Öppna denna publikation i ny flik eller fönster >>2016 (Engelska)Ingår i: Mathematische Nachrichten, ISSN 0025-584X, E-ISSN 1522-2616, Vol. 289, nr 17-18, s. 2192-2222Artikel i tidskrift (Refereegranskat) Published
Abstract [en]
The paper studies a class of Ornstein-Uhlenbeck processes on the classical Wiener space. These processes are associated with a diffusion type Dirichlet form whose corresponding diffusion operator is unbounded in the Cameron- Martin space. It is shown that the distributions of certain finite dimensional Ornstein-Uhlenbeck processes converge weakly to the distribution of such an infinite dimensional Ornstein-Uhlenbeck process. For the infinite dimensional processes, the ordinary scalar quadratic variation is calculated. Moreover, relative to the stochastic calculus via regularization, the scalar as well as the tensor quadratic variation are derived. A related Itô formula is presented.
Ort, förlag, år, upplaga, sidor
Wiley-VCH Verlagsgesellschaft, 2016
Nyckelord
Infinite dimensional Ornstein-Uhlenbeck process, quadratic variation, Itô formula, weak approximation
Nationell ämneskategori
Matematik
Identifikatorer
urn:nbn:se:liu:diva-122181 (URN)10.1002/mana.201500146 (DOI)000389128100008 ()
Anmärkning
At the time for thesis presentation publication was in status: Manuscript.
2015-10-232015-10-232017-12-01Bibliografiskt granskad