liu.seSearch for publications in DiVA
Endre søk
Begrens søket
1 - 22 of 22
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Chen, Yu-Hsiang
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Roa, J. J.
    Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya, Campus Diagonal Besòs-EEBE, 08019 Barcelona, Spain / Centre for Research in Multiscale Engineering of Barcelona, Universitat Politècnica de Catalunya, Campus Diagonal Besòs-EEBE, Barcelona, Spain.
    Chen, Yu-Hsiang
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Johansson-Jõesaar, Mats P.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Andersson, J. M.
    R&D Material and Technology Development, SECO Tools AB, SE-737 82 Fagersta, Sweden.
    Anglada, M. J.
    Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya, Campus Diagonal Besòs-EEBE, Barcelona, Spain / Centre for Research in Multiscale Engineering of Barcelona, Universitat Politècnica de Catalunya, Campus Diagonal Besòs-EEBE, Barcelona, Spain.
    Odén, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Rogström, Lina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Enhanced thermal stability and fracture toughness of TiAlN coatings by Cr, Nb and V-alloying2018Inngår i: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 342, s. 85-93Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The effect of metal alloying on mechanical properties including hardness and fracture toughness were investigated in three alloys, Ti 0.33Al0.50(Me) 0.17N (Me = Cr, Nb and V), and compared to Ti0.50Al0.50N, in the as-deposited state and after annealing. All studied alloys display similar as-deposited hardness while the hardness evolution during annealing is found to be connected to phase transformations, related to the alloy’s thermal stability. The most pronounced hardening was observed in Ti0.50Al0.50N, while all the coatings with additional metal elements sustain their hardness better and they are harder than Ti0.50Al0.50N after annealing at 1100 °C. Fracture toughness properties were extracted from scratch tests. In all tested conditions, as-deposited and annealed at 900 and 1100 °C, Ti0.33Al0.50Nb0.17N show the least surface and sub-surface damage when scratched despite the differences in decomposition behavior and h-AlN formation. Theoretically estimated ductility of phases existing in the coatings correlates well with their crack resistance. In summary, Ti0.33Al0.50Nb0.17N is the toughest alloy in both as-deposited and post-annealed states.

    Fulltekst tilgjengelig fra 2020-02-17 16:38
  • 2.
    Johnson, Lars
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Rogström, Lina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Johansson, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Odén, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Hultman, Lars
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Microstructure evolution and age hardening in (Ti,Si)(C,N) thin films deposited by cathodic arc evaporation2010Inngår i: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 519, nr 4, s. 1397-1403Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Ti1 − xSixCyN1 − y films have been deposited by reactive cathodic arc evaporation onto cemented    carbide substrates. The films were characterized by X-ray diffraction, elastic recoil detection analysis, transmission electron microscopy, energy-dispersive X-ray spectroscopy, electron-energy loss spectroscopy and nanoindentation. Reactive arc evaporation in a mixed CH4 and N2 gas gave    films with 0 ≤ x ≤ 0.13 and 0≤y≤0.27. All films had the NaCl-structure with a dense columnar microstructure, containing a featherlike pattern of nanocrystalline grains for high Si and C contents. The film hardness was 32–40GPa. Films with x > 0 and y > 0 exhibited age-hardening up to 35–44 GPa when isothermally annealed up to 900 °C. The temperature threshold for over-ageing was decreased to 700 °C with increasing C and Si content, due to migration of Co, W and Cr from the substrate to the film, and loss of Si. The diffusion pathway was tied to grain boundaries provided by the featherlike substructure.

  • 3.
    Knutsson, Axel
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Ullbrand, Jennifer
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Rogström, Lina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Almer, J.
    Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439 USA.
    Jansson, B.
    Seco Tools AB, 737 82 Fagersta, Sweden.
    Odén, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Microstructure evolution during annealing of TiAlN-coatings: A combined in-situ SAXS and phase field study2011Manuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    This paper describes in detail the microstructure evolution of Ti0.33Al0.67N and Ti0.50Al0.50N coatings during isothermal annealing studied by in-situ small angle x-ray scattering (SAXS) in combination with phase field simulations. We show that the decomposition occurs in two stages consistent with spinodal decomposition. During the initial stage, the phase segregation proceeds with a constant size of AlN- and TiN-rich domains with a radius of ~0.7 nm for 5 and 20 min at 900 and 850 C respectively in the Ti0.50Al0.50N alloy. The length of the initial stage depends on the temperature as well as the composition, and is shorter for the higher Al content coating. Following the initial stage, the AlN- and TiN-rich domains coarsen. The decomposition process is discussed in terms of Gibbs free energy, diffusion, and gradient energies. Scanning transmission electron microscopy and energy dispersive x-ray spectroscopy of the post annealed coatings confirm a decomposed microstructure with coherent domains rich in AlN and TiN of the same size as determined by SAXS.

  • 4.
    Knutsson, Axel
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Ullbrand, Jennifer
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Rogström, Lina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Norrby, Niklas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Hultman, Lars
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Almer, Jonathan
    Argonne National Laboratory, Illinois, USA.
    Johansson, Mats P.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Jansson, Bo
    Seco Tools AB, Fagersta, Sweden.
    Magnus, Odén
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Early stage spinodal decomposition and microstructure evolution in TiAlN: A combined in-situ SAXS and phase field studyManuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    This paper describes in detail the microstructure and phase evolution in Ti0.33Al0.67N and Ti0.50Al0.50N coatings during isothermal annealing, studied by in-situ small angle x-ray scattering (SAXS), in combination with phase field simulations. We show that the isostructural spinodal decomposition occurs in two stages. During the initial stage, the phase segregation proceeds with a constant size of AlN- and TiN-rich domains with an experimentally measured radius of ~0.7 nm for 5 and 20 min at 900 and 850 °C respectively in the Ti0.50Al0.50N alloy. The length of  the initial stage depends on temperature as well as metal composition, and is shorter for the higher Al-content  coating. After the initial stage, the coherent cubic AlN- and TiN-rich domains coarsen. The coarsening process is kinetically limited by diffusion, which allowed us to estimate the diffusivity and activation energies of the metals to 1.4·10-7 m2s-1 and 3.14 eV at-1 respectively.

  • 5.
    Knutsson, Axel
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Ullbrand, Jennifer
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Rogström, Lina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Norrby, Niklas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Johnson, Lars
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Hultman, Lars
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Almer, J.
    Advanced Photon Source, Argonne National Laboratory, Argonne, USA.
    Johansson, M.P.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan. Seco Tools AB, Fagersta, Sweden.
    Jansson, B.
    Seco Tools AB, Fagersta, Sweden.
    Odén, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Microstructure evolution during the isostructural decomposition of TiAlN: a combined in-situ small angle x-ray scattering and phase field study2013Inngår i: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 113, nr 21Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This paper describes details of the spinodal decomposition and coarsening in metastable cubic Ti0.33Al0.67N and Ti0.50Al0.50N coatings during isothermal annealing, studied by in-situ small angle x-ray scattering, in combination with phase field simulations. We show that the isostructural decomposition occurs in two stages. During the initial stage, spinodal decomposition, of the Ti0.50Al0.50N alloy, the phase separation proceeds with a constant compositional wavelength of ∼2.8 nm of the AlN- and TiN-rich domains. The time for spinodal decomposition depends on annealing temperature as well as alloy composition. After the spinodal decomposition, the coherent cubic AlN- and TiN-rich domains coarsen. The coarsening rate is kinetically limited by diffusion, which allowed us to estimate the diffusivity and activation energy of the metals to 1.4 × 10−6 m2 s−1 and 3.14 eV at−1, respectively.

  • 6.
    Kumar Yalamanchili, Phani
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Schramm, Isabella C.
    University of Saarland, Germany.
    Jimenez-Pique, E.
    University of Politecn Cataluna, Spain; CRnE UPC, Spain.
    Rogström, Lina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Muecklich, F.
    University of Saarland, Germany.
    Odén, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Ghafoor, Naureen
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Tuning hardness and fracture resistance of ZrN/Zr0.63Al0.37N nanoscale multilayers by stress-induced transformation toughening2015Inngår i: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 89, s. 22-31Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Structure and mechanical properties of nanoscale multilayers of ZrN/Zr0.63Al0.37N grown by reactive magnetron sputtering on MgO (0 0 1) substrates at a temperature of 700 degrees C are investigated as a function of the Zr0.63Al0.37N layer thickness. The Zr0.63Al0.37N undergoes in situ chemical segregation into ZrN-rich and AlN-rich domains. The AlN-rich domains undergo transition from cubic to wurtzite crystal structure as a function of Zr0.63Al0.37N layer thickness. Such structural transformation allows systematic variation of hardness as well as fracture resistance of the films. A maximum fracture resistance is achieved for 2 nm thick Zr0.63Al0.37N layers where the AlN-rich domains are epitaxially stabilized in the metastable cubic phase. The metastable cubic-AlN phase undergoes stress-induced transformation to wurtzite-AlN when subjected to indentation, which results in the enhanced fracture resistance. A maximum hardness of 34 GPa is obtained for 10 nm thick Zr0.63Al0.37N layers where the wurtzite-AlN and cubic-ZrN rich domains form semi-coherent interfaces.

  • 7.
    Lind, Hans
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska högskolan.
    Pilemalm, Robert
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Rogström, Lina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Tasnadi, Ferenc
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska högskolan.
    Ghafoor, Naureen
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Forsén, Rikard
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Johnson, Lars
    Sandvik Coromant, Stockholm, Sweden.
    Jöesaar, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan. SECO Tools AB, Fagersta, Sweden.
    Odén, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Abrikosov, Igor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska högskolan.
    High temperature phase decomposition in TixZryAlzN2014Inngår i: AIP Advances, ISSN 2158-3226, E-ISSN 2158-3226, Vol. 4, nr 12, s. 127147-1-127147-9Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Through a combination of theoretical and experimental observations we study the high temperature decomposition behavior of c-(TixZryAlzN) alloys. We show that for most concentrations the high formation energy of (ZrAl)N causes a strong tendency for spinodal decomposition between ZrN and AlN while other decompositions tendencies are suppressed. In addition we observe that entropic  effects due to configurational disorder favor a formation of a stable Zr-rich (TiZr)N phase with increasing temperature. Our calculations also predict that at high temperatures a Zr rich (TiZrAl)N disordered phase should become more resistant against the spinodal decomposition despite its high and positive formation energy due to the specific topology of the free energy surface at the relevant concentrations. Our experimental observations confirm this prediction by showing strong tendency towards decomposition in a Zr-poor sample while a Zr-rich alloy shows a greatly reduced decomposition rate, which is mostly attributable to binodal decomposition processes. This result highlights the importance of considering the second derivative of the free energy, in addition to its absolute value in predicting decomposition trends of thermodynamically unstable alloys.

  • 8.
    Norrby, Niklas
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Rogström, Lina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Johansson Jöesaar, Mats P.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan. Seco Tools AB, Fagersta, Sweden.
    Schell, N.
    Helmholtz-Zentrum Geesthacht (HZG), Geesthacht, Germany.
    Odén, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    In-situ x-ray scattering study of the cubic to hexagonal transformation of AlN in Ti1-xAlxN2014Inngår i: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 73, s. 205-214Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In the present work, we have studied the decomposition of arc evaporated Ti0.55Al0.45N and Ti0.36Al0.64N during heat treatment in vacuum by in-situ synchrotron wide angle x-ray scattering primarily to characterize the kinetics of the phase transformation of AlN from the cubic NaCl-structure to the hexagonal wurtzite-structure. In addition, in-situ small angle x-ray scattering measurements were conducted to explore details of the wavelength evolution of the spinodal decomposition, thus providing information about the critical size of the c-AlN rich domains prior to the onset of the h-AlN transformation. We report the fractional cubic to hexagonal transformation of AlN in Ti1-xAlxN as a function of time and extract activation energies between 320 and 350 kJ/mol dependent on alloy composition. The onset of the hexagonal transformation occurs at about 50 K lower temperature in Ti0.36Al0.64N compared to Ti0.55Al0.45N where the high Al content alloy also has a significantly higher transformation rate. A critical wavelength for the cubic domains of about 13 nm was observed for both alloys. Scanning transmission electron microscopy shows a c-TiN/h-AlN microstructure with a striking morphology resemblance to the c-TiN/c-AlN microstructure present prior to the hexagonal transformation.

  • 9.
    Oden, Magnus
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Rogström, Lina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Knutsson, Axel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Terner, M R
    Luleå University.
    Hedstrom, P
    Lulea University.
    Almer, J
    Argonne National Laboratory.
    Ilavsky, J
    Argonne National Laboratory.
    In situ small-angle x-ray scattering study of nanostructure evolution during decomposition of arc evaporated TiAlN coatings2009Inngår i: APPLIED PHYSICS LETTERS, ISSN 0003-6951, Vol. 94, nr 5, s. 053114-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Small-angle x-ray scattering was used to study in situ decomposition of an arc evaporated TiAlN coating into cubic-TiN and cubic-AlN particles at elevated temperature. At the early stages of decomposition particles with ellipsoidal shape form, which grow and change shape to spherical particles at higher temperatures. The spherical particles grow at a rate of 0.18 A/degrees C while coalescing.

  • 10.
    Rogström, Lina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    High temperature behavior of arc evaporated ZrAlN and TiAlN thin films2012Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Hard coatings can extend the life time of a tool substantially and enable higher cutting speeds which increase the productivity in the cutting application. The aim with this thesis is to extend the understanding on how the microstructure and mechanical properties are affected by high temperatures similar to what a cutting tool can reach during operation.

    Thin films of ZrAlN and TiAlN have been deposited using cathodic arc-evaporation. The microstructure of as-deposited and annealed films has been studied using electron microscopy and x-ray scattering. The thermal stability has been characterized by calorimetry and thermogravity and the mechanical properties have been investigated by  nanoindentation.

    The microstructure of Zr1−xAlxN thin films was studied as a function of composition, deposition conditions, and annealing temperature. The structure was found to depend on the Al content where a low (x < 0.38) Al-content results in cubic-structured ZrAlN while for x > 0.70 the structure is hexagonal. For intermediate Al contents (0.38 < x < 0.70), a  nanocomposite structure with a mixture of cubic, hexagonal and amorphous phases is obtained.

    The cubic ZrAlN phase transforms by nucleation and growth of hexagonal AlN when annealed above 900 C. Annealing of hexagonal ZrAlN thin films (x > 0.70) above 900 C causes formation of AlN and ZrN rich domains within the hexagonal lattice. Annealing of nanocomposite ZrAlN thin films results in formation of cubic ZrN and hexagonal AlN. The transformation is initiated by nucleation and growth of cubic ZrN at temperatures of 1100 C while the AlN-rich domains are still amorphous or nanocrystalline. Growth of hexagonal AlN is suppressed by the high nitrogen content of the films and takes place at annealing temperatures of 1400 C.

    In the more well known TiAlN system, the initial stage of decomposition is spinodal with formation of cubic structured domains enriched in TiN and AlN. By a combination of in-situ xray scattering techniques during annealing and phase field simulations, both the microstructure that evolves during decomposition and the decomposition rate are found to depend on the composition. The results further show that early formation of hexagonal AlN domains during decomposition can cause formation of strains in the cubic TiAlN phase.

    Delarbeid
    1. Age hardening in arc-evaporated ZrAlN thin films
    Åpne denne publikasjonen i ny fane eller vindu >>Age hardening in arc-evaporated ZrAlN thin films
    Vise andre…
    2010 (engelsk)Inngår i: Scripta Materialia, ISSN 1359-6462, E-ISSN 1872-8456, Vol. 62, nr 10, s. 739-741Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    Zr0.44Al0.56N1.20 films were deposited by reactive arc evaporation on WC-Co substrates. As-deposited films have a defect-rich NaCl-cubic and wurtzite phase mixture. During annealing at 1100 degrees C the films undergo simultaneous recovery of the ZrN-rich c-ZrAlN nanoscale domains and formation of semicoherent w-ZrAlN nanobricks, while the excess nitrogen is released. This process results in an age hardening effect as high as 36%, as determined by nanoindentation. At 1200 degrees C, the w-AlN recrystallizes and the hardening effect is lost.

    sted, utgiver, år, opplag, sider
    Amsterdam: Elsevier Science B.V., 2010
    Emneord
    PVD, Nanoindentation, TEM, Hardness, Thin films
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-54847 (URN)10.1016/j.scriptamat.2010.01.049 (DOI)000276295800004 ()
    Tilgjengelig fra: 2010-04-16 Laget: 2010-04-16 Sist oppdatert: 2017-12-12bibliografisk kontrollert
    2. Thermal stability and mechanical properties of arc evaporated ZrN/ZrAlN multilayers
    Åpne denne publikasjonen i ny fane eller vindu >>Thermal stability and mechanical properties of arc evaporated ZrN/ZrAlN multilayers
    Vise andre…
    2010 (engelsk)Inngår i: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 519, nr 2, s. 694-699Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    ZrN1.20/Zr0.44Al0.56N1.20 multilayer films as well as ZrN1.17 and Zr0.44Al0.56N1.20 films were deposited by reactive arc evaporation on WC–Co substrates. Samples were post-deposition annealed for 2 h at 800–1200 °C. As-deposited and heat treated films were characterized by scanning transmission electron microscopy, X-ray diffraction and nanoindentation. The thermal stability was studied using a combination of differential scanning calorimetry, thermogravimetry, and mass spectrometry. The as-deposited Zr0.44Al0.56N1.20 film exhibits a nanocomposite structure of cubic and wurtzite ZrAlN. During annealing, the formation of ZrN- and AlN-rich domains results in age hardening of both the Zr0.44Al0.56N1.20 and the ZrN/ZrAlN multilayers. The age hardening is enhanced in the ZrN/ZrAlN multilayer due to straining of the ZrAlN sublayers in which a maximum hardness of 31 GPa is obtained after annealing at 1100 °C.

    sted, utgiver, år, opplag, sider
    Elsevier, 2010
    Emneord
    Thin films; Zr-Al-N; Multilayer; Arc evaporation; TEM; Hardness
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-62984 (URN)10.1016/j.tsf.2010.08.119 (DOI)000284499500025 ()
    Tilgjengelig fra: 2010-12-08 Laget: 2010-12-08 Sist oppdatert: 2017-12-11
    3. Phase transformations in nanocomposite ZrAlN thin films during annealing
    Åpne denne publikasjonen i ny fane eller vindu >>Phase transformations in nanocomposite ZrAlN thin films during annealing
    Vise andre…
    2012 (engelsk)Inngår i: Journal of Materials Research, ISSN 0884-2914, E-ISSN 2044-5326, Vol. 27, nr 13, s. 1716-1724Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    Nanocomposite Zr0.52Al0.48N1.11 thin films consisting of crystalline grains surrounded by an amorphous matrix were deposited using cathodic arc evaporation. The structure evolution after annealing of the films was studied using high-energy x-ray scattering and transmission electron microscopy. The mechanical properties were characterized by nanoindentation on as-deposited and annealed films. After annealing in temperatures of 1050-1400 C nucleation and grain growth of cubic ZrN takes place in the film. This increases the hardness, which reaches a maximum while parts of the film remain amorphous. Grain growth of the hexagonal AlN phase occurs above 1400 C.

    sted, utgiver, år, opplag, sider
    Cambridge University Press, 2012
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-75171 (URN)10.1557/jmr.2012.122 (DOI)000307187900007 ()
    Merknad

    funding agencies|Swedish Research Council (VR)||VINNEX center of Excellence on Functional Nanoscale Materials (FunMat)||U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences|DE-AC02-06CH11357|Linnaeus Grants||

    Tilgjengelig fra: 2012-02-20 Laget: 2012-02-20 Sist oppdatert: 2017-12-07bibliografisk kontrollert
    4. Influence of chemical composition and deposition conditions on microstructure evolution during annealing of arc evaporated ZrAlN thin films
    Åpne denne publikasjonen i ny fane eller vindu >>Influence of chemical composition and deposition conditions on microstructure evolution during annealing of arc evaporated ZrAlN thin films
    Vise andre…
    2012 (engelsk)Inngår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 30, nr 3, s. 031504-Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    The influence of substrate bias and chemical composition on the microstructure and hardness of arc evaporated Zr1−xAlxN films with 0.12 < x < 0.74 is investigated. A cubic ZrAlN phase is formed at low aluminum contents (x < 0.38) whereas for a high Al-content, above x=0.70, a single-phase hexagonal structure is obtained. For intermediate Al-contents, a two-phase structure is formed. The cubic structured films exhibit higher hardness than the hexagonal structured ones. A low bias results in N-rich films with a partly defect-rich microstructure while a higher substrate bias decreases the grain size and increases the residual stress in the cubic ZrAlN films. Recrystallization and out-diffusion of nitrogen from the lattice in the cubic ZrAlN films takes place during annealing at 800 C, which results in an increased hardness. The cubic ZrAlN phase is stable to annealing temperatures of 1000 C while annealing at higher temperature results in nucleation and growth of hexagonal AlN. In the high Al-content ZrAlN films, formation of ZrN- and AlN-rich domains within the hexagonal lattice during annealing at 1000 C improves the mechanical properties.

    sted, utgiver, år, opplag, sider
    American Vacuum Society, 2012
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-75172 (URN)10.1116/1.3698592 (DOI)000303602800015 ()
    Merknad

    funding agencies|VINN Excellence Center on Functional Nanoscale Materials (FunMat)||

    Tilgjengelig fra: 2012-02-20 Laget: 2012-02-20 Sist oppdatert: 2018-01-03bibliografisk kontrollert
    5. Auto-organizing ZrAlN/ZrAlTiN/TiN multilayers
    Åpne denne publikasjonen i ny fane eller vindu >>Auto-organizing ZrAlN/ZrAlTiN/TiN multilayers
    2012 (engelsk)Inngår i: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 520, nr 21, s. 6451-6454Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    The structural evolution during annealing of arc evaporated ZrAlN/ZrN andZrAlN/TiN multilayers is studied. On annealing, ZrN- and AlN-rich domains form within the ZrAlN sublayers. In the ZrAlN/TiN film, interdiffusion at the ZrAlN/TiN interfaces cause formation of a new cubic Zr(Al,Ti)N phase when annealed at temperatures above 900 C. The formation of this metastable phase results in a substantial increase in hardness of the film, which is retained to annealing temperatures of 1100 C. In the ZrAlN/ZrN film no secondary phases are formed and for annealing at temperatures above 800 C grain growth of the ZrN grains results in decreased hardness.

    sted, utgiver, år, opplag, sider
    Elsevier, 2012
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-75173 (URN)10.1016/j.tsf.2012.06.052 (DOI)000307286100001 ()
    Merknad

    funding agencies|VINN Excellence Center on Functional Nanoscale Materials (FunMat)||

    Tilgjengelig fra: 2012-02-20 Laget: 2012-02-20 Sist oppdatert: 2017-12-07bibliografisk kontrollert
    6. Strain evolution during spinodal decomposition of TiAlN thin films
    Åpne denne publikasjonen i ny fane eller vindu >>Strain evolution during spinodal decomposition of TiAlN thin films
    Vise andre…
    2012 (engelsk)Inngår i: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 520, nr 17, s. 5542-5549Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    We use a combination of in-situ x-ray scattering experiments during annealing and phase-field simulations to study the strain and microstructure evolution during decomposition of TiAlN thin films. The evolved microstructure is observed to depend on composition, where the larger elastic anisotropy of higher Al content films causes formation of elongated AlN and TiN domains. The simulations show strain formation in the evolving cubic-AlN and TiN domains, which is a combined effect of increasing lattice mismatch and elastic incompatibility between the domains. The experimental results show an increased compressive strain in the TiAlN phase during decomposition due to the onset of transformation to hexagonal-AlN.

    sted, utgiver, år, opplag, sider
    Elsevier, 2012
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-75174 (URN)10.1016/j.tsf.2012.04.059 (DOI)000305770200010 ()
    Tilgjengelig fra: 2012-02-20 Laget: 2012-02-20 Sist oppdatert: 2017-12-07bibliografisk kontrollert
    7. Microstructure evolution during annealing of TiAlN-coatings: A combined in-situ SAXS and phase field study
    Åpne denne publikasjonen i ny fane eller vindu >>Microstructure evolution during annealing of TiAlN-coatings: A combined in-situ SAXS and phase field study
    Vise andre…
    2011 (engelsk)Manuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    This paper describes in detail the microstructure evolution of Ti0.33Al0.67N and Ti0.50Al0.50N coatings during isothermal annealing studied by in-situ small angle x-ray scattering (SAXS) in combination with phase field simulations. We show that the decomposition occurs in two stages consistent with spinodal decomposition. During the initial stage, the phase segregation proceeds with a constant size of AlN- and TiN-rich domains with a radius of ~0.7 nm for 5 and 20 min at 900 and 850 C respectively in the Ti0.50Al0.50N alloy. The length of the initial stage depends on the temperature as well as the composition, and is shorter for the higher Al content coating. Following the initial stage, the AlN- and TiN-rich domains coarsen. The decomposition process is discussed in terms of Gibbs free energy, diffusion, and gradient energies. Scanning transmission electron microscopy and energy dispersive x-ray spectroscopy of the post annealed coatings confirm a decomposed microstructure with coherent domains rich in AlN and TiN of the same size as determined by SAXS.

    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-75175 (URN)
    Tilgjengelig fra: 2012-02-20 Laget: 2012-02-20 Sist oppdatert: 2013-10-02bibliografisk kontrollert
  • 11.
    Rogström, Lina
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Ahlgren, Mats
    Sandvik Tooling AB, 126 80 Stockholm, Sweden.
    Almer, J.
    Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439 USA.
    Hultman, Lars
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Odén, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Phase transformations in nanocomposite ZrAlN thin films during annealing2012Inngår i: Journal of Materials Research, ISSN 0884-2914, E-ISSN 2044-5326, Vol. 27, nr 13, s. 1716-1724Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Nanocomposite Zr0.52Al0.48N1.11 thin films consisting of crystalline grains surrounded by an amorphous matrix were deposited using cathodic arc evaporation. The structure evolution after annealing of the films was studied using high-energy x-ray scattering and transmission electron microscopy. The mechanical properties were characterized by nanoindentation on as-deposited and annealed films. After annealing in temperatures of 1050-1400 C nucleation and grain growth of cubic ZrN takes place in the film. This increases the hardness, which reaches a maximum while parts of the film remain amorphous. Grain growth of the hexagonal AlN phase occurs above 1400 C.

  • 12.
    Rogström, Lina
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Ghafoor, Naureen
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Ahlgren, Mats
    Sandvik Tooling AB, 126 80 Stockholm, Sweden.
    Odén, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Auto-organizing ZrAlN/ZrAlTiN/TiN multilayers2012Inngår i: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 520, nr 21, s. 6451-6454Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The structural evolution during annealing of arc evaporated ZrAlN/ZrN andZrAlN/TiN multilayers is studied. On annealing, ZrN- and AlN-rich domains form within the ZrAlN sublayers. In the ZrAlN/TiN film, interdiffusion at the ZrAlN/TiN interfaces cause formation of a new cubic Zr(Al,Ti)N phase when annealed at temperatures above 900 C. The formation of this metastable phase results in a substantial increase in hardness of the film, which is retained to annealing temperatures of 1100 C. In the ZrAlN/ZrN film no secondary phases are formed and for annealing at temperatures above 800 C grain growth of the ZrN grains results in decreased hardness.

  • 13.
    Rogström, Lina
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Ghafoor, Naureen
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Schroeder, Jeremy
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Schell, N.
    Helmholtz Zentrum Geesthacht, Germany.
    Birch, Jens
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Ahlgren, M.
    Sandvik Coromant, Sweden.
    Odén, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Thermal stability of wurtzite Zr1-xAlxN coatings studied by in situ high-energy x-ray diffraction during annealing2015Inngår i: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 118, nr 3, artikkel-id 035309Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We study the thermal stability of wurtzite (w) structure ZrAlN coatings by a combination of in situ high-energy x-ray scattering techniques during annealing and electron microscopy. Wurtzite structure Zr1-xAlxN coatings with Al-contents from x = 0.46 to x = 0.71 were grown by cathodic arc evaporation. The stability of the w-ZrAlN phase depends on chemical composition where the higher Al-content coatings are more stable. The wurtzite ZrAlN phase was found to phase separate through spinodal decomposition, resulting in nanoscale compositional modulations, i.e., alternating Al-rich ZrAlN layers and Zr-rich ZrAlN layers, forming within the hexagonal lattice. The period of the compositional modulations varies between 1.7 and 2.5 nm and depends on the chemical composition of the coating where smaller periods form in the more unstable, high Zr-content coatings. In addition, Zr leaves the w-ZrAlN lattice to form cubic ZrN precipitates in the column boundaries. (C) 2015 AIP Publishing LLC.

  • 14.
    Rogström, Lina
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Johansson, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan. Seco Tools AB, 737 82 Fagersta, Sweden.
    Ghafoor, Naureen
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Hultman, Lars
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Odén, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Influence of chemical composition and deposition conditions on microstructure evolution during annealing of arc evaporated ZrAlN thin films2012Inngår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 30, nr 3, s. 031504-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The influence of substrate bias and chemical composition on the microstructure and hardness of arc evaporated Zr1−xAlxN films with 0.12 < x < 0.74 is investigated. A cubic ZrAlN phase is formed at low aluminum contents (x < 0.38) whereas for a high Al-content, above x=0.70, a single-phase hexagonal structure is obtained. For intermediate Al-contents, a two-phase structure is formed. The cubic structured films exhibit higher hardness than the hexagonal structured ones. A low bias results in N-rich films with a partly defect-rich microstructure while a higher substrate bias decreases the grain size and increases the residual stress in the cubic ZrAlN films. Recrystallization and out-diffusion of nitrogen from the lattice in the cubic ZrAlN films takes place during annealing at 800 C, which results in an increased hardness. The cubic ZrAlN phase is stable to annealing temperatures of 1000 C while annealing at higher temperature results in nucleation and growth of hexagonal AlN. In the high Al-content ZrAlN films, formation of ZrN- and AlN-rich domains within the hexagonal lattice during annealing at 1000 C improves the mechanical properties.

  • 15.
    Rogström, Lina
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Johansson-Jöesaar, Mats P.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten. SECO Tools AB, Sweden.
    Landälv, Ludvig
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten. Sandvik Coromant, Sweden.
    Ahlgren, M.
    Sandvik Coromant, Sweden.
    Odén, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Wear behavior of ZrAlN coated cutting tools during turning2015Inngår i: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 282, s. 180-187Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this study we explore the cutting performance of ZrAlN coatings. WC:Co cutting inserts coated by cathodic arc evaporated Zr1-xAlxN coatings with x between 0 and 0.83 were testeciin a longitudinal turning operation. The progress of wear was studied by optical microscopy and the used inserts were studied by electron microscopy. The cutting performance was correlated to the coating composition and the best performance was found for the coating with highest Al-content consisting of a wurtzite ZrAlN phase which is assigned to its high thermal stability. Material from the work piece was observed to adhere to the inserts during turning and the amount of adhered material and its chemical composition is independent on the Al-content of the coating. (C) 2015 Elsevier B.V. All rights reserved.

  • 16.
    Rogström, Lina
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Johnson, Lars
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Johansson, Mats
    SECO Tools AB, Fagersta.
    Ahlgren, Mats
    Sandvik Tooling AB, Stockholm.
    Hultman, Lars
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Odén, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Thermal stability and mechanical properties of arc evaporated ZrN/ZrAlN multilayers2010Inngår i: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 519, nr 2, s. 694-699Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    ZrN1.20/Zr0.44Al0.56N1.20 multilayer films as well as ZrN1.17 and Zr0.44Al0.56N1.20 films were deposited by reactive arc evaporation on WC–Co substrates. Samples were post-deposition annealed for 2 h at 800–1200 °C. As-deposited and heat treated films were characterized by scanning transmission electron microscopy, X-ray diffraction and nanoindentation. The thermal stability was studied using a combination of differential scanning calorimetry, thermogravimetry, and mass spectrometry. The as-deposited Zr0.44Al0.56N1.20 film exhibits a nanocomposite structure of cubic and wurtzite ZrAlN. During annealing, the formation of ZrN- and AlN-rich domains results in age hardening of both the Zr0.44Al0.56N1.20 and the ZrN/ZrAlN multilayers. The age hardening is enhanced in the ZrN/ZrAlN multilayer due to straining of the ZrAlN sublayers in which a maximum hardness of 31 GPa is obtained after annealing at 1100 °C.

  • 17.
    Rogström, Lina
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Johnson, Lars
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Johansson, Mats P.
    SECO Tools AB, Fagersta, Sweden.
    Ahlgren, Mats
    Sandvik Tooling AB.
    Hultman, Lars
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Odén, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Age hardening in arc-evaporated ZrAlN thin films2010Inngår i: Scripta Materialia, ISSN 1359-6462, E-ISSN 1872-8456, Vol. 62, nr 10, s. 739-741Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Zr0.44Al0.56N1.20 films were deposited by reactive arc evaporation on WC-Co substrates. As-deposited films have a defect-rich NaCl-cubic and wurtzite phase mixture. During annealing at 1100 degrees C the films undergo simultaneous recovery of the ZrN-rich c-ZrAlN nanoscale domains and formation of semicoherent w-ZrAlN nanobricks, while the excess nitrogen is released. This process results in an age hardening effect as high as 36%, as determined by nanoindentation. At 1200 degrees C, the w-AlN recrystallizes and the hardening effect is lost.

  • 18.
    Rogström, Lina
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Ullbrand, Jennifer
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Almer, J.
    Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 USA.
    Hultman, Lars
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Jansson, B.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan. Seco Tools AB, 737 82 Fagersta, Sweden.
    Odén, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Strain evolution during spinodal decomposition of TiAlN thin films2012Inngår i: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 520, nr 17, s. 5542-5549Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We use a combination of in-situ x-ray scattering experiments during annealing and phase-field simulations to study the strain and microstructure evolution during decomposition of TiAlN thin films. The evolved microstructure is observed to depend on composition, where the larger elastic anisotropy of higher Al content films causes formation of elongated AlN and TiN domains. The simulations show strain formation in the evolving cubic-AlN and TiN domains, which is a combined effect of increasing lattice mismatch and elastic incompatibility between the domains. The experimental results show an increased compressive strain in the TiAlN phase during decomposition due to the onset of transformation to hexagonal-AlN.

  • 19.
    Schroeder, Jeremy
    et al.
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik.
    Thomson, W.
    PVD Prod Inc, MA 01887 USA.
    Howard, B.
    PVD Prod Inc, MA 01887 USA.
    Schell, N.
    Helmholtz Zentrum Geesthacht, Germany.
    Näslund, Lars-Åke
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Rogström, Lina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Johansson-Jöesaar, Mats P.
    Seco Tools AB, Sweden.
    Ghafoor, Naureen
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Odén, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Nothnagel, E.
    PVD Prod Inc, MA 01887 USA.
    Shepard, A.
    PVD Prod Inc, MA 01887 USA.
    Greer, J.
    PVD Prod Inc, MA 01887 USA.
    Birch, Jens
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Industry-relevant magnetron sputtering and cathodic arc ultra-high vacuum deposition system for in situ x-ray diffraction studies of thin film growth using high energy synchrotron radiation2015Inngår i: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 86, nr 9, s. 095113-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We present an industry-relevant, large-scale, ultra-high vacuum (UHV) magnetron sputtering and cathodic arc deposition system purposefully designed for time-resolved in situ thin film deposition/annealing studies using high-energy (greater than50 keV), high photon flux (greater than10(12) ph/s) synchrotron radiation. The high photon flux, combined with a fast-acquisition-time (less than1 s) two-dimensional (2D) detector, permits time-resolved in situ structural analysis of thin film formation processes. The high-energy synchrotron-radiation based x-rays result in small scattering angles (less than11 degrees), allowing large areas of reciprocal space to be imaged with a 2D detector. The system has been designed for use on the 1-tonne, ultra-high load, high-resolution hexapod at the P07 High Energy Materials Science beamline at PETRA III at the Deutsches Elektronen-Synchrotron in Hamburg, Germany. The deposition system includes standard features of a typical UHV deposition system plus a range of special features suited for synchrotron radiation studies and industry-relevant processes. We openly encourage the materials research community to contact us for collaborative opportunities using this unique and versatile scientific instrument. (C) 2015 AIP Publishing LLC.

  • 20.
    Shulumba, Nina
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten. University of Saarland, Germany.
    Hellman, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, USA.
    Rogström, Lina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Raza, Zamaan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Tasnádi, Ferenc
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Abrikosov, Igor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten. Materials Modeling and Development Laboratory, NUST “MISIS”, Moscow, Russia / LACOMAS Laboratory, Tomsk State University, Tomsk, Russia.
    Odén, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Temperature-dependent elastic properties of Ti1−xAlxN alloys2015Inngår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 107, nr 23Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Ti1−xAlxN is a technologically important alloy that undergoes a process of high temperature age-hardening that is strongly influenced by its elastic properties. We have performed first principles calculations of the elastic constants and anisotropy using the newly developed symmetry imposed force constant temperature dependent effective potential method, that include lattice vibrations and therefore the effects of temperature, including thermal expansion and intrinsic anharmonicity. These are compared with in situ high temperature x-ray diffraction measurements of the lattice parameter. We show that anharmonic effects are crucial to the recovery of finite temperature elasticity. The effects of thermal expansion and intrinsic anharmonicity on the elastic constants are of the same order, and cannot be considered separately. Furthermore, the effect of thermal expansion on elastic constants is such that the volume change induced by zero point motion has a significant effect. For TiAlN, the elastic constants soften non-uniformly with temperature: C11 decreases substantially when the temperature increases for all compositions, resulting in an increased anisotropy. These findings suggest that an increased Al content and annealing at higher temperatures will result in a harder alloy.

  • 21.
    Tasnádi, Ferenc
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska högskolan.
    Abrikosov, Igor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska högskolan.
    Rogström, Lina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Almer, Jonathan
    Argonne National Laboratory, Illinois, USA.
    Johansson, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Odén, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Significant elastic anisotropy in Ti1−xAlxN alloys2010Inngår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 97, nr 23, s. 231902-231904Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Strong compositional-dependent elastic properties have been observed theoretically and experimentally in Ti1−xAlxN alloys. The elastic constant, C11, changes by more than 50% depending on the Al-content. Increasing the Al-content weakens the average bond strength in the local octahedral arrangements resulting in a more compliant material. On the other hand, it enhances the directional (covalent) nature of the nearest neighbor bonds that results in greater elastic anisotropy and higher sound velocities. The strong dependence of the elastic properties on the Al-content offers new insight into the detailed understanding of the spinodal decomposition and age hardening in Ti1−xAlxN alloys.

  • 22.
    Yalamanchili, Kumar
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Schramm, I.C.
    Functional Materials, Materials Science and Engineering Department (MSE), Saarland University, Saarbrücken, Germany.
    Jiménez-Piqué, Emilio
    Departament de Ciència del Materials i Enginyeria Metal·lúrgica, Universitat Politècnica de Catalunya, Barcelona, Spain.
    Rogström, Lina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Mücklich, F.
    Functional Materials, Materials Science and Engineering Department (MSE), Saarland University, Saarbrücken, Germany.
    Ghafoor, Naureen
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Odén, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska högskolan.
    Growth and Mechanical Behavior of Nanoscale Structures in ZrN/Zr0.63Al0.37N MultilayersManuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    Structure and mechanical properties of monolithic and nanoscale multilayers of ZrN/Zr0.63Al0.37N are investigated as a function of Zr0.63Al0.37N layer thickness. ZrN/Zr0.63Al0.37N multilayers were deposited by reactive magnetron sputtering on MgO (001) substrates at a temperature of 700 °C. Monolithic Zr0.63Al0.37N film shows a chemically segregated nanostructure of cubic-ZrN and wurtzite-AlN rich domains with incoherent interfaces. Three dimensional atom probe measurements reveal comparable chemical segregation between monolithic and multilayer Zr0.63Al0.37N film. The multilayers show systematic changes in nanostructure as a function of Zr0.63Al0.37N layer thickness resulting in mechanical properties such as hardness and fracture resistance being tunable. A maximum hardness of 34 GPa is achieved with 10 nm Zr0.63Al0.37N layer thickness having semi-coherent interfaces between wurtzite-AlN and cubic-ZrN rich domains. Higher fracture resistance is achieved at 2nm Zr0.63Al0.37N where AlN rich domains are epitaxially stabilized in the metastable cubic phase.

1 - 22 of 22
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf