liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
1 - 14 av 14
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Ahrén, Maria
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik.
    Olsson, Petter
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi.
    Söderlind, Fredrik
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi.
    Klasson, Anna
    Linköpings universitet, Hälsouniversitetet. Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Petoral, Rodrigo Jr
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik.
    Engström, Maria
    Linköpings universitet, Hälsouniversitetet. Linköpings universitet, Institutionen för klinisk och experimentell medicin, Cellbiologi. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Käll, Per-Olov
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Fysikalisk Kemi.
    Uvdal, Kajsa
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik.
    Rare earth nanoparticles as contrast agent in MRI: Nanomaterial design and biofunctionalization2007Ingår i: IVC-17/ICSS-13 ICNT,2007, 2007Konferensbidrag (Övrigt vetenskapligt)
  • 2.
    Ahrén, Maria
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska högskolan.
    Selegård, Linnéa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska högskolan.
    Klasson, Anna
    Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Linköpings universitet, Hälsouniversitetet.
    Söderlind, Fredrik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska högskolan.
    Abrikossova, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska högskolan.
    Skoglund, Caroline
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska fakulteten.
    Bengtsson, Torbjörn
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för läkemedelsforskning. Linköpings universitet, Tekniska högskolan.
    Engström, Maria
    Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Linköpings universitet, Hälsouniversitetet.
    Käll, Per-Olov
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska högskolan.
    Uvdal, Kajsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska högskolan.
    Synthesis and Characterization of PEGylated Gd2O3 Nanoparticles for MRI Contrast Enhancement2010Ingår i: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 26, nr 8, s. 5753-5762Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Recently, much attention has been given to the development of biofunctionalized nanoparticles with magnetic properties for novel biomedical imaging. Guided, smart, targeting nanoparticulate magnetic resonance imaging (MRI) contrast agents inducing high MRI signal will be valuable tools for future tissue specific imaging and investigation of molecular and cellular events. In this study, we report a new design of functionalized ultrasmall rare earth based nanoparticles to be used as a positive contrast agent in MRI. The relaxivity is compared to commercially available Gd based chelates. The synthesis, PEGylation, and dialysis of small (3−5 nm) gadolinium oxide (DEG-Gd2O3) nanoparticles are presented. The chemical and physical properties of the nanomaterial were investigated with Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and dynamic light scattering. Neutrophil activation after exposure to this nanomaterial was studied by means of fluorescence microscopy. The proton relaxation times as a function of dialysis time and functionalization were measured at 1.5 T. A capping procedure introducing stabilizing properties was designed and verified, and the dialysis effects were evaluated. A higher proton relaxivity was obtained for as-synthesized diethylene glycol (DEG)-Gd2O3 nanoparticles compared to commercial Gd-DTPA. A slight decrease of the relaxivity for as-synthesized DEG-Gd2O3 nanoparticles as a function of dialysis time was observed. The results for functionalized nanoparticles showed a considerable relaxivity increase for particles dialyzed extensively with r1 and r2 values approximately 4 times the corresponding values for Gd-DTPA. The microscopy study showed that PEGylated nanoparticles do not activate neutrophils in contrast to uncapped Gd2O3. Finally, the nanoparticles are equipped with Rhodamine to show that our PEGylated nanoparticles are available for further coupling chemistry, and thus prepared for targeting purposes. The long term goal is to design a powerful, directed contrast agent for MRI examinations with specific targeting possibilities and with properties inducing local contrast, that is, an extremely high MR signal at the cellular and molecular level.

  • 3.
    Engström, Maria
    et al.
    Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Linköpings universitet, Hälsouniversitetet. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Klasson, Anna
    Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Linköpings universitet, Hälsouniversitetet. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Pedersen, Henrik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Vahlberg, Cecillia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik. Linköpings universitet, Tekniska högskolan.
    Käll, Per-Olov
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Fysikalisk Kemi. Linköpings universitet, Tekniska högskolan.
    Uvdal, Kajsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik. Linköpings universitet, Tekniska högskolan.
    High Proton Relaxivity for Gadolinium Oxide Nanoparticles2006Ingår i: Magnetic Resonance Materials in Physics, Biology and Medicine, ISSN 0968-5243, E-ISSN 1352-8661, Vol. 19, nr 4, s. 180-186Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Objective: Nanosized materials of gadolinium oxide can provide high-contrast enhancement in magnetic resonance imaging (MRI). The objective of the present study was to investigate proton relaxation enhancement by ultrasmall (5 to 10 nm) Gd2O3 nanocrystals.

    Materials and methods: Gd2O3 nanocrystals were synthesized by a colloidal method and capped with diethylene glycol (DEG). The oxidation state of Gd2O3 was confirmed by X-ray photoelectron spectroscopy. Proton relaxation times were measured with a 1.5-T MRI scanner. The measurements were performed in aqueous solutions and cell culture medium (RPMI).

    Results: Results showed a considerable relaxivity increase for the Gd2O3–DEG particles compared to Gd-DTPA. Both T 1 and T 2 relaxivities in the presence of Gd2O3–DEG particles were approximately twice the corresponding values for Gd–DTPA in aqueous solution and even larger in RPMI. Higher signal intensity at low concentrations was predicted for the nanoparticle solutions, using experimental data to simulate a T1-weighted spin echo sequence.

    Conclusion: The study indicates the possibility of obtaining at least doubled relaxivity compared to Gd–DTPA using Gd2O3–DEG nanocrystals as contrast agent. The high T 1 relaxation rate at low concentrations of Gd2O3 nanoparticles is very promising for future studies of contrast agents based on gadolinium-containing nanocrystals.

  • 4.
    Fortin, Marc-André
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska fakulteten.
    Petoral Jr, Rodrigo M.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska fakulteten.
    Söderlind, Fredrik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Fysikalisk Kemi. Linköpings universitet, Tekniska fakulteten.
    Klasson, Anna
    Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Linköpings universitet, Hälsouniversitetet.
    Engström, Maria
    Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Linköpings universitet, Hälsouniversitetet.
    Veres, Teodor
    National Research Council of Canada (CNRC-IMI) 75, Boucherville, QC, Canada.
    Käll, Per-Olov
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Fysikalisk Kemi. Linköpings universitet, Tekniska högskolan.
    Uvdal, Kajsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska fakulteten.
    Polyethylene glycol-cover ultra-small Gd2O3 nanoparticles for positive contras at 1.5 T magnetic resonance clinical scanning2007Ingår i: Nanotechnology, ISSN 0957-4484, Vol. 18, nr 39, s. 395501-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The size distribution and magnetic properties of ultra-small gadolinium oxide crystals (US-Gd2O3) were studied, and the impact of polyethylene glycol capping on the relaxivity constants (r1, r2) and signal intensity with this contrast agent was investigated. Size distribution and magnetic properties of US-Gd2O3 nanocrystals were measured with a TEM and PPMS magnetometer. For relaxation studies, diethylene glycol (DEG)-capped US-Gd2O3 nanocrystals were reacted with PEG-silane (MW 5000). Suspensions were adequately dialyzed in water to eliminate traces of Gd3+ and surfactants. The particle hydrodynamic radius was measured with dynamic light scattering (DLS) and the proton relaxation times were measured with a 1.5 T MRI scanner. Parallel studies were performed with DEG–Gd2O3 and PEG-silane–SPGO (Gd2O3,< 40 nm diameter). The small and narrow size distribution of US-Gd2O3 was confirmed with TEM (~3 nm) and DLS. PEG-silane–US-Gd2O3 relaxation parameters were twice as high as for Gd–DTPA and the r2/r1 ratio was 1.4. PEG-silane–SPGO gave low r1 relaxivities and high r2/r1 ratios, less compatible with positive contrast agent requirements. Higher r1 were obtained with PEG-silane in comparison to DEG–Gd2O3. Treatment of DEG–US-Gd2O3 with PEG-silane provides enhanced relaxivity while preventing aggregation of the oxide cores. This study confirms that PEG-covered Gd2O3 nanoparticles can be used for positively contrasted MR applications requiring stability, biocompatible coatings and nanocrystal functionalization.

  • 5.
    Hedlund, Anna
    Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Linköpings universitet, Hälsouniversitetet.
    MRI Contrast Enhancement and Cell Labeling using Gd2O3 Nanoparticles2011Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    There is an increasing interest for nanomaterials in bio-medical applications and in this work, nanoparticles of gadolinium oxide (Gd2O3 ) have been investigated as a novel contrast agent for magnetic resonance imaging (MRI). Relaxation properties have been studied in aqueous solutions as well as in cell culture medium and the nanoparticles have been explored as cell labeling agents. The fluorescent properties of the particles were used to visualize the internalization in cells and doped particles were investigated as a multimodal agent that could work as a fluorescent marker for microscopy and as a contrast enhancer for MRI. Fluorescent studies show that the Gd2O3 nanoparticles doped with 5% terbium have interesting fluorescent properties and that these particles could work as such multimodal contrast agent. Relaxivity measurements show that in aqueous solutions, there is a twofold increase in relaxivity for Gd2O3 compared to commercial agent Gd-DTPA. In cell culture medium as well as in cells, there is a clear T1 effect and an increase in signal intensity in T1-mapped images. The cellular uptake of Gd2O3 nanoparticles were increased with the use of transfection agent protamine sulfate. This work shows that Gd2O3 nanoparticles possess good relaxation properties that are retained in different biological environments. Gd2O3 particles are suitable as a T1 contrast agent, but seem also be adequate for T2 enhancement in forinstance cell labeling experiments.

    Delarbeten
    1. High Proton Relaxivity for Gadolinium Oxide Nanoparticles
    Öppna denna publikation i ny flik eller fönster >>High Proton Relaxivity for Gadolinium Oxide Nanoparticles
    Visa övriga...
    2006 (Engelska)Ingår i: Magnetic Resonance Materials in Physics, Biology and Medicine, ISSN 0968-5243, E-ISSN 1352-8661, Vol. 19, nr 4, s. 180-186Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Objective: Nanosized materials of gadolinium oxide can provide high-contrast enhancement in magnetic resonance imaging (MRI). The objective of the present study was to investigate proton relaxation enhancement by ultrasmall (5 to 10 nm) Gd2O3 nanocrystals.

    Materials and methods: Gd2O3 nanocrystals were synthesized by a colloidal method and capped with diethylene glycol (DEG). The oxidation state of Gd2O3 was confirmed by X-ray photoelectron spectroscopy. Proton relaxation times were measured with a 1.5-T MRI scanner. The measurements were performed in aqueous solutions and cell culture medium (RPMI).

    Results: Results showed a considerable relaxivity increase for the Gd2O3–DEG particles compared to Gd-DTPA. Both T 1 and T 2 relaxivities in the presence of Gd2O3–DEG particles were approximately twice the corresponding values for Gd–DTPA in aqueous solution and even larger in RPMI. Higher signal intensity at low concentrations was predicted for the nanoparticle solutions, using experimental data to simulate a T1-weighted spin echo sequence.

    Conclusion: The study indicates the possibility of obtaining at least doubled relaxivity compared to Gd–DTPA using Gd2O3–DEG nanocrystals as contrast agent. The high T 1 relaxation rate at low concentrations of Gd2O3 nanoparticles is very promising for future studies of contrast agents based on gadolinium-containing nanocrystals.

    Nyckelord
    Gd2O3, Nanoparticle, Contrast agent, Relaxivity, MRI
    Nationell ämneskategori
    Medicin och hälsovetenskap
    Identifikatorer
    urn:nbn:se:liu:diva-12943 (URN)10.1007/s10334-006-0039-x (DOI)000241584400002 ()
    Tillgänglig från: 2008-02-21 Skapad: 2008-02-21 Senast uppdaterad: 2017-12-13
    2. Positive MRI Enhancement in THP-1 Cells with Gd2O3 Nanoparticles
    Öppna denna publikation i ny flik eller fönster >>Positive MRI Enhancement in THP-1 Cells with Gd2O3 Nanoparticles
    Visa övriga...
    2008 (Engelska)Ingår i: Contrast Media and Molecular Imaging, ISSN 1555-4309, Vol. 3, nr 3, s. 106-111Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    There is a demand for more efficient and tissue-specific MRI contrast agents and recent developments involve the design of substances useful as molecular markers and magnetic tracers. In this study, nanoparticles of gadolinium oxide (Gd2O3) have been investigated for cell labeling and capacity to generate a positive contrast. THP-1, a monocytic cell line that is phagocytic, was used and results were compared with relaxivity of particles in cell culture medium (RPMI 1640). The results showed that Gd2O3-labeled cells have shorter T1 and T2 relaxation times compared with untreated cells. A prominent difference in signal intensity was observed, indicating that Gd2O3 nanoparticles can be used as a positive contrast agent for cell labeling. The r1 for cell samples was 4.1 and 3.6 s-1 mm-1 for cell culture medium. The r2 was 17.4 and 12.9 s-1 mm-1, respectively. For r1, there was no significant difference in relaxivity between particles in cells compared to particles in cell culture medium, (pr1 = 0.36), but r2 was significantly different for the two different series (pr2 = 0.02). Viability results indicate that THP-1 cells endure treatment with Gd2O3 nanoparticles for an extended period of time and it is therefore concluded that results in this study are based on viable cells.

    Nyckelord
    gadolinium oxide, nanoparticles, contrast agent, THP-1 cells, magnetic resonance imaging
    Nationell ämneskategori
    Medicin och hälsovetenskap
    Identifikatorer
    urn:nbn:se:liu:diva-12945 (URN)10.1002/cmmi.236 (DOI)000257982000002 ()
    Tillgänglig från: 2008-02-21 Skapad: 2008-02-21 Senast uppdaterad: 2017-09-22Bibliografiskt granskad
    3. Detection of Gd2O3 Nanoparticles in Hematopoietic Cells for MRI Contrast Enhancement
    Öppna denna publikation i ny flik eller fönster >>Detection of Gd2O3 Nanoparticles in Hematopoietic Cells for MRI Contrast Enhancement
    Visa övriga...
    (Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    As the utility of magnetic resonance imaging (MRI) broadens, the importance of having specific and efficient contrast agents increases and there has been a huge development in the fields of molecular imaging and intracellular markers.

    Previous studies have shown that gadolinium oxide (Gd2O3 ) nanoparticles generate higher relaxivity than currently available Gd chelates. The Gd2O3 nanoparticles are also promising for MRI cell tracking. The aim of the present work was to study cell labeling with Gd2O3 nanoparticles and to improve techniques for monitoring hematopoietic stem cell migration by MRI.

    We studied particle uptake in two cell lines; the hematopoietic progenitor cell line Ba/F3 and the monocytic cell line THP-1. Cells were incubated with Gd2O3 nanoparticles as well as superparamagnetic iron oxide particles (SPIOs) for comparison. In addition, it was investigated whether the transfection agent protamine sulfate increased the particle uptake. Treated cells were examined by microscopic techniques, MRI and analyzed for particle content.

    Results showed that particles were intracellular, however in Ba/F3 only sparsely. The relaxation times were shortened with increasing particle concentration. Overall relaxivities, r1 and r2 for Gd2O3 nanoparticles in all cell samples measured were 5.1 ± 0.3 and 14.9 ± 0.7 (s-1mM-1) respectively. Goodness of fit was 0.97 in both cases. Protamine sulfate treatment increased the uptake in both Ba/F3 cells and THP-1 cells.

    Viability of treated cells was not significantly decreased and thus, we conclude that the use of Gd2O3 nanoparticles is suitable for this type of cell labeling by means of detecting and monitoring hematopoietic cells.

    Nyckelord
    Gadolinium oxide; nanoparticles; magnetic resonance imaging; Ba/F3 cells, THP-1 cells.
    Nationell ämneskategori
    Medicin och hälsovetenskap
    Identifikatorer
    urn:nbn:se:liu:diva-68801 (URN)
    Tillgänglig från: 2011-06-07 Skapad: 2011-06-07 Senast uppdaterad: 2013-09-04Bibliografiskt granskad
    4. Synthesis and Characterization of Tb3+-Doped Gd2O3 Nanocrystals: A Bifunctional Material with Combined Fluorescent Labeling and MRI Contrast Agent Properties
    Öppna denna publikation i ny flik eller fönster >>Synthesis and Characterization of Tb3+-Doped Gd2O3 Nanocrystals: A Bifunctional Material with Combined Fluorescent Labeling and MRI Contrast Agent Properties
    Visa övriga...
    2009 (Engelska)Ingår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 113, nr 17, s. 6913-6920Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Ultrasmall gadolinium oxide nanoparticles doped with terbium ions were synthesized by the polyol route and characterized as a potentially bifunctional material with both fluorescent and magnetic contrast agent properties. The structural, optical, and magnetic properties of the organic-acid-capped and PEGylated Gd2O3:Tb3+ nanocrystals were studied by HR-TEM, XPS, EDX, IR, PL, and SQUID. The luminescent/fluorescent property of the particles is attributable to the Tb3+ ion located on the crystal lattice of the Gd2O3 host. The paramagnetic behavior of the particles is discussed. Pilot studies investigating the capability of the nanoparticles for fluorescent labeling of living cells and as a MRI contrast agent were also performed. Cells of two cell lines (THP-1 cells and fibroblasts) were incubated with the particles, and intracellular particle distribution was visualized by confocal microscopy. The MRI relaxivity of the PEGylated nanoparticles in water at low Gd concentration was assessed showing a higher T-1 relaxation rate compared to conventional Gd-DTPA chelates and comparable to that of undoped Gd2O3 nanoparticles.

    Nationell ämneskategori
    Naturvetenskap
    Identifikatorer
    urn:nbn:se:liu:diva-12944 (URN)10.1021/jp808708m (DOI)000265529700009 ()
    Anmärkning

    On the day of the defence date the status of this article was Submitted

    Tillgänglig från: 2008-02-21 Skapad: 2008-02-21 Senast uppdaterad: 2018-10-29Bibliografiskt granskad
  • 6.
    Hedlund, Anna
    et al.
    Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Hälsouniversitetet.
    Ahrén, Maria
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Tekniska högskolan.
    Gustafsson, Håkan
    Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Linköpings universitet, Hälsouniversitetet.
    Abrikossova, Natalia
    Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Warntjes, Marcel
    Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för medicin och hälsa, Klinisk fysiologi. Linköpings universitet, Hälsouniversitetet.
    Jönsson, Jan-Ingvar
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Experimentell hematologi. Linköpings universitet, Hälsouniversitetet.
    Uvdal, Kajsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik. Linköpings universitet, Tekniska högskolan.
    Engström, Maria
    Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Linköpings universitet, Hälsouniversitetet.
    Detection of Gd2O3 Nanoparticles in Hematopoietic Cells for MRI Contrast EnhancementManuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    As the utility of magnetic resonance imaging (MRI) broadens, the importance of having specific and efficient contrast agents increases and there has been a huge development in the fields of molecular imaging and intracellular markers.

    Previous studies have shown that gadolinium oxide (Gd2O3 ) nanoparticles generate higher relaxivity than currently available Gd chelates. The Gd2O3 nanoparticles are also promising for MRI cell tracking. The aim of the present work was to study cell labeling with Gd2O3 nanoparticles and to improve techniques for monitoring hematopoietic stem cell migration by MRI.

    We studied particle uptake in two cell lines; the hematopoietic progenitor cell line Ba/F3 and the monocytic cell line THP-1. Cells were incubated with Gd2O3 nanoparticles as well as superparamagnetic iron oxide particles (SPIOs) for comparison. In addition, it was investigated whether the transfection agent protamine sulfate increased the particle uptake. Treated cells were examined by microscopic techniques, MRI and analyzed for particle content.

    Results showed that particles were intracellular, however in Ba/F3 only sparsely. The relaxation times were shortened with increasing particle concentration. Overall relaxivities, r1 and r2 for Gd2O3 nanoparticles in all cell samples measured were 5.1 ± 0.3 and 14.9 ± 0.7 (s-1mM-1) respectively. Goodness of fit was 0.97 in both cases. Protamine sulfate treatment increased the uptake in both Ba/F3 cells and THP-1 cells.

    Viability of treated cells was not significantly decreased and thus, we conclude that the use of Gd2O3 nanoparticles is suitable for this type of cell labeling by means of detecting and monitoring hematopoietic cells.

  • 7.
    Hedlund, Anna
    et al.
    Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Hälsouniversitetet.
    Ahrén, Maria
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska fakulteten.
    Gustafsson, Håkan
    Linköpings universitet, Hälsouniversitetet. Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiofysik. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Abrikossova, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska fakulteten.
    Warntjes, Marcel
    Linköpings universitet, Institutionen för medicin och hälsa, Klinisk fysiologi. Linköpings universitet, Hälsouniversitetet. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Jönsson, Jan-Ivar
    Linköpings universitet, Hälsouniversitetet. Linköpings universitet, Institutionen för klinisk och experimentell medicin, Medicinsk och fysiologisk kemi.
    Uvdal, Kajsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska fakulteten.
    Engström, Maria
    Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Hälsouniversitetet.
    Gd2O3 nanoparticles in hematopoietic cells for MRI contrast enhancement2011Ingår i: International journal of nano medicine, ISSN 1178-2013, Vol. 6, s. 3233-3240Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    As the utility of magnetic resonance imaging (MRI) broadens, the importance of having specific and efficient contrast agents increases and in recent time there has been a huge development in the fields of molecular imaging and intracellular markers. Previous studies have shown that gadolinium oxide (Gd2O3) nanoparticles generate higher relaxivity than currently available Gd chelates: In addition, the Gd2O3 nanoparticles have promising properties for MRI cell tracking. The aim of the present work was to study cell labeling with Gd2O3 nanoparticles in hematopoietic cells and to improve techniques for monitoring hematopoietic stem cell migration by MRI. Particle uptake was studied in two cell lines: the hematopoietic progenitor cell line Ba/F3 and the monocytic cell line THP-1. Cells were incubated with Gd2O3 nanoparticles and it was investigated whether the transfection agent protamine sulfate increased the particle uptake. Treated cells were examined by electron microscopy and MRI, and analyzed for particle content by inductively coupled plasma sector field mass spectrometry. Results showed that particles were intracellular, however, sparsely in Ba/F3. The relaxation times were shortened with increasing particle concentration. Relaxivities, r1 and r2 at 1.5 T and 21°C, for Gd2O3 nanoparticles in different cell samples were 3.6–5.3 s-1 mM-1 and 9.6–17.2 s-1 mM-1, respectively. Protamine sulfate treatment increased the uptake in both Ba/F3 cells and THP-1 cells. However, the increased uptake did not increase the relaxation rate for THP-1 as for Ba/F3, probably due to aggregation and/or saturation effects. Viability of treated cells was not significantly decreased and thus, it was concluded that the use of Gd2O3 nanoparticles is suitable for this type of cell labeling by means of detecting and monitoring hematopoietic cells. In conclusion, Gd2O3 nanoparticles are a promising material to achieve positive intracellular MRI contrast; however, further particle development needs to be performed.

  • 8.
    Klasson, Anna
    Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Linköpings universitet, Hälsouniversitetet.
    MRI Contrast Enhancement using Gd2O3 Nanoparticles2008Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    There is an increasing interest for nanomaterials in biomedical applications and in this work, nanoparticles of gadolinium oxide (Gd2O3) have been investigated as a novel contrast agent for Magnetic Resonance Imaging (MRI). Relaxation properties have been studied in aqueous solutions as well as in cell culture medium and the nanoparticles have been explored as cell labeling agents. The fluorescent properties of the particles were used to visualize the internalization in cells and doped particles were also investigated as a multimodal agent that could work as a fluorescent marker for microscopy and as a contrast enhancer for MRI.

    Results show that in aqueous solutions, there is a twofold increase in relaxivity for Gd2O3 compared to commercial agent Gd-DTPA. In cell culture medium as well as in cells, there is a clear T1 effect and a distinct increase in signal intensity in T1-mapped images. Fluorescent studies show that the Gd2O3 nanoparticles doped with 5% terbium have interesting fluorescent properties and that these particles could work as a multimodal contrast agent.

    This study shows that Gd2O3 nanoparticles possess excellent relaxation properties that are retained in more biological environments. Gd2O3 particles are suitable as a T1 contrast agent, but seem also be adequate for T2 enhancement in for instance cell labeling experiments.

    Delarbeten
    1. High Proton Relaxivity for Gadolinium Oxide Nanoparticles
    Öppna denna publikation i ny flik eller fönster >>High Proton Relaxivity for Gadolinium Oxide Nanoparticles
    Visa övriga...
    2006 (Engelska)Ingår i: Magnetic Resonance Materials in Physics, Biology and Medicine, ISSN 0968-5243, E-ISSN 1352-8661, Vol. 19, nr 4, s. 180-186Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Objective: Nanosized materials of gadolinium oxide can provide high-contrast enhancement in magnetic resonance imaging (MRI). The objective of the present study was to investigate proton relaxation enhancement by ultrasmall (5 to 10 nm) Gd2O3 nanocrystals.

    Materials and methods: Gd2O3 nanocrystals were synthesized by a colloidal method and capped with diethylene glycol (DEG). The oxidation state of Gd2O3 was confirmed by X-ray photoelectron spectroscopy. Proton relaxation times were measured with a 1.5-T MRI scanner. The measurements were performed in aqueous solutions and cell culture medium (RPMI).

    Results: Results showed a considerable relaxivity increase for the Gd2O3–DEG particles compared to Gd-DTPA. Both T 1 and T 2 relaxivities in the presence of Gd2O3–DEG particles were approximately twice the corresponding values for Gd–DTPA in aqueous solution and even larger in RPMI. Higher signal intensity at low concentrations was predicted for the nanoparticle solutions, using experimental data to simulate a T1-weighted spin echo sequence.

    Conclusion: The study indicates the possibility of obtaining at least doubled relaxivity compared to Gd–DTPA using Gd2O3–DEG nanocrystals as contrast agent. The high T 1 relaxation rate at low concentrations of Gd2O3 nanoparticles is very promising for future studies of contrast agents based on gadolinium-containing nanocrystals.

    Nyckelord
    Gd2O3, Nanoparticle, Contrast agent, Relaxivity, MRI
    Nationell ämneskategori
    Medicin och hälsovetenskap
    Identifikatorer
    urn:nbn:se:liu:diva-12943 (URN)10.1007/s10334-006-0039-x (DOI)000241584400002 ()
    Tillgänglig från: 2008-02-21 Skapad: 2008-02-21 Senast uppdaterad: 2017-12-13
    2. Synthesis and Characterization of Tb3+-Doped Gd2O3 Nanocrystals: A Bifunctional Material with Combined Fluorescent Labeling and MRI Contrast Agent Properties
    Öppna denna publikation i ny flik eller fönster >>Synthesis and Characterization of Tb3+-Doped Gd2O3 Nanocrystals: A Bifunctional Material with Combined Fluorescent Labeling and MRI Contrast Agent Properties
    Visa övriga...
    2009 (Engelska)Ingår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 113, nr 17, s. 6913-6920Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Ultrasmall gadolinium oxide nanoparticles doped with terbium ions were synthesized by the polyol route and characterized as a potentially bifunctional material with both fluorescent and magnetic contrast agent properties. The structural, optical, and magnetic properties of the organic-acid-capped and PEGylated Gd2O3:Tb3+ nanocrystals were studied by HR-TEM, XPS, EDX, IR, PL, and SQUID. The luminescent/fluorescent property of the particles is attributable to the Tb3+ ion located on the crystal lattice of the Gd2O3 host. The paramagnetic behavior of the particles is discussed. Pilot studies investigating the capability of the nanoparticles for fluorescent labeling of living cells and as a MRI contrast agent were also performed. Cells of two cell lines (THP-1 cells and fibroblasts) were incubated with the particles, and intracellular particle distribution was visualized by confocal microscopy. The MRI relaxivity of the PEGylated nanoparticles in water at low Gd concentration was assessed showing a higher T-1 relaxation rate compared to conventional Gd-DTPA chelates and comparable to that of undoped Gd2O3 nanoparticles.

    Nationell ämneskategori
    Naturvetenskap
    Identifikatorer
    urn:nbn:se:liu:diva-12944 (URN)10.1021/jp808708m (DOI)000265529700009 ()
    Anmärkning

    On the day of the defence date the status of this article was Submitted

    Tillgänglig från: 2008-02-21 Skapad: 2008-02-21 Senast uppdaterad: 2018-10-29Bibliografiskt granskad
    3. Positive MRI Enhancement in THP-1 Cells with Gd2O3 Nanoparticles
    Öppna denna publikation i ny flik eller fönster >>Positive MRI Enhancement in THP-1 Cells with Gd2O3 Nanoparticles
    Visa övriga...
    2008 (Engelska)Ingår i: Contrast Media and Molecular Imaging, ISSN 1555-4309, Vol. 3, nr 3, s. 106-111Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    There is a demand for more efficient and tissue-specific MRI contrast agents and recent developments involve the design of substances useful as molecular markers and magnetic tracers. In this study, nanoparticles of gadolinium oxide (Gd2O3) have been investigated for cell labeling and capacity to generate a positive contrast. THP-1, a monocytic cell line that is phagocytic, was used and results were compared with relaxivity of particles in cell culture medium (RPMI 1640). The results showed that Gd2O3-labeled cells have shorter T1 and T2 relaxation times compared with untreated cells. A prominent difference in signal intensity was observed, indicating that Gd2O3 nanoparticles can be used as a positive contrast agent for cell labeling. The r1 for cell samples was 4.1 and 3.6 s-1 mm-1 for cell culture medium. The r2 was 17.4 and 12.9 s-1 mm-1, respectively. For r1, there was no significant difference in relaxivity between particles in cells compared to particles in cell culture medium, (pr1 = 0.36), but r2 was significantly different for the two different series (pr2 = 0.02). Viability results indicate that THP-1 cells endure treatment with Gd2O3 nanoparticles for an extended period of time and it is therefore concluded that results in this study are based on viable cells.

    Nyckelord
    gadolinium oxide, nanoparticles, contrast agent, THP-1 cells, magnetic resonance imaging
    Nationell ämneskategori
    Medicin och hälsovetenskap
    Identifikatorer
    urn:nbn:se:liu:diva-12945 (URN)10.1002/cmmi.236 (DOI)000257982000002 ()
    Tillgänglig från: 2008-02-21 Skapad: 2008-02-21 Senast uppdaterad: 2017-09-22Bibliografiskt granskad
  • 9.
    Klasson, Anna
    et al.
    Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Linköpings universitet, Hälsouniversitetet. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Ahrén, Maria
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska fakulteten.
    Hellqvist, Eva
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Cellbiologi. Linköpings universitet, Hälsouniversitetet.
    Söderlind, Fredrik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Fysikalisk Kemi. Linköpings universitet, Tekniska fakulteten.
    Rosén, Anders
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Cellbiologi. Linköpings universitet, Tekniska högskolan.
    Käll, Per-Olov
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Fysikalisk Kemi. Linköpings universitet, Tekniska högskolan.
    Uvdal, Kajsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska fakulteten.
    Engström, Maria
    Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Linköpings universitet, Tekniska högskolan. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Positive MRI Enhancement in THP-1 Cells with Gd2O3 Nanoparticles2008Ingår i: Contrast Media and Molecular Imaging, ISSN 1555-4309, Vol. 3, nr 3, s. 106-111Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    There is a demand for more efficient and tissue-specific MRI contrast agents and recent developments involve the design of substances useful as molecular markers and magnetic tracers. In this study, nanoparticles of gadolinium oxide (Gd2O3) have been investigated for cell labeling and capacity to generate a positive contrast. THP-1, a monocytic cell line that is phagocytic, was used and results were compared with relaxivity of particles in cell culture medium (RPMI 1640). The results showed that Gd2O3-labeled cells have shorter T1 and T2 relaxation times compared with untreated cells. A prominent difference in signal intensity was observed, indicating that Gd2O3 nanoparticles can be used as a positive contrast agent for cell labeling. The r1 for cell samples was 4.1 and 3.6 s-1 mm-1 for cell culture medium. The r2 was 17.4 and 12.9 s-1 mm-1, respectively. For r1, there was no significant difference in relaxivity between particles in cells compared to particles in cell culture medium, (pr1 = 0.36), but r2 was significantly different for the two different series (pr2 = 0.02). Viability results indicate that THP-1 cells endure treatment with Gd2O3 nanoparticles for an extended period of time and it is therefore concluded that results in this study are based on viable cells.

  • 10.
    Klasson, Anna
    et al.
    Linköpings universitet, Hälsouniversitetet. Linköpings universitet, Institutionen för medicin och vård, Medicinsk radiologi. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Hellqvist, Eva
    Linköpings universitet, Hälsouniversitetet. Linköpings universitet, Institutionen för biomedicin och kirurgi, Avdelningen för medicinsk cellbiologi.
    Rosén, Anders
    Linköpings universitet, Hälsouniversitetet. Linköpings universitet, Institutionen för biomedicin och kirurgi, Avdelningen för medicinsk cellbiologi.
    Käll, Per-Olov
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Fysikalisk Kemi.
    Uvdal, Kajsa
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik.
    Engström, Maria
    Linköpings universitet, Hälsouniversitetet. Linköpings universitet, Institutionen för medicin och vård, Medicinsk radiologi. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Cell tracking with positive contrast using Gd2O3 nanoparticles2006Ingår i: ESMRMB,2006, 2006Konferensbidrag (Övrigt vetenskapligt)
  • 11.
    Petoral, Rodrigo M
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska fakulteten.
    Söderlind, Fredrik
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Klasson, Anna
    Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Bildmedicinskt centrum, Röntgenkliniken i Linköping.
    Suska, Anke
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska fakulteten.
    Fortin, Marc-André
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska fakulteten.
    Abrikossova, Natalia
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska fakulteten.
    Selegard, Linnea
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik. Linköpings universitet, Tekniska högskolan.
    Käll, Per-Olov
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Fysikalisk Kemi. Linköpings universitet, Tekniska högskolan.
    Engström, Maria
    Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Bildmedicinskt centrum, Röntgenkliniken i Linköping.
    Uvdal, Kajsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska fakulteten.
    Synthesis and Characterization of Tb3+-Doped Gd2O3 Nanocrystals: A Bifunctional Material with Combined Fluorescent Labeling and MRI Contrast Agent Properties2009Ingår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 113, nr 17, s. 6913-6920Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Ultrasmall gadolinium oxide nanoparticles doped with terbium ions were synthesized by the polyol route and characterized as a potentially bifunctional material with both fluorescent and magnetic contrast agent properties. The structural, optical, and magnetic properties of the organic-acid-capped and PEGylated Gd2O3:Tb3+ nanocrystals were studied by HR-TEM, XPS, EDX, IR, PL, and SQUID. The luminescent/fluorescent property of the particles is attributable to the Tb3+ ion located on the crystal lattice of the Gd2O3 host. The paramagnetic behavior of the particles is discussed. Pilot studies investigating the capability of the nanoparticles for fluorescent labeling of living cells and as a MRI contrast agent were also performed. Cells of two cell lines (THP-1 cells and fibroblasts) were incubated with the particles, and intracellular particle distribution was visualized by confocal microscopy. The MRI relaxivity of the PEGylated nanoparticles in water at low Gd concentration was assessed showing a higher T-1 relaxation rate compared to conventional Gd-DTPA chelates and comparable to that of undoped Gd2O3 nanoparticles.

  • 12.
    Söderlind, Fredrik
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Fysikalisk Kemi. Linköpings universitet, Tekniska fakulteten.
    Fortin, Marc A.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska fakulteten.
    Petoral, Rodrigo M.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska fakulteten.
    Klasson, Anna
    Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Linköpings universitet, Hälsouniversitetet. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Veres, Teodor
    National Research Council of Canada .
    Engström, Maria
    Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Linköpings universitet, Hälsouniversitetet. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Uvdal, Kajsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska fakulteten.
    Käll, Per-Olov
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Fysikalisk Kemi. Linköpings universitet, Tekniska fakulteten.
    Colloidal synthesis and characterization of ultrasmall perovskite GdFeO3 nanocrystals2008Ingår i: Nanotechnology, ISSN 0957-4484, Vol. 19, nr 8, s. 085608-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Synthesis of very small (about 4 nm) perovskite structured gadolinium orthoferrite nanoparticles (GdFeO3) was performed by the polyol method. The material shows promising relaxivity properties and potential as a contrast agent in magnetic resonance imaging. The perovskite nanoparticles were characterized by x-ray diffraction, transmission electron microscopy, energy dispersive x-ray spectroscopy, Fourier transform infrared spectroscopy, magnetic resonance, and magnetization measurements. Upon heating in air at 800 °C for 3 h the size of the crystals increased to about 40 nm. The crystalline structure of the heat treated compound is in good agreement with perovskite GdFeO3 as the primary product. Contributions from various secondary phases were also identified, including one hitherto unknown phase with the suggested composition 'Gd3FeO6' and isostructural with Gd3GaO6. The novel 'Gd3FeO6' phase appears to be kinetically stabilized in the nano state.

  • 13.
    Uvdal, Kajsa
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik.
    Ahrén, Maria
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik.
    Selegård, Linnéa
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik.
    Abrikossova, Natalia
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik.
    Klasson, Anna
    Linköpings universitet, Hälsouniversitetet. Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Söderlind, Fredrik
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi.
    Engström, Maria
    Linköpings universitet, Hälsouniversitetet. Linköpings universitet, Institutionen för klinisk och experimentell medicin, Cellbiologi. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Käll, Per-Olov
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Fysikalisk Kemi.
    Functionalized Gd2O3 Nanoparticles to Be used for MRI Contrast Enhancement2008Ingår i: AVS,2008, 2008Konferensbidrag (Övrigt vetenskapligt)
  • 14.
    Uvdal, Kajsa
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik.
    Ahrén, Maria
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik.
    Söderlind, Fredrik
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi.
    Klasson, Anna
    Linköpings universitet, Hälsouniversitetet. Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiologi. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Vahlberg, Cecilia
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik.
    Petoral, Rodrigo Jr
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik.
    Engström, Maria
    Linköpings universitet, Hälsouniversitetet. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för klinisk och experimentell medicin, Cellbiologi.
    Käll, Per-Olov
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Fysikalisk Kemi.
    Functionalized rare earth nanocrystals for MRI contrast enhancement2006Ingår i: e-MRS,2006, 2006Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

      

1 - 14 av 14
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf