsch Dresden eV, Germany.
    Puttisong, Yuttapoom
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Chen, Zhihua
    Flexterra Corp, IL 60077 USA.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Kiriy, Anton
    Tech Univ Dresden, Germany; Leibniz Inst Polymerforsch Dresden eV, Germany.
    Voit, Brigitte
    Tech Univ Dresden, Germany; Leibniz Inst Polymerforsch Dresden eV, Germany.
    Marks, Tobin J.
    Northwestern Univ, IL 60208 USA; Northwestern Univ, IL 60208 USA.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Flexterra Corp, IL 60077 USA; Northwestern Univ, IL 60208 USA; Northwestern Univ, IL 60208 USA.
    Facchetti, Antonio
    Flexterra Corp, IL 60077 USA; Northwestern Univ, IL 60208 USA; Northwestern Univ, IL 60208 USA.
    A Chemically Doped Naphthalenediimide-Bithiazole Polymer for n-Type Organic Thermoelectrics2018Inngår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 30, nr 31, artikkel-id 1801898Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The synthesis of a novel naphthalenediimide (NDI)-bithiazole (Tz2)-based polymer [P(NDI2OD-Tz2)] is reported, and structural, thin-film morphological, as well as charge transport and thermoelectric properties are compared to the parent and widely investigated NDI-bithiophene (T2) polymer [P(NDI2OD-T2)]. Since the steric repulsions in Tz2 are far lower than in T2, P(NDI2OD-Tz2) exhibits a more planar and rigid backbone, enhancing p-p chain stacking and intermolecular interactions. In addition, the electron-deficient nature of Tz2 enhances the polymer electron affinity, thus reducing the polymer donor-acceptor character. When n-doped with amines, P(NDI2OD-Tz2) achieves electrical conductivity (approximate to 0.1 S cm(-1)) and a power factor (1.5 mu W m(-1) K-2) far greater than those of P(NDI2OD-T2) (0.003 S cm(-1) and 0.012 mu W m(-1) K-2, respectively). These results demonstrate that planarized NDI-based polymers with reduced donor-acceptor character can achieve substantial electrical conductivity and thermoelectric response.

  • 14.
    Wijeratne, Kosala
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ail, Ujwala
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Brooke, Robert
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Bulk electronic transport impacts on electron transfer at conducting polymer electrode-electrolyte interfaces.2018Inngår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, nr 7, s. 11899-11904Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Electrochemistry is an old but still flourishing field of research due to the importance of the efficiency and kinetics of electrochemical reactions in industrial processes and (bio-)electrochemical devices. The heterogeneous electron transfer from an electrode to a reactant in the solution has been well studied for metal, semiconductor, metal oxide, and carbon electrodes. For those electrode materials, there is little correlation between the electronic transport within the electrode material and the electron transfer occurring at the interface between the electrode and the solution. Here, we investigate the heterogeneous electron transfer between a conducting polymer electrode and a redox couple in an electrolyte. As a benchmark system, we use poly(3,4-ethylenedioxythiophene) (PEDOT) and the Ferro/ferricyanide redox couple in an aqueous electrolyte. We discovered a strong correlation between the electronic transport within the PEDOT electrode and the rate of electron transfer to the organometallic molecules in solution. We attribute this to a percolation-based charge transport within the polymer electrode directly involved in the electron transfer. We show the impact of this finding by optimizing an electrochemical thermogalvanic cell that transforms a heat flux into electrical power. The power generated by the cell increased by four orders of magnitude on changing the morphology and conductivity of the polymer electrode. As all conducting polymers are recognized to have percolation transport, we believe that this is a general phenomenon for this family of conductors.

  • 15.
    Rudd, Sam
    et al.
    University of South Australia, Australia.
    Franco Gonzalez, Felipe
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Singh, Sandeep Kumar
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Ullah Khan, Zia
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Andreasen, Jens W.
    Technical University of Denmark, Denmark.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Evans, Drew
    University of South Australia, Australia.
    Charge transport and structure in semimetallic polymers2018Inngår i: Journal of Polymer Science Part B: Polymer Physics, ISSN 0887-6266, E-ISSN 1099-0488, Vol. 56, nr 1, s. 97-104Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Owing to changes in their chemistry and structure, polymers can be fabricated to demonstrate vastly different electrical conductivities over many orders of magnitude. At the high end of conductivity is the class of conducting polymers, which are ideal candidates for many applications in low-cost electronics. Here, we report the influence of the nature of the doping anion at high doping levels within the semi-metallic conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) on its electronic transport properties. Hall effect measurements on a variety of PEDOT samples show that the choice of doping anion can lead to an order of magnitude enhancement in the charge carrier mobilityamp;gt;3 cm(2)/Vs at conductivities approaching 3000 S/cm under ambient conditions. Grazing Incidence Wide Angle X-ray Scattering, Density Functional Theory calculations, and Molecular Dynamics simulations indicate that the chosen doping anion modifies the way PEDOT chains stack together. This link between structure and specific anion doping at high doping levels has ramifications for the fabrication of conducting polymer-based devices. (c) 2017 The Authors. Journal of Polymer Science Part B: Polymer Physics Published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 97-104

  • 16.
    Sun, Hengda
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten.
    Wang, Suhao
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Forchheimer, Robert
    Linköpings universitet, Institutionen för systemteknik, Informationskodning. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Complementary Logic Circuits Based on High-Performance n-Type Organic Electrochemical Transistors2018Inngår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 30, nr 9, artikkel-id 1704916Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Organic electrochemical transistors (OECTs) have been the subject of intense research in recent years. To date, however, most of the reported OECTs rely entirely on p-type (hole transport) operation, while electron transporting (n-type) OECTs are rare. The combination of efficient and stable p-type and n-type OECTs would allow for the development of complementary circuits, dramatically advancing the sophistication of OECT-based technologies. Poor stability in air and aqueous electrolyte media, low electron mobility, and/or a lack of electrochemical reversibility, of available high-electron affinity conjugated polymers, has made the development of n-type OECTs troublesome. Here, it is shown that ladder-type polymers such as poly(benzimidazobenzophenanthroline) (BBL) can successfully work as stable and efficient n-channel material for OECTs. These devices can be easily fabricated by means of facile spray-coating techniques. BBL-based OECTs show high transconductance (up to 9.7 mS) and excellent stability in ambient and aqueous media. It is demonstrated that BBL-based n-type OECTs can be successfully integrated with p-type OECTs to form electrochemical complementary inverters. The latter show high gains and large worst-case noise margin at a supply voltage below 0.6 V.

  • 17.
    Che, Canyan
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten.
    Wijeratne, Kosala
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Zhao, Dan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Warczak, Magdalena
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Conducting Polymer Electrocatalysts for Proton-Coupled Electron Transfer Reactions: Toward Organic Fuel Cells with Forest Fuels2018Inngår i: Advanced Sustainable Systems, ISSN 2366-7486, Vol. 317Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Lignin is one of the most abundant biopolymers, constituting 25% of plants. The pulp and paper industries extract lignin in their process and today seek new applications for this by-product. Here, it is reported that the aromatic alcohols obtained from lignin depolymerization can be used as fuel in high power density electrical power sources. This study shows that the conducting polymer poly(3,4-ethylenedioxythiophene), fabricated from abundant ele-ments via low temperature synthesis, enables efficient, direct, and reversible chemical-to-electrical energy conversion of aromatic alcohols such as lignin residues in aqueous media. A material operation principle related to the rela-tively high molecular diffusion and ionic conductivity within the conducting polymer matrix, ensuring efficient uptake of protons in the course of proton-coupled electron transfers between organic molecules is proposed.

  • 18.
    Brooke, Robert
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Edberg, Jesper
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Iandolo, Donata
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten. Ecole Natl Super Mines, France.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Controlling the electrochromic properties of conductive polymers using UV-light2018Inngår i: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 6, nr 17, s. 4663-4670Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The phenomenon of electrochromism in conductive polymers is well known and has been exploited in many scientific reports. Using a newly developed patterning technique for conductive polymers, we manufactured high-resolution electrochromic devices from the complementary polymers PEDOT and polypyrrole. The technique, which combines UV-light exposure with vapor phase polymerization, has previously only been demonstrated with the conductive polymer PEDOT. We further demonstrated how the same technique can be used to control the optical properties and the electrochromic contrast in these polymers. Oxidant exposure to UV-light prior to vapor phase polymerization showed a reduction in polymer electrochromic contrast allowing high-resolution (100 mu m) patterns to completely disappear while applying a voltage bias due to their optical similarity in one redox state and dissimilarity in the other. This unique electrochromic property enabled us to construct devices displaying images that appear and disappear with the change in applied voltage. Finally, a modification of the electrochromic device architecture permitted a dual image electrochromic device incorporating patterned PEDOT and patterned polypyrrole on the same electrode, allowing the switching between two different images.

  • 19.
    Petsagkourakis, Ioannis
    et al.
    University of Bordeaux, France.
    Pavlopoulou, Eleni
    Institute Polytech Bordeaux Bordeaux INP, France.
    Cloutet, Eric
    University of Bordeaux, France.
    Fang Chen, Yan
    University of Bordeaux, France.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Dilhaire, Stefan
    University of Bordeaux, France.
    Fleury, Guillaume
    University of Bordeaux, France.
    Hadziioannou, Georges
    University of Bordeaux, France.
    Correlating the Seebeck coefficient of thermoelectric polymer thin films to their charge transport mechanism2018Inngår i: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 52, s. 335-341Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Room temperature flexible heat harvesters based on conducting polymers are ideally suited to cover the energy demands of the modern nomadic society. The optimization of their thermoelectric efficiency is usually sought by tuning the oxidation levels of the conducting polymers, even if such methodology is detrimental to the Seebeck coefficient (S) as both the Seebeck coefficient and the electrical conductivity (sigma) are antagonistically related to the carrier concentration. Here we report a concurrent increase of S and sigma and we experimentally derive the dependence of Seebeck coefficient on charge carrier mobility for the first time in organic electronics. Through specific control of the conducting polymer synthesis, we enabled the formation of a denser percolation network that facilitated the charge transport and the thermodiffusion of the charge carriers inside the conducting polymer layer, while the material shifted from a Fermi glass towards a semi-metal, as its crystallinity increased. This work sheds light upon the origin of the thermoelectric properties of conducting polymers, but also underlines the importance of enhanced charge carrier mobility for the design of efficient thermoelectric polymers.

  • 20.
    Jo, Young Jin
    et al.
    Sungkyunkwan Univ SKKU, South Korea.
    Kwon, Ki Yoon
    Sungkyunkwan Univ SKKU, South Korea.
    Ullah Khan, Zia
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Kim, Tae-il
    Sungkyunkwan Univ SKKU, South Korea.
    Gelatin Hydrogel-Based Organic Electrochemical Transistors and Their Integrated Logic Circuits2018Inngår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, nr 45, s. 39083-39090Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We suggest gelatin hydrogel as an electrolyte and demonstrate organic electrochemical transistors (OECTs) based on a sheet of gelatin. We also modulate electrical characteristics of the OECT with respect to pH condition of the gelatin hydrogel from acid to base and analyze its characteristics based on the electrochemical theory. Moreover, we extend the gelatin-based OECT to electrochemical logic circuits, for example, NOT, NOR, and NAND gates.

  • 21.
    Jiao, Fei
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Edberg, Jesper
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zhao, Dan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Puzinas, Skomantas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Khan, Zia
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Mäkie, Peter
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Naderi, Ali
    Innventia AB, Sweden.
    Lindstrom, Tom
    Innventia AB, Sweden.
    Odén, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Nanofibrillated Cellulose-Based Electrolyte and Electrode for Paper-Based Supercapacitors2018Inngår i: ADVANCED SUSTAINABLE SYSTEMS, ISSN 2366-7486, Vol. 2, nr 1, artikkel-id UNSP 1700121Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Solar photovoltaic technologies could fully deploy and impact the energy conversion systems in our society if mass-produced energy-storage solutions exist. A supercapacitor can regulate the fluctuations on the electrical grid on short time scales. Their mass-implementation requires the use of abundant materials, biological and organic synthetic materials are attractive because of atomic element abundancy and low-temperature synthetic processes. Nanofibrillated cellulose (NFC) coming from the forest industry is exploited as a three-dimensional template to control the transport of ions in an electrolyte-separator, with nanochannels filled of aqueous electrolyte. The nanochannels are defined by voids in the nanocomposite made of NFC and the proton transporting polymer polystyrene sulfonic acid PSSH. The ionic conductivity of NFC-PSSH composites (0.2 S cm(-1) at 100% relative humidity) exceeds sea water in a material that is solid, feel dry to the finger, but filled of nanodomains of water. A paper-based supercapacitor made of NFC-PSSH electrolyte-separator sandwiched between two paper-based electrodes is demonstrated. Although modest specific capacitance (81.3 F g(-1)), power density (2040 W kg(-1)) and energy density (1016 Wh kg(-1)), this is the first conceptual demonstration of a supercapacitor based on cellulose in each part of the device; which motivates the search for using paper manufacturing as mass-production of energy-storage devices.

  • 22.
    Petsagkourakis, Ioannis
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ohkubo, Isao
    Natl Inst Mat Sci, Japan.
    Satoh, Norifusa
    Natl Inst Mat Sci, Japan.
    Mori, Takao
    Natl Inst Mat Sci, Japan; Univ Tsukuba, Japan.
    Thermoelectric materials and applications for energy harvesting power generation2018Inngår i: Science and Technology of Advanced Materials, ISSN 1468-6996, E-ISSN 1878-5514, Vol. 19, nr 1, s. 836-862Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    Thermoelectrics, in particular solid-state conversion of heat to electricity, is expected to be a key energy harvesting technology to power ubiquitous sensors and wearable devices in the future. A comprehensive review is given on the principles and advances in the development of thermoelectric materials suitable for energy harvesting power generation, ranging from organic and hybrid organic-inorganic to inorganic materials. Examples of design and applications are also presented. [GRAPHICS] .

  • 23.
    Munoz, William Armando
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Understanding the Impact of Film Disorder and Local Surface Potential in Ultraviolet Photoelectron Spectroscopy of PEDOT2018Inngår i: Macromolecular rapid communications, ISSN 1022-1336, E-ISSN 1521-3927, Vol. 39, nr 4, artikkel-id 1700533Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The spectra of conducting polymers obtained using ultraviolet photoelectron spectroscopy (UPS) exhibit a typical broadening of the tail sigma(UPS) approximate to 1 eV, which by an order of magnitude exceeds a commonly accepted value of the broadening of the tail of the density of states sigma(DOS) approximate to 0.1 eV obtained using transport measurements. In this work, an origin of this anomalous broadening of the tail of the UPS spectra in a doped conducting polymer, PEDOT (poly(3,4-ethylenedioxythiophene)), is discussed. Based on the semiempirical approach and using a realistic morphological model, the density of valence states in PEDOT doped with molecular counterions is computed. It is shown that due to a disordered character of the material with randomly distributed counterions, the localized charge carriers in PEDOT crystallites experience spatially varying electrostatic potential. This leads to spatially varying local vacuum levels and binding energies. Taking this variation into account the UPS spectrum is obtained with the broadening of the tail comparable to the experimentally observed one. The results imply that the observed broadening of the tail of the UPS spectra in PEDOT provides information about a disordered spatially varying potential in the material rather than the broadening of the DOS itself.

  • 24.
    Brooke, Robert
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Franco Gonzalez, Felipe
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Wijeratne, Kosala
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Pavlopoulou, Eleni
    Univ Bordeaux, France.
    Galliani, Daniela
    Univ Milano Bicocca, Italy.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Valiollahi Bisheh, Roudabeh
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Vapor phase synthesized poly(3,4-ethylenedioxy-thiophene)-trifluoromethanesulfonate as a transparent conductor material2018Inngår i: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 6, nr 43, s. 21304-21312Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Inorganic transparent conductive oxides have dominated the market as transparent electrodes due to their high conductivity and transparency. Here, we report the fabrication and optimization of the synthesis of poly(3,4-ethylenedioxythiophene) trifluoromethanesulfonate via vapor phase polymerization for the potential replacement of such inorganic materials. The parameters and conditions of the polymerization were investigated and an electrical conductivity of 3800 S cm(-1) and 4500 S cm(-1) after acid treatment were obtained while maintaining an absorbance similar to that of commercial indium tin oxide. This increase in electrical conductivity was rationalized experimentally and theoretically to an increase in the oxidation level and a higher order of crystallinity which does not disrupt the pi-pi stacking of PEDOT chains.

  • 25.
    Jiao, Fei
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Naderi, Ali
    Innventia AB, Sweden.
    Zhao, Dan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Schlueter, Joshua
    University of Kentucky, KY 40506 USA.
    Shahi, Maryam
    University of Kentucky, KY 40506 USA.
    Sundstrom, Jonas
    Innventia AB, Sweden.
    Granberg, Hjalmar
    Innventia AB, Sweden.
    Edberg, Jesper
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ail, Ujwala
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Brill, Joseph
    University of Kentucky, KY 40506 USA.
    Lindstrom, Tom
    Innventia AB, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Correction: Ionic thermoelectric paper (vol 5, pg 16883, 2017)2017Inngår i: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 5, nr 37, s. 20053-20053Artikkel i tidsskrift (Annet vitenskapelig)
    Abstract [en]

    n/a

  • 26.
    Håkansson, Anna
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Han, Shaobo
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Wang, Suhao
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Lu, Jun
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Braun, Slawomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Effect of (3-Glycidyloxypropyl)Trimethoxysilane (GOPS) on the Electrical Properties of PEDOT:PSS Films2017Inngår i: Journal of Polymer Science Part B: Polymer Physics, ISSN 0887-6266, E-ISSN 1099-0488, Vol. 55, nr 10, s. 814-820Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) has been reported as a successful functional material in a broad variety of applications. One of the most important advantages of PEDOT:PSS is its water-solubility, which enables simple and environmental friendly manufacturing processes. Unfortunately, this also implies that pristine PEDOT:PSS films are unsuitable for applications in aqueous environments. To reach stability in polar solvents, (3-glycidyloxypropyl)trimethoxysilane (GOPS) is typically used to cross-link PEDOT:PSS. Although this strategy is widely used, its mechanism and effect on PEDOT:PSS performance have not been articulated yet. Here, we present a broad study that provides a better understanding of the effect of GOPS on the electrical and electronic properties of PEDOT:PSS. We show that the GOPS reacts with the sulfonic acid group of the excess PSS, causing a change in the PEDOT:PSS film morphology, while the oxidation level of PEDOT remains unaffected. This is at the origin of the observed conductivity changes. (c) 2017 Wiley Periodicals, Inc.

  • 27.
    Edberg, Jesper
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Malti, Abdellah
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Granberg, Hjalmar
    RISE Bioeconomy.
    Hamedi, Mahiar M.
    KTH Royal Institute of Technology.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Electrochemical circuits from ‘cut and stick’ PEDOT:PSS-nanocellulose composite2017Inngår i: Flexible and printed electronics, E-ISSN 2058-8585, Vol. 4, nr 2, artikkel-id 045010Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We report a flexible self-standing adhesive composite made from PEDOT:PSS and nanofibrillated cellulose. The material exhibits good combined mechanical and electrical characteristics(an elastic modulus of 4.4 MPa, and an electrical conductivity of 30 S cm−1 ). The inherent self-adhesiveness of the material enables it to be laminated and delaminated repeatedly to form and reconfigure devices and circuits. This modular property opens the door for a plethora of applications where reconfigurability and ease-of-manufacturing are of prime importance. We also demonstrate a paper composite with ionic conductivity and combine the two materials to construct electrochemical devices, namely transistors, capacitors and diodes with high values of transconductance, charge storage capacity and current rectification. We have further used these devices to construct digital circuits such as NOT, NAND and NOR logic.

  • 28.
    Fabiano, Simone
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Abdollahi Sani, Negar
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten. RISE Acreo, Sweden.
    Kawahara, Jun
    RISE Acreo, Sweden; LINTEC Corp, Japan.
    Kergoat, Loig
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten. Aix Marseille University, France.
    Nissa, Josefin
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ferroelectric polarization induces electronic nonlinearity in ion-doped conducting polymers2017Inngår i: Science Advances, ISSN 0036-8156, E-ISSN 2375-2548, Vol. 3, nr 6, artikkel-id e1700345Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) is an organic mixed ion-electron conducting polymer. The PEDOT phase transports holes and is redox-active, whereas the PSS phase transports ions. When PEDOT is redox-switched between its semiconducting and conducting state, the electronic and optical properties of its bulk are controlled. Therefore, it is appealing to use this transition in electrochemical devices and to integrate those into large-scale circuits, such as display or memory matrices. Addressability and memory functionality of individual devices, within these matrices, are typically achieved by nonlinear current-voltage characteristics and bistability-functions that can potentially be offered by the semiconductor-conductor transition of redox polymers. However, low conductivity of the semiconducting state and poor bistability, due to self-discharge, make fast operation and memory retention impossible. We report that a ferroelectric polymer layer, coated along the counter electrode, can control the redox state of PEDOT. The polarization switching characteristics of the ferroelectric polymer, which take place as the coercive field is overcome, introduce desired nonlinearity and bistability in devices that maintain PEDOT in its highly conducting and fast-operating regime. Memory functionality and addressability are demonstrated in ferro-electrochromic display pixels and ferro-electrochemical transistors.

  • 29.
    Zhang, Qian
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Jiao, Fei
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Braun, Slawomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Jafari, Mohammad Javad
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ederth, Thomas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Ground-state charge transfer for NIR absorption with donor/acceptor molecules: interactions mediated via energetics and orbital symmetries2017Inngår i: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 5, nr 2, s. 275-281Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The interactions between electron donors (D) and acceptors (A) of organic semiconducting molecules are of great interest to organic electronics, e.g. electrical doping of organic semiconductors (OSCs), photo-generation of charges in organic solar cells, and light-emitting/detecting devices based on OSCs. A blend of D/A OSC is typically characterized by weak van der Waals interactions or integer charge transfer (ICT) between neighboring D/A molecules. In between these two scenarios of physical blends and ICT complexes, orbital hybridization between adjacent D/A molecules serves as a third alternative, characterized by an in situ formation of a ground state complex featuring partial charge transfer between participating donor and acceptor molecules. In this work is presented a comprehensive experimental study on partial charge-transfer complex (CPX) formed via orbital hybridization. Thiophenes and phthalocyanines are used as electron donors, while acceptor molecules of different geometries and electron affinities are employed with the aim to clarify how orbital symmetry, energy level alignment and steric hindrance affect orbital hybridization and subsequent tuning of the optical band-gap into the near infrared (NIR) region.

  • 30.
    Brooke, Robert
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Mitraka, Evangelia
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Sardar, Samim
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Sandberg, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Acreo Swedish ICT, SE-601 74 Norrköping, Sweden.
    Sawatdee, Anurak
    Acreo Swedish ICT, SE-601 74 Norrköping, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus P.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Infrared electrochromic conducting polymer devices2017Inngår i: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 5, nr 23, s. 5824-5830Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) is well known for its electrochromic properties in the visible region. Less focus has been devoted to the infrared (IR) wavelength range, although tunable IR properties could enable a wide range of novel applications. As an example, modern day vehicles have thermal cameras to identify pedestrians and animals in total darkness, but road and speed signs cannot be easily visualized by these imaging systems. IR electrochromism could enable a new generation of dynamic road signs that are compatible with thermal imaging, while simultaneously providing contrast also in the visible region. Here, we present the first metal-free flexible IR electrochromic devices, based on PEDOT:Tosylate as both the electrochromic material and electrodes. Lateral electrochromic devices enabled a detailed investigation of the IR electrochromism of thin PEDOT:Tosylate films, revealing large changes in their thermal signature, with effective temperature changes up to 10 [degree]C between the oxidized (1.5 V) and reduced (-1.5 V) states of the polymer. Larger scale (7 [times] 7 cm) vertical electrochromic devices demonstrate practical suitability and showed effective temperature changes of approximately 7 [degree]C, with good optical memory and fast switching (1.9 s from the oxidized state to the reduced state and 3.3 s for the reversed switching). The results are highly encouraging for using PEDOT:Tosylate for IR electrochromic applications.

  • 31.
    Wang, Hui
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Zhao, Dan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ullah Khan, Zia
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Puzinas, Skomantas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ionic Thermoelectric Figure of Merit for Charging of Supercapacitors2017Inngår i: ADVANCED ELECTRONIC MATERIALS, ISSN 2199-160X, Vol. 3, nr 4, artikkel-id 1700013Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Thermoelectric materials enable conversion of heat to electrical energy. The performance of electronic thermoelectric materials is typically evaluated using a figure of merit ZT = sigma alpha 2T/lambda, where sigma is the conductivity, alpha is the so-called Seebeck coefficient, and lambda is the thermal conductivity. However, it has been unclear how to best evaluate the performance of ionic thermoelectric materials, like ionic solids and electrolytes. These systems cannot be directly used in a traditional thermoelectric generator, because they are based on ions that cannot pass the interface between the thermoelectric material and external metal electrodes. Instead, energy can be harvested from the ionic thermoelectric effect by charging a supercapacitor. In this study, the authors investigate the ionic thermoelectric properties at varied relative humidity for the polyelectrolyte polystyrene sulfonate sodium and correlate these properties with the charging efficiency when used in an ionic thermoelectric supercapacitor (ITESC). In analogy with electronic thermoelectric generators, the results show that the charging efficiency of the ITESC can be quantitatively related to the figure of merit ZT(i) = sigma i alpha i2T/lambda. This means that the performance of ionic thermoelectric materials can also be compared and predicted based on the ZT, which will be highly valuable in the design of high-performance ITESCs.

  • 32.
    Zhao, Dan
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ionic thermoelectric gating organic transistors2017Inngår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 8, artikkel-id 14214Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Temperature is one of the most important environmental stimuli to record and amplify. While traditional thermoelectric materials are attractive for temperature/heat flow sensing applications, their sensitivity is limited by their low Seebeck coefficient (similar to 100 mu V K-1). Here we take advantage of the large ionic thermoelectric Seebeck coefficient found in polymer electrolytes (similar to 10,000 mu V K-1) to introduce the concept of ionic thermoelectric gating a low-voltage organic transistor. The temperature sensing amplification of such ionic thermoelectric-gated devices is thousands of times superior to that of a single thermoelectric leg in traditional thermopiles. This suggests that ionic thermoelectric sensors offer a way to go beyond the limitations of traditional thermopiles and pyroelectric detectors. These findings pave the way for new infrared-gated electronic circuits with potential applications in photonics, thermography and electronic-skins.

  • 33.
    Jiao, Fei
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Naderi, Ali
    Billerudkorsnäs AB, SE-71830 Frövi, Sweden.
    Zhao, Dan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Schlueter, Joshua
    Department of Physics and Astronomy, University of Kentucky, Lexington, KY40506-0055, USA.
    Shahi, Maryam
    Department of Physics and Astronomy, University of Kentucky, Lexington, KY40506-0055, USA.
    Sundström, Jonas
    Innventia AB Box 5604, SE-11486 Stockholm, Sweden.
    Granberg, Hjalmar
    Innventia AB Box 5604, SE-11486 Stockholm, Sweden.
    Edberg, Jesper
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ail, Ujwala
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Brill, Joseph W.
    Department of Physics and Astronomy, University of Kentucky, Lexington, KY40506-0055, USA.
    Lindström, Tom
    Innventia AB Box 5604, SE-11486 Stockholm, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ionic Thermoelectric Paper2017Inngår i: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 5, nr 32, s. 16883-16888Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Ionic thermoelectric materials, such as polyelectrolyte like polystyrene sulfonate sodium (PSSNa), constitute a new class ofmaterial attracting interest due to their large Seebeck coefficient and the possibility to be used in ionic thermoelectricsupercapacitors (ITESCs) and field effect transistors. However pure polyelectrolyte membranes are not robust neitherflexible. In this article, we demonstrate the preparation of ionic thermoelectric paper by a simple, scalable and cost-effectivemethod. After composite with nanofibrillated cellulose (NFC), the resulting NFC-PSSNa paper is flexible and mechanicallyrobust; which is desirable of using roll-to-roll processes. The robust thermoelectric paper NFC-PSSNa combines high ionicconductivity (9 mS/cm), high ionic Seebeck coefficient (8.4 mV/K) and low thermal conductivity (0.75 Wm-1K-1) at 100 RH%,resulting in overall figure-of-merit of 0.025 at room temperature slightly better than the PSSNa. Enabling flexibility androbustness by compositing with cellulose constitutes an advance for scaling up the manufacturing of ionic thermoelectricsupercapacitors; but also enables new applications for conformable thermoelectric devices and flexible electronics

  • 34.
    Singh, Sandeep Kumar
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Oxygen Reduction Reaction in Conducting Polymer PEDOT: Density Functional Theory Study2017Inngår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 121, nr 22, s. 12270-12277Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    An oxygen reduction reaction (ORR) mechanism in conducting polymer PEDOT is studied using the density functional theory. It is demonstrated that pure PEDOT chains possess the catalytic activity, where no platinum catalyst or external dopants are needed to sustain the electrocatalysis. This remarkable property of PEDOT is related to the formation of polaronic states, which leads to the decrease of the HOMO LUMO gap and thus to the enhancement of the reactivity of the system. It is shown that ORR on PEDOT chains can proceed via two pathways, whether via a four-electron process when the oxygen reacts with protons and is reduced directly into water in four steps (Reaction path I) or via the two-electron process leading to formation of the hydrogen peroxide as an intermediate specimen (Reaction path II). Path I is demonstrated to be energetically preferable. This conclusion also holds for ORR on two pi-pi stacked chains and ORR for the case when PEDOT is reduced during the reaction. It is also found that ORR on PEDOT effectively proceeds in the presence of H3O+ but does not occur in the absence of acidic environment.

  • 35.
    Mitraka, Evangelia
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jafari, Mohammad Javad
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Ederth, Thomas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Oxygen-induced doping on reduced PEDOT2017Inngår i: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 5, nr 9, s. 4404-4412Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) has shown promise as air electrode in renewable energy technologies like metal-air batteries and fuel cells. PEDOT is based on atomic elements of high abundance and is synthesized at low temperature from solution. The mechanism of oxygen reduction reaction (ORR) over chemically polymerized PEDOT: Cl still remains controversial with eventual role of transition metal impurities. However, regardless of the mechanistic route, we here demonstrate yet another key active role of PEDOT in the ORR mechanism. Our study demonstrates the decoupling of conductivity (intrinsic property) from electrocatalysis (as an extrinsic phenomenon) yielding the evidence of doping of the polymer by oxygen during ORR. Hence, the PEDOT electrode is electrochemically reduced (undoped) in the voltage range of ORR regime, but O-2 keeps it conducting; ensuring PEDOT to act as an electrode for the ORR. The interaction of oxygen with the polymer electrode is investigated with a battery of spectroscopic techniques.

  • 36.
    Wijeratne, Kosala
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Brooke, Robert
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Poly(3,4-ethylenedioxythiophene)-Tosylate (PEDOT-Tos) electrode in Thermogalvanic Cells2017Inngår i: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 5, nr 37, s. 19619-19625Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The interest in thermogalvanic cells (TGCs) has grown because it is a candidate technology for harvesting electricity from natural and waste heat. However, the cost of TGCs has a major component due to the use of the platinum electrode. Here, we investigate new alternative electrode material based on conducting polymers, more especially poly(3,4-ethylenedioxythiophene)-Tosylate (PEDOT-Tos) together with the Ferro/Ferricyanide redox electrolyte. The power generated by the PEDOT-Tos based TGCs increases with the conducting polymer thickness/multilayer and reaches values similar to the flat platinum electrode based TGCs. The physics and chemistry behind this exciting result as well as the identification of the limiting phenomena are investigated by various electrochemical techniques. Furthermore, a preliminary study is provided for the stability of the PEDOT-Tos based TGCs.

  • 37.
    Mirsakiyeva, Amina
    et al.
    KTH Royal Institute Technology, Sweden.
    Hugosson, Håkan W.
    KTH Royal Institute Technology, Sweden; University of Gavle, Sweden.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Delin, Anna
    KTH Royal Institute Technology, Sweden; Uppsala University, Sweden.
    Quantum Molecular Dynamical Calculations of PEDOT 12-Oligomer and its Selenium and Tellurium Derivatives2017Inngår i: Journal of Electronic Materials, ISSN 0361-5235, E-ISSN 1543-186X, Vol. 46, nr 5, s. 3071-3075Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We present simulation results, computed with the Car-Parrinello molecular dynamics method, at zero and ambient temperature (300 K) for poly(3,4-ethylenedioxythiophene) [PEDOT] and its selenium and tellurium derivatives PEDOS and PEDOTe, represented as 12-oligomer chains. In particular, we focus on structural parameters such as the dihedral rotation angle distribution, as well as how the charge distribution is affected by temperature. We find that for PEDOT, the dihedral angle distribution shows two distinct local maxima whereas for PEDOS and PEDOTe, the distributions only have one clear maximum. The twisting stiffness at ambient temperature appears to be larger the lighter the heteroatom (S, Se, Te) is, in contrast to the case at 0 K. As regards point charge distributions, they suggest that aromaticity increases with temperature, and also that aromaticity becomes more pronounced the lighter the heteroatom is, both at 0 K and ambient temperature. Our results agree well with previous results, where available. The bond lengths are consistent with substantial aromatic character both at 0 K and at ambient temperature. Our calculations also reproduce the expected trend of diminishing gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital with increasing atomic number of the heteroatom.

  • 38.
    Ail, Ujwala
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ullah Khan, Zia
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Granberg, Hjalmar
    Innventia AB, Sweden.
    Berthold, Fredrik
    Innventia AB, Sweden.
    Parasuraman, Rajasekar
    Mat Research Centre, India.
    Urnarji, Arun M.
    Mat Research Centre, India.
    Slettengren, Kerstin
    Innventia AB, Sweden.
    Pettersson, Henrik
    Innventia AB, Sweden.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Room temperature synthesis of transition metal silicide-conducting polymer micro-composites for thermoelectric applications2017Inngår i: Synthetic metals, ISSN 0379-6779, E-ISSN 1879-3290, Vol. 225, s. 55-63Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Organic polymer thermoelectrics (TE) as well as transition metal (TM) silicides are two thermoelectric class of materials of interest because they are composed of atomic elements of high abundatice; which is a prerequisite for mass implementation of thermoelectric (TE) solutions for solar and waste heat recovery. But both materials have drawbacks when it comes to finding low-cost manufacturing. The metal silicide needs high temperature (amp;gt;1000 degrees C) for creating TE legs in a device from solid powder, but it is easy to achieve long TE legs in this case. On the contrary, organic TEs are synthesized at low temperature from solution. However, it is difficult to form long legs or thick films because of their low solubility. In this work, we propose a novel method for the room temperature synthesis of TE composite containing the microparticles of chromium disilicide; CrSi2 (inorganic filler) in an organic matrix of nanofibrillated cellulose-poly(3,4-ethyelenedioxythiophene)-polystyrene sulfonate (NFC-PEDOT:PSS). With this method, it is easy to create long TE legs in a room temperature process. The originality of the approach is the use of conducting polymer aerogel microparticles mixed with CrSi2 microparticles to obtain a composite solid at room temperature under pressure. We foresee that the method can be scaled up to fabricate and pattern TE modules. The composite has an electrical conductivity (sigma) of 5.4 +/- 0.5 S/cm and the Seebeck coefficient (a) of 88 +/- 9 mu V/K, power factor (alpha(2)sigma) of 4 +/- 1 mu Wm(-1) K-2 at room temperature. At a temperature difference of 32 degrees C, the output power/unit area drawn across the load, with the resistance same as the internal resistance of the device is 0.6 +/- 0.1 mu W/cm(2). (C) 2017 Elsevier B.V. All rights reserved.

  • 39.
    Crispin, Xavier
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Kalinin, Sergei V.
    Oak Ridge National Lab, TN 37831 USA.
    Semiconducting Polymers: Probing the solid-liquid interface2017Inngår i: Nature Materials, ISSN 1476-1122, E-ISSN 1476-4660, Vol. 16, nr 7, s. 704-705Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Exploring the minute mechanical deformations induced by electrical bias at the interface with electrolytes allows the identification of local crystallinity and distinguishing adsorption and intercalation of ions in electroactive polymers.

  • 40.
    Han, Shaobo
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Jiao, Fei
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ullah Khan, Zia
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Edberg, Jesper
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Thermoelectric Polymer Aerogels for Pressure-Temperature Sensing Applications2017Inngår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 27, nr 44, artikkel-id 1703549Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The evolution of the society is characterized by an increasing flow of information from things to the internet. Sensors have become the cornerstone of the internet-of-everything as they track various parameters in the society and send them to the cloud for analysis, forecast, or learning. With the many parameters to sense, sensors are becoming complex and difficult to manufacture. To reduce the complexity of manufacturing, one can instead create advanced functional materials that react to multiple stimuli. To this end, conducting polymer aerogels are promising materials as they combine elasticity and sensitivity to pressure and temperature. However, the challenge is to read independently pressure and temperature output signals without cross-talk. Here, a strategy to fully decouple temperature and pressure reading in a dual-parameter sensor based on thermoelectric polymer aerogels is demonstrated. It is found that aerogels made of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) can display properties of semiconductors lying at the transition between insulator and semimetal upon exposure to high boiling point polar solvents, such as dimethylsulfoxide (DMSO). Importantly, because of the temperature-independent charge transport observed for DMSO-treated PEDOT-based aerogel, a decoupled pressure and temperature sensing can be achieved without cross-talk in the dual-parameter sensor devices.

  • 41.
    Tordera, Daniel
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Zhao, Dan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Volkov, Anton
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Thermoplasmonic Semitransparent Nanohole Electrodes2017Inngår i: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 17, nr 5, s. 3145-3151Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Nonradiative decay of plasmons in metallic nanostructures offers unique means for light-to-heat conversion at the nanoscale. Typical thermoplasmonic systems utilize discrete particles, while metal nanohole arrays were instead considered suitable as heat sinks to reduce heating effects. By contrast, we show for the first time that under uniform broadband illumination (e.g., the sun) ultrathin plasmonic nanohole arrays can be highly competitive plasmonic heaters and provide significantly higher temperatures than analogous nanodisk arrays. Our plasmonic nanohole arrays also heat significantly more than nonstructured metal films, while simultaneously providing superior light transmission. Besides being efficient light-driven heat sources, these thin perforated gold films can simultaneously be used as electrodes. We used this feature to develop "plasmonic thermistors" for electrical monitoring of plasmon-induced temperature changes. The nanohole arrays provided temperature changes up to 7.5 K by simulated sunlight, which is very high compared to previously reported plasmonic systems under similar conditions (solar illumination and ambient conditions). Both temperatures and heating profiles quantitatively agree with combined optical and thermal simulations. Finally, we demonstrate the use of a thermoplasmonic nanohole electrode to power the first hybrid plasmonic ionic thermoelectric device, resulting in strong solar-induced heat gradients and corresponding thermoelectric voltages.

  • 42.
    Volkov, Anton
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Wijeratne, Kosala
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Mitraka, Evangelia
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ail, Ujwala
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Zhao, Dan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Wenzel Andreasen, Jens
    Technical University of Denmark, Denmark.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Stellenbosch University, South Africa.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Understanding the Capacitance of PEDOT:PSS2017Inngår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 27, nr 28, artikkel-id 1700329Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) is the most studied and explored mixed ion-electron conducting polymer system. PEDOT: PSS is commonly included as an electroactive conductor in various organic devices, e.g., supercapacitors, displays, transistors, and energy-converters. In spite of its long-term use as a material for storage and transport of charges, the fundamentals of its bulk capacitance remain poorly understood. Generally, charge storage in supercapacitors is due to formation of electrical double layers or redox reactions, and it is widely accepted that PEDOT: PSS belongs to the latter category. Herein, experimental evidence and theoretical modeling results are reported that significantly depart from this commonly accepted picture. By applying a two-phase, 2D modeling approach it is demonstrated that the major contribution to the capacitance of the two-phase PEDOT: PSS originates from electrical double layers formed along the interfaces between nanoscaled PEDOT-rich and PSS-rich interconnected grains that comprises two phases of the bulk of PEDOT: PSS. This new insight paves a way for designing materials and devices, based on mixed ion-electron conductors, with improved performance.

  • 43.
    Malti, Abdellah
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Edberg, Jesper
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Granberg, Hjalmar
    Innventia AB, Stockholm.
    Ullah Khan, Zia
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Andreasen, Jens W
    Technical University of Denmark, Roskilde.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Zhao, Dan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Hao
    University of Kentucky, Lexington.
    Yao, Yulong
    University of Kentucky, Lexington.
    Brill, Joseph W
    University of Kentucky, Lexington.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Wågberg, Lars
    KTH Royal Institute of Technology, Stockholm.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    An Organic Mixed Ion–Electron Conductor for Power Electronics2016Inngår i: Advanced Science, ISSN 2198-3844, artikkel-id 1500305Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A mixed ionic–electronic conductor based on nanofibrillated cellulose composited with poly(3,4-ethylene-dioxythio­phene):­poly(styrene-sulfonate) along with high boiling point solvents is demonstrated in bulky electrochemical devices. The high electronic and ionic conductivities of the resulting nanopaper are exploited in devices which exhibit record values for the charge storage capacitance (1F) in supercapacitors and transconductance (1S) in electrochemical transistors.

  • 44.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Carbon nanotubes get high2016Inngår i: NATURE ENERGY, ISSN 2058-7546, Vol. 1, artikkel-id 16037Artikkel i tidsskrift (Annet vitenskapelig)
    Abstract [en]

    Waste heat can be converted to electricity by thermoelectric generators, but their development is hindered by the lack of cheap materials with good thermoelectric properties. Now, carbon-nanotube-based materials are shown to have improved properties when purified to contain only semiconducting species and then doped.

  • 45.
    Bao, Qinye
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Andersson, Mattias
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Braun, Slawomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Sun, Zhengyi
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Energy Level Bending in Ultrathin Polymer Layers Obtained through Langmuir-Shafer Deposition2016Inngår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 26, nr 7, s. 1077-1084Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The semiconductor-electrode interface impacts the function and the performance of (opto) electronic devices. For printed organic electronics the electrode surface is not atomically clean leading to weakly interacting interfaces. As a result, solution-processed organic ultrathin films on electrodes typically form islands due to dewetting. It has therefore been utterly difficult to achieve homogenous ultrathin conjugated polymer films. This has made the investigation of the correct energetics of the conjugated polymer-electrode interface impossible. Also, this has hampered the development of devices including ultrathin conjugated polymer layers. Here, LangmuirShafer-manufactured homogenous mono-and multilayers of semiconducting polymers on metal electrodes are reported and the energy level bending using photoelectron spectroscopy is tracked. The amorphous films display an abrupt energy level bending that does not extend beyond the first monolayer. These findings provide new insights of the energetics of the polymer-electrode interface and opens up for new high-performing devices based on ultrathin semiconducting polymers.

  • 46.
    Abdollahi Sani, Negar
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Wang, Xin
    Acreo Swedish ICT AB, Sweden.
    Granberg, Hjalmar
    INNVENTIA AB, Sweden.
    Andersson Ersman, Peter
    Acreo Swedish ICT AB, Sweden.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Dyreklev, Peter
    Acreo Swedish ICT AB, Sweden.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Gustafsson, Göran
    Acreo Swedish ICT AB, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Flexible Lamination-Fabricated Ultra-High Frequency Diodes Based on Self-Supporting Semiconducting Composite Film of Silicon Micro-Particles and Nano-Fibrillated Cellulose2016Inngår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 6, nr 28921Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Low cost and flexible devices such as wearable electronics, e-labels and distributed sensors will make the future "internet of things" viable. To power and communicate with such systems, high frequency rectifiers are crucial components. We present a simple method to manufacture flexible diodes, operating at GHz frequencies, based on self-adhesive composite films of silicon micro-particles (Si-mu Ps) and glycerol dispersed in nanofibrillated cellulose (NFC). NFC, Si-mu Ps and glycerol are mixed in a water suspension, forming a self-supporting nanocellulose-silicon composite film after drying. This film is cut and laminated between a flexible pre-patterned Al bottom electrode and a conductive Ni-coated carbon tape top contact. A Schottky junction is established between the Al electrode and the Si-mu Ps. The resulting flexible diodes show current levels on the order of mA for an area of 2 mm(2), a current rectification ratio up to 4 x 10(3) between 1 and 2 V bias and a cut-off frequency of 1.8 GHz. Energy harvesting experiments have been demonstrated using resistors as the load at 900 MHz and 1.8 GHz. The diode stack can be delaminated away from the Al electrode and then later on be transferred and reconfigured to another substrate. This provides us with reconfigurable GHz-operating diode circuits.

  • 47.
    Malti, Abdellah
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Brooke, Robert
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Zhao, Dan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Andersson Ersman, Peter
    Acreo Swedish ICT, Sweden.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Freestanding electrochromic paper2016Inngår i: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 4, nr 41, s. 9680-9686Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Electrochromic displays based on conducting polymers exhibit higher contrasts and are cheaper, faster, more durable, and easier to synthesize as well as to process than their non-polymeric counterparts. However, current devices are typically based on thin electrochromic layers on top of a reflecting surface, which limits the thickness of the polymer layer to a few hundred nanometers. Here, we embed a light-scattering material within the electrochromic material to achieve a freestanding electrochromic paper-like electrode (50 to 500 mm). The device is based on a cellulose composite combining PEDOT:PSS as the electrochromic material and TiO2 nanoparticles as the reflecting material. Owing to the excellent refractive properties of TiO2, this nanocomposite is white in the neutral state and, when reduced, turns blue resulting in a color contrast around 30. The composite has a granular morphology and, as shown by AFM, an intermingling of TiO2 and PEDOT: PSS at the surface. Variation of the amount of TiO2 within the composite material is shown to result in a trade-off in optical and electrical properties. A proof-of-concept freestanding electrochromic device was fabricated by casting all layers successively to maximize the interlayer conformation. This freestanding device was found to be stable for over 100 cycles when ramped between 3 and -3 V.

  • 48.
    James, David Ian
    et al.
    Chalmers, Sweden.
    Wang, Suhao
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ma, Wei
    Xi An Jiao Tong University, Peoples R China.
    Hedstrom, Svante
    Lund University, Sweden.
    Meng, Xiangyi
    Xi An Jiao Tong University, Peoples R China.
    Persson, Petter
    Lund University, Sweden.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Andersson, Mats R.
    Chalmers, Sweden; University of S Australia, Australia.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Wang, Ergang
    Chalmers, Sweden.
    High-Performance Hole Transport and Quasi-Balanced Ambipolar OFETs Based on D-A-A Thieno-benzo-isoindigo Polymers2016Inngår i: ADVANCED ELECTRONIC MATERIALS, ISSN 2199-160X, Vol. 2, nr 4, s. 1500313-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Two new conjugated polymers are synthesized based on a novel donor-acceptor-acceptor (D-A-A) design strategy with the intention of attaining lower lowest unoccupied molecular obital levels compared to the normally used D-A strategy. By coupling two thieno-benzo-isoindigo units together via the phenyl position to give a new symmetric benzene-coupled di-thieno-benzo-isoindigo (BdiTBI) monomer as an A-A acceptor and thiophene (T) or bithiophene (2T) as a donor, two new polymers PT-BdiTBI and P2T-BdiTBI are synthesized via Stille coupling. The two polymers are tested in top gate and top contact field effect transistors, which exhibit balanced ambipolar charge transport properties with poly(methyl methacrylate) as dielectric and a high hole mobility up to 1.1 cm(2) V-1 s(-1) with poly(trifluoroethylene) as dielectric. The polymer films are investigated using atomic force microscopy, which shows fibrous features due to their high crystallinity as indicated by grazing incidence wide-angle X-ray scattering. The theoretical calculations agree well with the experimental data on the energy levels. It is demonstrated that the D-A-A strategy is very effective for designing low band gap polymers for organic electronic applications.

  • 49.
    Munoz, William Armando
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Singh, Sandeep Kumar
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Franco Gonzalez, Felipe
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Linares, Mathieu
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Bioinformatik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Insulator to semimetallic transition in conducting polymers2016Inngår i: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 94, nr 20, artikkel-id 205202Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We report a multiscale modeling of electronic structure of a conducting polymer poly(3,4-ethylenedioxythiopehene) (PEDOT) based on a realistic model of its morphology. We show that when the charge carrier concentration increases, the character of the density of states (DOS) gradually evolves from the insulating to the semimetallic, exhibiting a collapse of the gap between the bipolaron and valence bands with the drastic increase of the DOS between the bands. The origin of the observed behavior is attributed to the effect of randomly located counterions giving rise to the states in the gap. These results are discussed in light of recent experiments. The method developed in this work is general and can be applied to study the electronic structure of other conducting polymers.

  • 50.
    Zhao, Dan
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Wang, Hui
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Ullah Khan, Zia
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Chen, J. C.
    Xiamen University, Peoples R China.
    Gabrielsson, Roger
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ionic thermoelectric supercapacitors2016Inngår i: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 9, nr 4, s. 1450-1457Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Temperature gradients are generated by the sun and a vast array of technologies and can induce molecular concentration gradients in solutions via thermodiffusion (Soret effect). For ions, this leads to a thermovoltage that is determined by the thermal gradient Delta T across the electrolyte, together with the ionic Seebeck coefficient alpha(i). So far, redox-free electrolytes have been poorly explored in thermoelectric applications due to a lack of strategies to harvest the energy from the Soret effect. Here, we report the conversion of heat into stored charge via a remarkably strong ionic Soret effect in a polymeric electrolyte (Seebeck coefficients as high as alpha(i) = 10 mV K-1). The ionic thermoelectric supercapacitor (ITESC) is charged under a temperature gradient. After the temperature gradient is removed, the stored electrical energy can be delivered to an external circuit. This new means to harvest energy is particularly suitable for intermittent heat sources like the sun. We show that the stored electrical energy of the ITESC is proportional to (Delta T alpha(i))(2). The resulting ITESC can convert and store several thousand times more energy compared with a traditional thermoelectric generator connected in series with a supercapacitor.

1234 1 - 50 of 166
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf