liu.seSearch for publications in DiVA
Endre søk
Begrens søket
1 - 10 of 10
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Höst, Gunnar E.
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska högskolan.
    Larsson, Caroline
    Linköpings universitet, Institutionen för samhälls- och välfärdsstudier, Lärande, Estetik, Naturvetenskap (LEN). Linköpings universitet, Utbildningsvetenskap.
    Olson, Arthur
    Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, USA.
    Tibell, Lena A. E.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska högskolan.
    Student Learning about Biomolecular Self-Assembly Using Two Different External Representations2013Inngår i: CBE - Life Sciences Education, ISSN 1931-7913, E-ISSN 1931-7913, Vol. 12, nr 3, s. 471-482Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Self-assembly is the fundamental but counterintuitive principle that explains how ordered biomolecular complexes form spontaneously in the cell. This study investigated the impact of using two external representations of virus self-assembly, an interactive tangible three-dimensional model and a static two-dimensional image, on student learning about the process of self-assembly in a group exercise. A conceptual analysis of self-assembly into a set of facets was performed to support study design and analysis. Written responses were collected in a pretest/posttest experimental design with 32 Swedish university students. A quantitative analysis of close-ended items indicated that the students improved their scores between pretest and posttest, with no significant difference between the conditions (tangible model/image). A qualitative analysis of an open-ended item indicated students were unfamiliar with self-assembly prior to the study. Students in the tangible model condition used the facets of self-assembly in their open-ended posttest responses more frequently than students in the image condition. In particular, it appears that the dynamic properties of the tangible model may support student understanding of self-assembly in terms of the random and reversible nature of molecular interactions. A tentative difference was observed in response complexity, with more multifaceted responses in the tangible model condition.

  • 2.
    Larsson, Caroline
    Linköpings universitet, Institutionen för samhälls- och välfärdsstudier, Lärande, Estetik, Naturvetenskap (LEN). Linköpings universitet, Utbildningsvetenskap.
    Experiencing Molecular Processes: The Role of Representations for Students' Conceptual Understanding2013Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Knowledge of molecular processes is crucial for fundamental understanding of the world and diverse technological applications. However, they cannot be clearly related to any directly experienced phenomena and may be very different from our intuitive expectations. Thus, representations are essential conceptual tools for making molecular processes understandable, but to be truly useful educational tools it is essential to ensure that students grasp the connections between what they represent and the represented phenomena. This challenge and associated personal and social aspects of learning were key themes of my doctoral research.

    This thesis evaluates whether (and if so how) representations can support students’ conceptual understanding of molecular processes and thus successfully substitute the missing experience of these processes. The subject matter used to explore these issues included two crucial molecular processes in biochemical systems: self-assembly and adenosine triphosphate synthesis. The discussion is based on results presented in four appended papers. Both qualitative and quantitative research strategies have been applied, using instruments such as pre- and post-tests, group discussions and interviews. The samples consisted of Swedish and South African university students, who in the group discussions interacted with peers and external representations, including an image, a tangible model and an animation.

    The findings indicate that students’ ability to discern relevant model features is critical for their ability to transfer prior conceptual knowledge from related situations. They also show that students’ use of metaphors and conceptual understanding depend on how an external representation conveys relevant aspects of the learning content (its design). Thus, students must manage two complex interpretation processes (interpreting the external representations and metaphors used), which may create challenges for their learning. Furthermore, the self-assembly process was shown to incorporate counter-intuitive aspects, and both group discussion and the tangible model proved to be important facilitators for changing students’ conceptual understanding of the process. Providing students with experiences of phenomena associated with molecular concepts that incorporate counter-intuitive aspects through representations is a key factor for their understanding of the concepts. In addition, providing students with a conflict-based task, problem or representation is not enough, they also have to be willing (emotionally motivated) to solve the conflict.

    The challenge for educators lies in choosing representations that convey aspects of the learning content they are intended to teach and assist students in their meaning-making of the representations by remaining informed of students’ background knowledge and interpretations. Results presented in this thesis show that it could be advantageous to interpret learning in a broader sense.

    Delarbeid
    1. Student Learning about Biomolecular Self-Assembly Using Two Different External Representations
    Åpne denne publikasjonen i ny fane eller vindu >>Student Learning about Biomolecular Self-Assembly Using Two Different External Representations
    2013 (engelsk)Inngår i: CBE - Life Sciences Education, ISSN 1931-7913, E-ISSN 1931-7913, Vol. 12, nr 3, s. 471-482Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    Self-assembly is the fundamental but counterintuitive principle that explains how ordered biomolecular complexes form spontaneously in the cell. This study investigated the impact of using two external representations of virus self-assembly, an interactive tangible three-dimensional model and a static two-dimensional image, on student learning about the process of self-assembly in a group exercise. A conceptual analysis of self-assembly into a set of facets was performed to support study design and analysis. Written responses were collected in a pretest/posttest experimental design with 32 Swedish university students. A quantitative analysis of close-ended items indicated that the students improved their scores between pretest and posttest, with no significant difference between the conditions (tangible model/image). A qualitative analysis of an open-ended item indicated students were unfamiliar with self-assembly prior to the study. Students in the tangible model condition used the facets of self-assembly in their open-ended posttest responses more frequently than students in the image condition. In particular, it appears that the dynamic properties of the tangible model may support student understanding of self-assembly in terms of the random and reversible nature of molecular interactions. A tentative difference was observed in response complexity, with more multifaceted responses in the tangible model condition.

    sted, utgiver, år, opplag, sider
    Bethesda, USA: American Society for Cell Biology, 2013
    Emneord
    Undergraduate, Learning, Self-assembly, External representation, Tangible model, Hands-on, Group exercise, Dynamic process, Interactivity
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-97273 (URN)10.1187/cbe.13-01-0011 (DOI)000325792800021 ()
    Prosjekter
    VisMolLS
    Forskningsfinansiär
    Swedish Research Council, VR 2008:5077
    Tilgjengelig fra: 2013-09-05 Laget: 2013-09-05 Sist oppdatert: 2017-12-06bibliografisk kontrollert
    2. Using a teaching-learning sequence (TLS), based on a physical model, to develop students' understanding of self-assembly
    Åpne denne publikasjonen i ny fane eller vindu >>Using a teaching-learning sequence (TLS), based on a physical model, to develop students' understanding of self-assembly
    2011 (engelsk)Inngår i: Authenticity in Biology Education: Benefits and Challenges / [ed] Yarden, A & Carvalho, G. S., Braga, Portugal: CIEC, Universidade do Minho , 2011, s. 67-77Konferansepaper, Publicerat paper (Annet vitenskapelig)
    Abstract [en]

    Self-assembly is a biological process in which free subunits combine to form molecular complexes. Despite being considered one of the ‘big ideas’ in molecular life sciences, only limited education research has been performed on this topic. The objectives of this study were to investigate students’ learning of self-assembly in an authentic learning environment: a teaching-learning sequence (TLS). Twenty third-year biochemistry students in South Africa participated in the study. The TLS included a tutorial exercise with a physical model of a poliovirus capsid. A mixed-methods approach was employed to collect qualitative and quantitative data from interviews and written pre- and post-tests. A significant improvement in test scores was found, and it was observed that the TLS could support students’ understanding of self-assembly. Some conceptual and visualization difficulties were also identified. Using the model in a TLS was associated with positive attitudes and engagement among the participants.

    sted, utgiver, år, opplag, sider
    Braga, Portugal: CIEC, Universidade do Minho, 2011
    Emneord
    external representation, interactive learning, post-secondary education, learning difficulties, molecular interactions
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-75234 (URN)978-972-8952-19-8 (ISBN)
    Konferanse
    VIIIth Conference of European Researchers in Didactics of Biology (ERIDOB), 13-17 July, 2010, Braga, Portugal
    Prosjekter
    VisMolLS
    Tilgjengelig fra: 2012-02-22 Laget: 2012-02-22 Sist oppdatert: 2016-05-04bibliografisk kontrollert
    3. Challenging students' intuitive expectations - an analysis of students reasoning around a tangible model of virus assembly
    Åpne denne publikasjonen i ny fane eller vindu >>Challenging students' intuitive expectations - an analysis of students reasoning around a tangible model of virus assembly
    (engelsk)Manuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    How can a well-ordered biological complex be formed by the random motion of its components, i.e. self-assemble? This is a concept that is counter to human intuitive expectations derived from prior knowledge and experience. In previous studies we have shown that a tangible model of virus selfassembly, used as a thinking-tool in a group-exercise, helps students to grasp the process of selfassembly, particularly the facet random molecular collision. The present study investigates how and why the model facilitates students’ acceptance of new concepts and learning. The data analysed consist of audio-recordings of six group exercises and five individual semi-structured interviews, in which 35 university students from Sweden and South Africa participated. Qualitative analysis indicates that the students’ prior knowledge, prior conceptual understanding and intuitive ideas, influenced their meaning-making of the molecular process of self-assembly. Moreover, the counterintuitive aspects of the process created a conceptual conflict within the learners, and both the tangible model and group exercises facilitated a conceptual change in their understanding of the process. Lastly, the data indicate that students’ emotional state is significant for their successful accommodation of the counter-intuitive aspects of self-assembly. The analysis is based on a combination of constructivist perspectives of learning, conceptual change theory, and learning with external representations.

    Emneord
    Conceptual conflict, counter-intuitive, tangible model, hands-on model, conceptual change, self-assembly
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-91367 (URN)
    Merknad

    Del av avhandling

    Tilgjengelig fra: 2013-04-23 Laget: 2013-04-23 Sist oppdatert: 2016-05-04bibliografisk kontrollert
    4. When metaphors come to life: at the interface of external representations, molecular processes and student learning
    Åpne denne publikasjonen i ny fane eller vindu >>When metaphors come to life: at the interface of external representations, molecular processes and student learning
    2012 (engelsk)Inngår i: International Journal of Environmental and Science Education, ISSN 1306-3065, Vol. 7, nr 4, s. 563-580Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    When studying the molecular aspect of the life sciences, learners must be introduced to somewhat inaccessible phenomena that occur at the sub-micro scale. Despite the difficulties, students need to be familiar with and understand the highly dynamic nature of molecular processes. Thus, external representations1 (ERs) can be considered unavoidable and essential tools for student learning. Besides meeting the challenge of interpreting external representations, learners also encounter a large array of abstract concepts2, which are challenging to understand (Orgill & Bodner, 2004). Both teachers and learners use metaphorical language as a way to relate these abstract phenomena to more familiar ones from everyday life. Scientific papers, as well as textbooks and popular science articles, are packed with metaphors, analogies and intentional expressions. Like ERs, the use of metaphors and analogies is inevitable and necessary when communicating knowledge concerning molecular phenomena. Therefore, a large body of published research related to metaphors concerns science teachers’ and textbook writers’ interpretation and use of metaphors (Harrison & Treagust, 2006). In this paper we present a theoretical framework for examining metaphorical language use in relation to abstract phenomena and external representations. The framework was verified by using it to analyse students’ meaning-making in relation to an animation representing the sub-microscopic and abstract process of ATP-synthesis in Oxidative Phosphorylation. We seek to discover the animator’s intentions while designing the animation and to identify the metaphors that students use while interacting with the animation. Two of these metaphors serve as examples of a metaphor analysis, in which the characteristics of metaphors are outlined. To our knowledge,  no strategies to identify and understand the characteristics, benefits, and potential pitfalls of particular metaphors have, to date, been presented in science education research. Our aspiration is to contribute valuable insights into metaphorical language use at the interface between external representations, molecular processes, and student learning.

    Emneord
    Affordance, Design of external representations, Higher education, Metaphors, Molecular phenomena
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-76140 (URN)
    Tilgjengelig fra: 2012-03-28 Laget: 2012-03-28 Sist oppdatert: 2017-12-07bibliografisk kontrollert
  • 3.
    Larsson, Caroline
    Linköpings universitet, Utbildningsvetenskap. Linköpings universitet, Institutionen för samhälls- och välfärdsstudier, Lärande, Estetik, Naturvetenskap (LEN).
    The influence of counter-intuitiveness on student learning of molecular processes2013Inngår i: 11th Annual Hawaii International Conference on Education, 2013Konferansepaper (Fagfellevurdert)
  • 4.
    Larsson, Caroline
    et al.
    Linköpings universitet, Institutionen för samhälls- och välfärdsstudier, Lärande, Estetik, Naturvetenskap (LEN). Linköpings universitet, Utbildningsvetenskap.
    Höst, Gunnar E.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska högskolan.
    Anderson, Trevor
    School of Biochemistry, Genetics and Microbiology, University of KwaZulu-Natal, Pietermaritzburg, South Africa.
    Tibell, Lena
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska högskolan.
    Using a teaching-learning sequence (TLS), based on a physical model, to develop students' understanding of self-assembly2011Inngår i: Authenticity in Biology Education: Benefits and Challenges / [ed] Yarden, A & Carvalho, G. S., Braga, Portugal: CIEC, Universidade do Minho , 2011, s. 67-77Konferansepaper (Annet vitenskapelig)
    Abstract [en]

    Self-assembly is a biological process in which free subunits combine to form molecular complexes. Despite being considered one of the ‘big ideas’ in molecular life sciences, only limited education research has been performed on this topic. The objectives of this study were to investigate students’ learning of self-assembly in an authentic learning environment: a teaching-learning sequence (TLS). Twenty third-year biochemistry students in South Africa participated in the study. The TLS included a tutorial exercise with a physical model of a poliovirus capsid. A mixed-methods approach was employed to collect qualitative and quantitative data from interviews and written pre- and post-tests. A significant improvement in test scores was found, and it was observed that the TLS could support students’ understanding of self-assembly. Some conceptual and visualization difficulties were also identified. Using the model in a TLS was associated with positive attitudes and engagement among the participants.

  • 5.
    Larsson, Caroline
    et al.
    Linköpings universitet, Utbildningsvetenskap. Linköpings universitet, Institutionen för samhälls- och välfärdsstudier, Lärande, Estetik, Naturvetenskap (LEN).
    Höst, Gunnar
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska högskolan.
    Olson, Arthur
    Tibell, Lena
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska högskolan.
    Using a Dynamic Physical Model to help Students Visualize the Process of Self-assembly2009Konferansepaper (Fagfellevurdert)
  • 6.
    Larsson, Caroline
    et al.
    Linköpings universitet, Institutionen för samhälls- och välfärdsstudier, Lärande, Estetik, Naturvetenskap (LEN). Linköpings universitet, Utbildningsvetenskap.
    Tibell, Lena
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska högskolan.
    Challenging students' intuitive expectations - an analysis of students reasoning around a tangible model of virus assemblyManuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    How can a well-ordered biological complex be formed by the random motion of its components, i.e. self-assemble? This is a concept that is counter to human intuitive expectations derived from prior knowledge and experience. In previous studies we have shown that a tangible model of virus selfassembly, used as a thinking-tool in a group-exercise, helps students to grasp the process of selfassembly, particularly the facet random molecular collision. The present study investigates how and why the model facilitates students’ acceptance of new concepts and learning. The data analysed consist of audio-recordings of six group exercises and five individual semi-structured interviews, in which 35 university students from Sweden and South Africa participated. Qualitative analysis indicates that the students’ prior knowledge, prior conceptual understanding and intuitive ideas, influenced their meaning-making of the molecular process of self-assembly. Moreover, the counterintuitive aspects of the process created a conceptual conflict within the learners, and both the tangible model and group exercises facilitated a conceptual change in their understanding of the process. Lastly, the data indicate that students’ emotional state is significant for their successful accommodation of the counter-intuitive aspects of self-assembly. The analysis is based on a combination of constructivist perspectives of learning, conceptual change theory, and learning with external representations.

  • 7.
    Larsson, Caroline
    et al.
    Linköpings universitet, Utbildningsvetenskap. Linköpings universitet, Institutionen för samhälls- och välfärdsstudier.
    Tibell, Lena
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska högskolan.
    Exploring how a physical model can support students’ understanding of random molecular processes2011Konferansepaper (Fagfellevurdert)
  • 8.
    Larsson, Caroline
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska högskolan.
    Tibell, Lena A E
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska högskolan.
    Challenging Students’ Intuitions: The Influence of a Tangible Model of Virus Assembly on Students’ Conceptual Reasoning About the Process of Self-Assembly2015Inngår i: Research in science education, ISSN 0157-244X, E-ISSN 1573-1898, Vol. 45, nr 5, s. 663-690Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A well-ordered biological complex can be formed by the random motion of its components, i.e. self-assemble. This is a concept that incorporates issues that may contradict students’ everyday experiences and intuitions. In previous studies, we have shown that a tangible model of virus self-assembly, used in a group exercise, helps students to grasp the process of self-assembly and in particular the facet “random molecular collision”. The present study investigates how and why the model and the group exercise facilitate students’ learning of this particular facet. The data analysed consist of audio recordings of six group exercises (n = 35 university students) and individual semi-structured interviews (n = 5 university students). The analysis is based on constructivist perspectives of learning, a combination of conceptual change theory and learning with external representations. Qualitative analysis indicates that perceived counterintuitive aspects of the process created a cognitive conflict within learners. The tangible model used in the group exercises facilitated a conceptual change in their understanding of the process. In particular, the tangible model appeared to provide cues and possible explanations and functioned as an “eye-opener” and a “thinking tool”. Lastly, the results show signs of emotions also being important elements for successful accommodation.

  • 9.
    Stadig Degerman, Mari
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Larsson, Caroline
    Linköpings universitet, Institutionen för samhälls- och välfärdsstudier, Lärande, Estetik, Naturvetenskap (LEN). Linköpings universitet, Utbildningsvetenskap.
    When metaphors come to live – at the interface of a visualization and students’ meaning-making of dynamic chemical processes2011Konferansepaper (Fagfellevurdert)
    Abstract [en]

    In molecular life science phenomena exist on a sub-micro scale and are not readily accessible for learners. Here tools, as external representations and metaphorical language, become essential for students’ learning. Metaphorical language is often used to relate abstract concepts to more familiar ideas from everyday life. For successful meaning-making students need to be familiar with the concepts being compared and know which characteristics of the metaphor are relevant and should be conveyed to the conceptual domain. There is a need for students to interpret and focus on certain given aspects and also on deviances between the two domains. Students’ prior knowledge of the real life domain as well as the scientific domain, then becomes the foundation for students’ learning. Furthermore, the metaphor itself mediates new meaning and new ways to interpret the natural world in interaction with learners, and this has an impact on students’ conceptualization of the concept the metaphor is describing. The objective of this study was, i) to explore which metaphors students tend to use while interacting with two external representations of dynamic molecular processes, and ii) to describe what connections between the scientific concept and the identified metaphors students made, both useful connections and potential pitfalls. The first representation is an animation visualizing the formation of Adenosine triphosphate (ATP) in a metabolic process in the cell. The second is a physical model of self-assembly of a virus capsid. The empirical material analysed consisted of ten audio-recorded group discussions with university students (n=59). The students had completed basic courses in chemistry and molecular biology. A pre-formulated discussion guideline was used and the students had access to the external representation during the whole session. A qualitative analysis was performed using an inductive analytical model. The preliminary analysis showed that students used several metaphors, for example water mill, paddle wheel, ball, and chief, to create meaning to the scientific concepts while interacting with the two representations. The following analysis will examine to what degree the metaphors possess characteristics that can mislead and tempt students to use parts of the iconographic representation that are not relevant for understanding the represented phenomenon. With these results we can clarify how far the metaphors, and thereby the representations, reach and thus make valuable implications for education.

  • 10.
    Stadig Degerman, Mari
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Larsson, Caroline
    Linköpings universitet, Institutionen för samhälls- och välfärdsstudier. Linköpings universitet, Filosofiska fakulteten.
    Anward, Jan
    Linköpings universitet, Institutionen för kultur och kommunikation. Linköpings universitet, Filosofiska fakulteten.
    When metaphors come to life: at the interface of external representations, molecular processes and student learning2012Inngår i: International Journal of Environmental and Science Education, ISSN 1306-3065, Vol. 7, nr 4, s. 563-580Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    When studying the molecular aspect of the life sciences, learners must be introduced to somewhat inaccessible phenomena that occur at the sub-micro scale. Despite the difficulties, students need to be familiar with and understand the highly dynamic nature of molecular processes. Thus, external representations1 (ERs) can be considered unavoidable and essential tools for student learning. Besides meeting the challenge of interpreting external representations, learners also encounter a large array of abstract concepts2, which are challenging to understand (Orgill & Bodner, 2004). Both teachers and learners use metaphorical language as a way to relate these abstract phenomena to more familiar ones from everyday life. Scientific papers, as well as textbooks and popular science articles, are packed with metaphors, analogies and intentional expressions. Like ERs, the use of metaphors and analogies is inevitable and necessary when communicating knowledge concerning molecular phenomena. Therefore, a large body of published research related to metaphors concerns science teachers’ and textbook writers’ interpretation and use of metaphors (Harrison & Treagust, 2006). In this paper we present a theoretical framework for examining metaphorical language use in relation to abstract phenomena and external representations. The framework was verified by using it to analyse students’ meaning-making in relation to an animation representing the sub-microscopic and abstract process of ATP-synthesis in Oxidative Phosphorylation. We seek to discover the animator’s intentions while designing the animation and to identify the metaphors that students use while interacting with the animation. Two of these metaphors serve as examples of a metaphor analysis, in which the characteristics of metaphors are outlined. To our knowledge,  no strategies to identify and understand the characteristics, benefits, and potential pitfalls of particular metaphors have, to date, been presented in science education research. Our aspiration is to contribute valuable insights into metaphorical language use at the interface between external representations, molecular processes, and student learning.

1 - 10 of 10
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf