liu.seSearch for publications in DiVA
Endre søk
Begrens søket
1 - 8 of 8
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Bestill onlineKjøp publikasjonen >>
    Li, Xiao
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Toward Energy-efficient Physical Vapor Deposition: Routes for Replacing Substrate Heating during Magnetron Sputtering by Employing Metal Ion Irradiation2023Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    In this Thesis, magnetron sputtering is perfected as an environmental-friendly deposition technique. I performed systematic studies of a novel approach - hybrid high-power impulse and dc magnetron co-sputtering (HiPIMS/DCMS) with metal-ion-synchronized substrate bias pulses. The technique relies on the use of high-mass metal ion irradiation from the HiPIMS source to densify material deposited by the primary metal targets that operate in the DCMS mode. Thermally-driven adatom mobility, conventionally used to obtain high-quality layers, is replaced by low-energy recoils that are effectively created upon heavy metal ion bombardment of the growing film surface. As a result, the need for external heating is effectively eliminated and the useful growth temperature can be as low as 130 °C.   

    Ti-Al-N is chosen as a model materials system for the studies in this thesis due to its relevance for industrial applications and well-known challenges for phase stability control. The role of the metal ion mass on densification, phase content, nanostructure, and mechanical properties of metastable cubic Ti0.50Al0.50N-based thin films is investigated. Three series of (Ti1-yAly)1-xMexN (Me = Cr, Mo, W) films are grown with x varied intentionally by adjusting the DCMS power. There is a strong dependence of film properties on the mass of the HiPIMS-generated metal ions. All layers deposited with Cr+ irradiation exhibit porous nanostructure, high oxygen content, and poor mechanical properties. In contrast, (Ti1-yAly)1-xWxN films are fully-dense even with the lowest W concentration, x = 0.09.  

    A strong coupling is found between W+ incident energy Ew+ and minimum W concentration x required to grow dense (Ti1-yAly)1-xWxN layers. With lower x, higher Ew+ is needed to obtain dense films. (Ti1-yAly)1-xWxN film growth is also studied as a function of the relative Al content on the metal lattice, y = Al / (Al + Ti), covering the entire range up to the achievable solubility limit of y ~ 0.67. High-Al content films that are desired in industrial applications (as the high temperature oxidation resistance increases with increasing y) are demonstrated, while precipitation of the softer hexagonal AlN phase is avoided. It is shown that the W+ irradiation from HiPIMS source can be used to grow high-Al content layers with high hardness and low residual stress, while avoiding wurtzite AlN precipitation.  

    The critical parameter that controls the growth is shown to be the average momentum transfer per deposited metal adatom. W+ ion irradiation is shown to have a determining role in the densification of TiAlWN films grown by hybrid W-HiPIMS/TiAl-DCMS co-sputtering. Films with the same composition were grown as a function of the number of W+ ions per deposited metal atom, η = W+/ (W + Al + Ti). The latter was varied in a wide range by altering the peak target current density on the W target, as confirmed by time-resolved ion mass spectrometry analyses performed at the substrate plane. I demonstrate that the degree of porosity and the nanoindentation hardness are strong functions of η.   

    Finally, high-temperature properties of TiAlWN films grown by hybrid W-HiPIMS/TiAl-DCMS co-sputtering with no external substrate heating is explored, as motivated by application requirements, where the temperature of cutting inserts during machining exceeds 900 °C. A new age hardening mechanism was discovered with Guinier-Preston (GP) zone formation in a ceramic material. Layers with low Al content maintain high hardness well above the annealing temperature characteristic of spinodal decomposition. The evidence from electron microscopy, ab initio calculations, and molecular dynamics simulations, shows that the GP effect originates from the formation of atomic-plane-thick W discs populating {111} planes of the cubic matrix. The results demonstrate for the model materials system of TiAlN that the process energy consumption can be reduced by as much as 64% with respect to conventional methods, with no compromise on coating quality. 

    Delarbeid
    1. Toward energy-efficient physical vapor deposition: Routes for replacing substrate heating during magnetron sputter deposition by employing metal ion irradiation
    Åpne denne publikasjonen i ny fane eller vindu >>Toward energy-efficient physical vapor deposition: Routes for replacing substrate heating during magnetron sputter deposition by employing metal ion irradiation
    Vise andre…
    2021 (engelsk)Inngår i: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 415, artikkel-id 127120Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    In view of the increasing demand for achieving sustainable development, the quest for lowering energy consumption during thin film growth by magnetron sputtering becomes of particular importance. In addition, there is a demand for low-temperature growth of dense, hard coatings for protecting temperature-sensitive substrates. Here, we explore a method, in which thermally-driven adatom mobility, necessary to obtain high-quality fully-dense films, is replaced with that supplied by effective low-energy recoil creation resulting from high-mass metal ion irradiation of the growing film surface. This approach allows the growth of dense and hard films with no external heating at substrate temperatures T-s not exceeding 130 degrees C in a hybrid high-power impulse and de magnetron co-sputtering (HiPIMS/DCMS) setup involving a high mass (m > 180 amu) HiPIMS target and metal- ion-synchronized bias pulses. We specifically investigate the effect of the metal ion mass on the extent of densification, phase content, nanostructure, and mechanical properties of metastable cubic Ti0.50Al0.50N based thin films, which present outstanding challenges for phase stability control. Ti0.50Al0.50N based thin films are irradiated by group VIB transition metal (TM) target ions generated by Me-HiPIMS discharge, in which Me = Cr (m(Cr)= 52.0 amu), Mo (m(Mo) = 96.0 amu), and W (m(W) = 183.8 amu). Three series of (Ti1-yAly)(1-x)MexN films are grown with x = Me/(Me+Al+Ti) varied intentionally by adjusting the DCMS powers, while y = Al/(Al+Ti) also varies as a result of Me+ ion irradiation. Results reveal a strong dependence of film properties on the mass of the HiPIMS-generated metal ions. All layers deposited with Cr+ irradiation exhibit porous nanostructure, high ox- ygen content, and poor mechanical properties. In contrast, (Ti1-yAly)(1-x)WxN films are fully-dense even with the lowest W concentration, x = 0.09, show no evidence of hexagonal AlN precipitation, and exhibit state-of the-art mechanical properties typical of Ti0.50Al0.50N grown at 500 degrees C. The process energy consumption is lowered by 64% with no negative impact on the coating quality. TRIM simulations provide an insight into the densification mechanisms.

    sted, utgiver, år, opplag, sider
    Elsevier Science SA, 2021
    Emneord
    Thin films; TiAlN; Magnetron sputtering; HiPIMS; Low-temperature growth
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-176146 (URN)10.1016/j.surfcoat.2021.127120 (DOI)000655570000006 ()
    Merknad

    Funding Agencies|Swedish Energy AgencySwedish Energy Agency [51201-1]; Knut and Alice Wallenberg Foundation Scholar Grant [KAW2016.0358]; Competence Center Functional Nanoscale Materials (FunMat-II) VINNOVA grantVinnova [201605156]; Swedish Research Council VR Grant [2018-03957]; VINNOVA grantVinnova [2019-04882]; Carl Tryggers Stiftelse for Vetenskaplig Forskning [CTS 17:166, CTS 15:219, CTS 14:431]; Swedish Research Council VR-RFISwedish Research Council [2017-00646_9]; Swedish Foundation for Strategic ResearchSwedish Foundation for Strategic Research [RIF14-0053]

    Tilgjengelig fra: 2021-06-08 Laget: 2021-06-08 Sist oppdatert: 2023-05-24
    2. Towards energy-efficient physical vapor deposition: Mapping out the effects of W+ energy and concentration on the densification of TiAlWN thin films grown with no external heating
    Åpne denne publikasjonen i ny fane eller vindu >>Towards energy-efficient physical vapor deposition: Mapping out the effects of W+ energy and concentration on the densification of TiAlWN thin films grown with no external heating
    Vise andre…
    2021 (engelsk)Inngår i: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 424, artikkel-id 127639Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    Hybrid high power impulse/direct current magnetron sputtering (HiPIMS/DCMS) film growth technique with metal-ion-synchronized substrate bias allows for significant energy savings as compared to conventional PVD methods. For carefully selected type of metal ion irradiation, taking into account ion mass, ionization potential, and reactivity towards working gas, fully dense and hard films can be obtained with no intentional substrate heating. The thermally-driven adatom mobility, which is an essential densification mechanism in conventional film growth that takes place at elevated temperatures, is replaced with that supplied by effective low-energy recoil creation. In this contribution we explore effects of the high-mass W+ irradiation, which has proven to be the most efficient in densifying Ti0.50Al0.50N layers, serving here as a model system, grown with no substrate heating. We study the effects of two essential parameters: W+ energy EW+ and W concentration x, on film porosity, phase content, nanostructure, and mechanical properties. EW+ varies from similar to 90 to similar to 630 eV (controlled by substrate bias voltage amplitude V-s) and x from 0.02 to 0.12 (controlled by the HiPIMS pulse length), while the HiPIMS peak target current is kept constant. Results reveal that a strong coupling exists between the W+ incident energy and the minimum W concentration required to grow dense layers.

    sted, utgiver, år, opplag, sider
    Elsevier Science SA, 2021
    Emneord
    Thin films; TiAlN; Magnetron sputtering; HiPIMS; Low temperature
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-179830 (URN)10.1016/j.surfcoat.2021.127639 (DOI)000697567600010 ()
    Merknad

    Funding Agencies|Swedish Research Council VRSwedish Research Council [2018-03957]; Swedish Energy AgencySwedish Energy Agency [51201-1]; Knut and Alice Wallenberg FoundationKnut & Alice Wallenberg Foundation [KAW2016.0358]; Competence Center Functional Nanoscale Materials (FunMat-II) VINNOVA grantVinnova [2016-05156]; Carl Tryggers Stiftelse for Vetenskaplig Forskning [CTS 20:150, CTS 15:219, CTS 14:431]; Swedish research council VR-RFISwedish Research Council [2017-00646_9]; Swedish Foundation for Strategic ResearchSwedish Foundation for Strategic Research [RIF14-0053]

    Tilgjengelig fra: 2021-10-05 Laget: 2021-10-05 Sist oppdatert: 2023-05-24
    3. Dense, single-phase, hard, and stress-free Ti0.32Al0.63W0.05N films grown by magnetron sputtering with dramatically reduced energy consumption
    Åpne denne publikasjonen i ny fane eller vindu >>Dense, single-phase, hard, and stress-free Ti0.32Al0.63W0.05N films grown by magnetron sputtering with dramatically reduced energy consumption
    Vise andre…
    2022 (engelsk)Inngår i: Scientific Reports, E-ISSN 2045-2322, Vol. 12, nr 1, artikkel-id 2166Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    The quest for lowering energy consumption during thin film growth, as by magnetron sputtering, becomes of particular importance in view of sustainable development goals. A recently proposed solution combining high power impulse and direct current magnetron sputtering (HiPIMS/DCMS) relies on the use of heavy metal-ion irradiation, instead of conventionally employed resistive heating, to provide sufficient adatom mobility, in order to obtain high-quality dense films. The major fraction of process energy is used at the sputtering sources rather than for heating the entire vacuum vessel. The present study aims to investigate the W+ densification effects as a function of increasing Al content in (Ti1-yAly)(1-x)WxN films covering the entire range up to the practical solubility limits (y similar to 0.67). Layers with high Al content are attractive to industrial applications as the high temperature oxidation resistance increases with increasing Al concentration. The challenge is, however, to avoid precipitation of the hexagonal wurtzite AIN phase, which is softer. We report here that (T1-yAly)(1-x)WxN layers with y= 0.66 and x= 0.05 grown by a combination ofW-HiPIMS and TiAI-DCMS with the substrate bias V-s synchronized to the W+-rich fluxes (to provide mobility in the absence of substrate heating) possess single-phase NaCl-structure, as confirmed by XRD and SAED patterns. The evidence provided by XTEM images and the residual oxygen content obtained from ERDA analyses reveals that the alloy films are dense without discernable porosity. The nanoindentation hardness is comparable to that of TiAlN films grown at 400-500 degrees C, while the residual stresses are very low. We established that the adatom mobility due to the heavy ion W+ irradiation (in place of resistive heating) enables the growth of high-quality coatings at substrate temperatures not exceeding 130 degrees C provided that the W+ momentum transfer per deposited metal atom is sufficiently high. The benefit of this novel film growth approach is not only the reduction of the process energy consumption by 83%, but also the possibility to coat temperature-sensitive substrates.

    sted, utgiver, år, opplag, sider
    Nature Portfolio, 2022
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-183428 (URN)10.1038/s41598-022-05975-5 (DOI)000757457000032 ()35140271 (PubMedID)
    Merknad

    Funding Agencies|Swedish Research Council VR Grant [2018-03957]; Swedish Energy AgencySwedish Energy AgencyMaterials & Energy Research Center (MERC) [51201-1]; Knut and Alice Wallenberg FoundationKnut & Alice Wallenberg Foundation [KAW2016.0358]; Competence Center Functional Nanoscale Materials (FunMat-II) VINNOVA grantVinnova [2016-05156]; Carl Tryggers Stiftelse [CTS 20:150, CTS 15:219, CTS 14:431]; Swedish research council VR-RFISwedish Research Council [2017-00646_9]; Swedish Foundation for Strategic ResearchSwedish Foundation for Strategic Research [RIF14-0053]

    Tilgjengelig fra: 2022-03-11 Laget: 2022-03-11 Sist oppdatert: 2023-05-24
    4. Determining role of W+ ions in the densification of TiAlWN thin films grown by hybrid HiPIMS/DCMS technique with no external heating
    Åpne denne publikasjonen i ny fane eller vindu >>Determining role of W+ ions in the densification of TiAlWN thin films grown by hybrid HiPIMS/DCMS technique with no external heating
    2023 (engelsk)Inngår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 41, nr 1, artikkel-id 013407Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    Hybrid high-power impulse and dc magnetron co-sputtering (HiPIMS/DCMS) with substrate bias synchronized to the high mass metal-ion fluxes was previously proposed as a solution to reduce energy consumption during physical vapor deposition processing and enable coatings on temperature-sensitive substrates. In this approach, no substrate heating is used (substrate temperature is lower than 150 C-o) and the thermally activated adatom mobility, necessary to grow dense films, is substituted by overlapping collision cascades induced by heavy ion bombardment and consisting predominantly of low-energy recoils. Here, we present direct evidence for the crucial role of W+ ion irradiation in the densification of Ti0.31Al0.60W0.09N films grown by the hybrid W-HiPIMS/TiAl-DCMS co-sputtering. The peak target current density J(max) on the W target is varied from 0.06 to 0.78 A/cm(2) resulting in more than fivefold increase in the number of W+ ions per deposited metal atom, eta = W+/(W + Al + Ti) determined by time-resolved ion mass spectrometry analyses performed at the substrate plane under conditions identical to those during film growth. The DCMS is adjusted appropriately to maintain the W content in the films constant at Ti0.31Al0.60W0.09N. The degree of porosity, assessed qualitatively from cross-sectional SEM images and quantitatively from oxygen concentration profiles as well as nanoindentation hardness, is a strong function of eta ( J m a x ). Layers grown with low eta values are porous and soft, while those deposited under conditions of high eta are dense and hard. Nanoindentation hardness of Ti0.31Al0.60W0.09N films with the highest density is & SIM;33 GPa, which is very similar to values reported for layers deposited at much higher temperatures (420-500 C-o) by conventional metal-ion-based techniques. These results prove that the hybrid HiPIMS/DCMS co-sputtering with bias pulses synchronized to high mass metal ion irradiation can be successfully used to replace conventional solutions. The large energy losses associated with heating of the entire vacuum chamber are avoided, by focusing the energy input to where it is in fact needed, i.e., the workpiece to be coated.

    sted, utgiver, år, opplag, sider
    A V S AMER INST PHYSICS, 2023
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-191188 (URN)10.1116/6.0002320 (DOI)000906004900002 ()
    Merknad

    Funding Agencies|Swedish Research Council VR [2018-03957]; Swedish Energy Agency [51201-1]; Aforsk Foundation Grant [22-4]; Knut and Alice Wallenberg Foundation [KAW2016.0358, KAW2019.0290]; Carl Tryggers Stiftelse [CTS 20:150]; Competence Center Functional Nanoscale Materials (FunMat-II) VINNOVA Grant [2016-05156]; Swedish Research Council VR-RFI [2017-00646_9]; Swedish Foundation for Strategic Research [RIF14-0053]

    Tilgjengelig fra: 2023-01-24 Laget: 2023-01-24 Sist oppdatert: 2023-05-24
    5. Discovery of Guinier-Preston zone hardening in refractory nitride ceramics
    Åpne denne publikasjonen i ny fane eller vindu >>Discovery of Guinier-Preston zone hardening in refractory nitride ceramics
    Vise andre…
    2023 (engelsk)Inngår i: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 255, artikkel-id 119105Artikkel i tidsskrift (Fagfellevurdert) Published
    Abstract [en]

    Traditional age hardening mechanisms in refractory ceramics consist of precipitation of fine particles. These processes are vital for widespread wear-resistant coating applications. Here, we report novel Guinier-Preston zone hardening, previously only known to operate in soft light-metal alloys, taking place in refractory ceramics like multicomponent nitrides. The added superhardening, discovered in thin films of Ti-Al-W-N upon high temperature annealing, comes from the formation of atomic-plane-thick W disks populating {111} planes of the cubic matrix, as observed by atomically resolved high resolution scanning transmission electron microscopy and corroborated by ab initio calculations and molecular dynamics simulations. Guinier-Preston zone hardening concurrent with spinodal decomposition is projected to exist in a range of other ceramic solid solutions and thus provides a new approach for the development of advanced materials with outstanding mechanical properties and higher operational temperature range for the future demanding applications.

    sted, utgiver, år, opplag, sider
    Elsevier, 2023
    Emneord
    Guinier-Preston zone, TiAlN, Ceramics, Age hardening, Spinodal decomposition
    HSV kategori
    Identifikatorer
    urn:nbn:se:liu:diva-196410 (URN)10.1016/j.actamat.2023.119105 (DOI)001025995100001 ()
    Merknad

    Funding: Swedish Research Council VR [2018-03957, 2021-03652, 2021-04426]; Swedish Energy Agency [51201-1]; Knut and Alice Wallenberg Foundation [KAW2019.0290, CTS 20:150]; Carl Tryggers Stiftelse [21:1272, 2017-00646_9]; Swedish Research Council VR-RFI [VR-2018-0597]; Swedish Foundation for Strategic Research [2021-00171]; Swedish Research Council [RIF21-0026]; Swedish National Infrastructure in Advanced Electron Microscopy [22-4, 2022-03071]; Aforsk Foundation; Competence Center Functional Nanoscale Materials (FunMat-II) VINNOVA;  [KAW2016.0358];  [RIF14-0053]

    Tilgjengelig fra: 2023-08-01 Laget: 2023-08-01 Sist oppdatert: 2023-08-31
    Fulltekst (pdf)
    fulltext
    Download (png)
    presentationsbild
  • 2.
    Li, Xiao
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Bakhit, Babak
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Joesaar, M. P. Johansson
    SECO Tools AB, Sweden.
    Hultman, Lars
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Petrov, Ivan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten. Univ Illinois, USA; Natl Taiwan Univ Sci & Technol, Taiwan.
    Greczynski, Grzegorz
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Toward energy-efficient physical vapor deposition: Routes for replacing substrate heating during magnetron sputter deposition by employing metal ion irradiation2021Inngår i: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 415, artikkel-id 127120Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In view of the increasing demand for achieving sustainable development, the quest for lowering energy consumption during thin film growth by magnetron sputtering becomes of particular importance. In addition, there is a demand for low-temperature growth of dense, hard coatings for protecting temperature-sensitive substrates. Here, we explore a method, in which thermally-driven adatom mobility, necessary to obtain high-quality fully-dense films, is replaced with that supplied by effective low-energy recoil creation resulting from high-mass metal ion irradiation of the growing film surface. This approach allows the growth of dense and hard films with no external heating at substrate temperatures T-s not exceeding 130 degrees C in a hybrid high-power impulse and de magnetron co-sputtering (HiPIMS/DCMS) setup involving a high mass (m > 180 amu) HiPIMS target and metal- ion-synchronized bias pulses. We specifically investigate the effect of the metal ion mass on the extent of densification, phase content, nanostructure, and mechanical properties of metastable cubic Ti0.50Al0.50N based thin films, which present outstanding challenges for phase stability control. Ti0.50Al0.50N based thin films are irradiated by group VIB transition metal (TM) target ions generated by Me-HiPIMS discharge, in which Me = Cr (m(Cr)= 52.0 amu), Mo (m(Mo) = 96.0 amu), and W (m(W) = 183.8 amu). Three series of (Ti1-yAly)(1-x)MexN films are grown with x = Me/(Me+Al+Ti) varied intentionally by adjusting the DCMS powers, while y = Al/(Al+Ti) also varies as a result of Me+ ion irradiation. Results reveal a strong dependence of film properties on the mass of the HiPIMS-generated metal ions. All layers deposited with Cr+ irradiation exhibit porous nanostructure, high ox- ygen content, and poor mechanical properties. In contrast, (Ti1-yAly)(1-x)WxN films are fully-dense even with the lowest W concentration, x = 0.09, show no evidence of hexagonal AlN precipitation, and exhibit state-of the-art mechanical properties typical of Ti0.50Al0.50N grown at 500 degrees C. The process energy consumption is lowered by 64% with no negative impact on the coating quality. TRIM simulations provide an insight into the densification mechanisms.

    Fulltekst (pdf)
    fulltext
  • 3.
    Li, Xiao
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Bakhit, Babak
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Joesaar, M. P. Johansson
    SECO Tools AB, Sweden.
    Petrov, Ivan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten. Univ Illinois, IL 61801 USA; Natl Taiwan Univ Sci & Technol, Taiwan.
    Hultman, Lars
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Greczynski, Grzegorz
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Dense, single-phase, hard, and stress-free Ti0.32Al0.63W0.05N films grown by magnetron sputtering with dramatically reduced energy consumption2022Inngår i: Scientific Reports, E-ISSN 2045-2322, Vol. 12, nr 1, artikkel-id 2166Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The quest for lowering energy consumption during thin film growth, as by magnetron sputtering, becomes of particular importance in view of sustainable development goals. A recently proposed solution combining high power impulse and direct current magnetron sputtering (HiPIMS/DCMS) relies on the use of heavy metal-ion irradiation, instead of conventionally employed resistive heating, to provide sufficient adatom mobility, in order to obtain high-quality dense films. The major fraction of process energy is used at the sputtering sources rather than for heating the entire vacuum vessel. The present study aims to investigate the W+ densification effects as a function of increasing Al content in (Ti1-yAly)(1-x)WxN films covering the entire range up to the practical solubility limits (y similar to 0.67). Layers with high Al content are attractive to industrial applications as the high temperature oxidation resistance increases with increasing Al concentration. The challenge is, however, to avoid precipitation of the hexagonal wurtzite AIN phase, which is softer. We report here that (T1-yAly)(1-x)WxN layers with y= 0.66 and x= 0.05 grown by a combination ofW-HiPIMS and TiAI-DCMS with the substrate bias V-s synchronized to the W+-rich fluxes (to provide mobility in the absence of substrate heating) possess single-phase NaCl-structure, as confirmed by XRD and SAED patterns. The evidence provided by XTEM images and the residual oxygen content obtained from ERDA analyses reveals that the alloy films are dense without discernable porosity. The nanoindentation hardness is comparable to that of TiAlN films grown at 400-500 degrees C, while the residual stresses are very low. We established that the adatom mobility due to the heavy ion W+ irradiation (in place of resistive heating) enables the growth of high-quality coatings at substrate temperatures not exceeding 130 degrees C provided that the W+ momentum transfer per deposited metal atom is sufficiently high. The benefit of this novel film growth approach is not only the reduction of the process energy consumption by 83%, but also the possibility to coat temperature-sensitive substrates.

    Fulltekst (pdf)
    fulltext
  • 4.
    Li, Xiao
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Bakhit, Babak
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Joesaar, M. P. Johansson
    SECO Tools AB, Sweden.
    Petrov, Ivan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten. Univ Illinois, IL 61801 USA; Univ Illinois, IL 61801 USA; Natl Taiwan Univ Sci & Technol, Taiwan.
    Hultman, Lars
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Greczynski, Grzegorz
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Towards energy-efficient physical vapor deposition: Mapping out the effects of W+ energy and concentration on the densification of TiAlWN thin films grown with no external heating2021Inngår i: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 424, artikkel-id 127639Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Hybrid high power impulse/direct current magnetron sputtering (HiPIMS/DCMS) film growth technique with metal-ion-synchronized substrate bias allows for significant energy savings as compared to conventional PVD methods. For carefully selected type of metal ion irradiation, taking into account ion mass, ionization potential, and reactivity towards working gas, fully dense and hard films can be obtained with no intentional substrate heating. The thermally-driven adatom mobility, which is an essential densification mechanism in conventional film growth that takes place at elevated temperatures, is replaced with that supplied by effective low-energy recoil creation. In this contribution we explore effects of the high-mass W+ irradiation, which has proven to be the most efficient in densifying Ti0.50Al0.50N layers, serving here as a model system, grown with no substrate heating. We study the effects of two essential parameters: W+ energy EW+ and W concentration x, on film porosity, phase content, nanostructure, and mechanical properties. EW+ varies from similar to 90 to similar to 630 eV (controlled by substrate bias voltage amplitude V-s) and x from 0.02 to 0.12 (controlled by the HiPIMS pulse length), while the HiPIMS peak target current is kept constant. Results reveal that a strong coupling exists between the W+ incident energy and the minimum W concentration required to grow dense layers.

    Fulltekst (pdf)
    fulltext
  • 5.
    Li, Xiao
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Petrov, Ivan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten. Univ Illinois, IL 61801 USA.
    Hultman, Lars
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Greczynski, Grzegorz
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Determining role of W+ ions in the densification of TiAlWN thin films grown by hybrid HiPIMS/DCMS technique with no external heating2023Inngår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 41, nr 1, artikkel-id 013407Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Hybrid high-power impulse and dc magnetron co-sputtering (HiPIMS/DCMS) with substrate bias synchronized to the high mass metal-ion fluxes was previously proposed as a solution to reduce energy consumption during physical vapor deposition processing and enable coatings on temperature-sensitive substrates. In this approach, no substrate heating is used (substrate temperature is lower than 150 C-o) and the thermally activated adatom mobility, necessary to grow dense films, is substituted by overlapping collision cascades induced by heavy ion bombardment and consisting predominantly of low-energy recoils. Here, we present direct evidence for the crucial role of W+ ion irradiation in the densification of Ti0.31Al0.60W0.09N films grown by the hybrid W-HiPIMS/TiAl-DCMS co-sputtering. The peak target current density J(max) on the W target is varied from 0.06 to 0.78 A/cm(2) resulting in more than fivefold increase in the number of W+ ions per deposited metal atom, eta = W+/(W + Al + Ti) determined by time-resolved ion mass spectrometry analyses performed at the substrate plane under conditions identical to those during film growth. The DCMS is adjusted appropriately to maintain the W content in the films constant at Ti0.31Al0.60W0.09N. The degree of porosity, assessed qualitatively from cross-sectional SEM images and quantitatively from oxygen concentration profiles as well as nanoindentation hardness, is a strong function of eta ( J m a x ). Layers grown with low eta values are porous and soft, while those deposited under conditions of high eta are dense and hard. Nanoindentation hardness of Ti0.31Al0.60W0.09N films with the highest density is & SIM;33 GPa, which is very similar to values reported for layers deposited at much higher temperatures (420-500 C-o) by conventional metal-ion-based techniques. These results prove that the hybrid HiPIMS/DCMS co-sputtering with bias pulses synchronized to high mass metal ion irradiation can be successfully used to replace conventional solutions. The large energy losses associated with heating of the entire vacuum chamber are avoided, by focusing the energy input to where it is in fact needed, i.e., the workpiece to be coated.

    Fulltekst (pdf)
    fulltext
  • 6.
    Pshyk, Oleksandr V.
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Li, Xiao
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Petrov, Ivan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten. Materials Research Laboratory, University of Illinois, Urbana, IL, United States.
    Sangiovanni, Davide Giuseppe
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Palisaitis, Justinas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Hultman, Lars
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Greczynski, Grzegorz
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Discovery of Guinier-Preston zone hardening in refractory nitride ceramics2023Inngår i: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 255, artikkel-id 119105Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Traditional age hardening mechanisms in refractory ceramics consist of precipitation of fine particles. These processes are vital for widespread wear-resistant coating applications. Here, we report novel Guinier-Preston zone hardening, previously only known to operate in soft light-metal alloys, taking place in refractory ceramics like multicomponent nitrides. The added superhardening, discovered in thin films of Ti-Al-W-N upon high temperature annealing, comes from the formation of atomic-plane-thick W disks populating {111} planes of the cubic matrix, as observed by atomically resolved high resolution scanning transmission electron microscopy and corroborated by ab initio calculations and molecular dynamics simulations. Guinier-Preston zone hardening concurrent with spinodal decomposition is projected to exist in a range of other ceramic solid solutions and thus provides a new approach for the development of advanced materials with outstanding mechanical properties and higher operational temperature range for the future demanding applications.

    Fulltekst (pdf)
    fulltext
  • 7.
    Sroba, Viktor
    et al.
    Comenius Univ, Slovakia.
    Viskupova, Katarina
    Comenius Univ, Slovakia.
    Wicher, Bartosz
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten. Warsaw Univ Technol, Poland.
    Rogoz, Vladyslav
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Li, Xiao
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Mikula, Marian
    Comenius Univ, Slovakia; Slovak Acad Sci, Slovakia.
    Greczynski, Grzegorz
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Cross-ionization of the sputtered flux during hybrid high power impulse/direct-current magnetron co-sputtering2024Inngår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 42, nr 2, artikkel-id 023410Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Time-resolved ion mass spectrometry is used to analyze the type and the energy of metal-ion fluxes during hybrid high-power impulse/direct-current magnetron co-sputtering (HiPIMS/DCMS) in Ar. The study focuses on the effect of HiPIMS plasma plumes on the cross-ionization of the material flux sputtered from the DCMS source. Al, Si, Ti, and Hf elemental targets are used to investigate the effect of the metal's first ionization potential IPMe1 and mass on the extent of cross-ionization. It is demonstrated that the interaction with HiPIMS plasma results in the significant ionization of the material flux sputtered from the DCMS source. Experiments conducted with elements of similar mass but having different IPMe1 values, Si and Al (Si-HiPIMS/Al-DCMS and Al-HiPIMS/Si-DCMS) reveal that the ionization of the DCMS flux is favored if the sputtered element has lower ionization potential than the one operating in the HiPIMS mode. If elements having similar IPMe1 are used on both sources, the metal mass becomes a decisive parameter as evidenced by experiments involving Ti and Hf (Ti-HiPIMS/Hf-DCMS and Hf-HiPIMS/Ti-DCMS). In such a case, Ti+ fluxes during Hf-HiPIMS/Ti-DCMS may even exceed Hf+ fluxes from the HiPIMS cathode and are much stronger than Hf+ fluxes during Ti-HiPIMS/Hf-DCMS. The latter effect can be explained by the fact that heavier Hf+ ions require longer transit time from the ionization zone to the substrate, which effectively increases the probability of interaction between the Hf-HiPIMS plasma plume and the Ti-DCMS flux, thereby leading to higher Ti ionization. Thus, the common notion of low ionization levels associated with DCMS has to be revised if DCMS is used together with highly ionized plasmas such as HiPIMS operating at higher peak target currents. These results are particularly important for the film growth in the hybrid configuration with substrate bias pulses synchronized to specific ion types.

  • 8.
    Wicher, Bartosz
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten. Warsaw Univ Technol, Poland.
    Pshyk, Oleksandr
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten. Empa Swiss Fed Labs Mat Sci & Technol, Switzerland.
    Li, Xiao
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Bakhit, Babak
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Rogoz, Vladyslav
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Petrov, Ivan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten. Univ Illinois, IL 61801 USA.
    Hultman, Lars
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Greczynski, Grzegorz
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Superhard oxidation-resistant Ti1-xAlxBy thin films grown by hybrid HiPIMS/DCMS co-sputtering diboride targets without external substrate heating2024Inngår i: Materials & design, ISSN 0264-1275, E-ISSN 1873-4197, Vol. 238, artikkel-id 112727Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Ti1-xAlxBy films (0.40 <= x <= 0.76, and 1.81 <= y <= 2.03) combining good mechanical properties and high-temperature oxidation resistance are demonstrated. Layers are grown using a hybrid high-power impulse and dc magnetron co-sputtering employing two target configurations (AlB2-HiPIMS/TiB2-DCMS and TiB2-HiPIMS/AlB2-DCMS) and no external substrate heating. Near-stoichiometric B content are achieved by co-sputtering two diboride targets. Time-resolved ion mass spectrometry analyses reveal that the ionization of the DCMS flux (Al) is much higher during TiB2-HiPIMS/AlB2-DCMS. The effect is caused by the difference in the first ionization potentials and the ionization probabilities of sputtered metals and results in lower B/metal ratios in films grown in this configuration. The B/metal ratio in the single-phase Ti1-xAlxBy decreases with increasing Al content, which is explained by the change between angular distribution of Ti and Al atoms. Alloying with Al improves the high-temperature oxidation resistance: the thickness of the oxide-scale forming after 1 h anneal at 800 degrees C decreases more than 15 times upon increasing x from 0.36 to 0.74. Ti1-xAlxBy films with 0.58 <= x <= 0.67 offer the best compromise between high-temperature oxidation resistance and mechanical properties with an average oxide scale thickness 90-180 nm and the hardness of 34-38 GPa.

1 - 8 of 8
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf