liu.seSearch for publications in DiVA
Change search
Refine search result
123 101 - 102 of 102
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 101.
    Wolrath, Helen
    et al.
    Linköping University, Department of Molecular and Clinical Medicine, Clinical Microbiology. Linköping University, Faculty of Health Sciences.
    Forsum, Urban
    Linköping University, Department of Molecular and Clinical Medicine, Clinical Microbiology. Linköping University, Faculty of Health Sciences.
    Larsson, Per-Göran
    Linköping University, Department of Molecular and Clinical Medicine, Clinical Microbiology. Linköping University, Faculty of Health Sciences.
    Borén, Hans
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Analysis of bacterial vaginosis-related amines in vaginal fluid by gas chromatography and mass spectrometry2001In: Journal of Clinical Microbiology, ISSN 0095-1137, E-ISSN 1098-660X, Vol. 39, no 11, p. 4026-4031Article in journal (Refereed)
    Abstract [en]

    The presence of various amines in vaginal fluid from women with malodorous vaginal discharge has been reported before. The investigations have used several techniques to identify the amines. However, an optimized quantification, together with a sensitive analysis method in connection with a diagnostic procedure for vaginal discharge, including the syndrome of bacterial vaginosis, as defined by the accepted “gold standard,” has not been done before. We now report a sensitive gas chromatographic and mass spectrometric method for identifying the amines isobutylamine, phenethylamine, putrescine, cadaverine, and tyramine in vaginal fluid. We used weighted samples of vaginal fluid to obtain a correct quantification. In addition, a proper diagnosis was obtained using Gram-stained smears of the vaginal fluid that were Nugent scored according to the method of Nugent et al. (R. P. Nugent et al., J. Clin. Microbiol., 29:297–301, 1991). We found that putrescine, cadaverine, and tyramine occurred in high concentrations in vaginal fluid from 24 women with Nugent scores between 7 and 10. These amines either were not found or were found only in very low concentrations in vaginal fluid from women with Nugent scores of 0 to 3. There is a strong correlation between bacterial vaginosis and the presence of putrescine, cadaverine, and tyramine in high concentrations in vaginal fluid.

  • 102.
    Wolrath, Helen
    et al.
    Linköping University, Department of Molecular and Clinical Medicine, Clinical Microbiology. Linköping University, Faculty of Health Sciences.
    Ståhlbom, Bengt
    Linköping University, Department of Molecular and Clinical Medicine, Occupational and Environmental Medicine. Linköping University, Faculty of Health Sciences.
    Hallén, Anders
    Department of Dermatology and Venereology, University Hospital, Uppsala, Sweden.
    Forsum, Urban
    Linköping University, Department of Molecular and Clinical Medicine, Clinical Microbiology. Linköping University, Faculty of Health Sciences.
    Trimethylamine and trimethylamine oxide levels in normal women and women with bacterial vaginosis reflect a local metabolism in vaginal secretion as compared to urine2005In: Acta Pathologica, Microbiologica et Immunologica Scandinavica (APMIS), ISSN 0903-4641, E-ISSN 1600-0463, Vol. 113, no 7-8, p. 513-516Article in journal (Refereed)
    Abstract [en]

    The smell of rotten fish is one of the characteristics of bacterial vaginosis (BV), and is due to trimethylamine (TMA). Trimethylamine can be found in human urine, although most of it occurs as the nonvolatile oxide (TMAO) form. The fraction TMA/TMAO can be expected to be the same in different body fluids if no local production of TMA occurs. In women with BV, TMAO in the vaginal fluid is expected to be chemically reduced by the local bacterial flora to the much more odorous TMA. We have therefore studied the local vaginal production of TMA in vaginal secretion compared to the general TMA-TMAO metabolism that was measured in urine using gas chromatography. Both vaginal fluid and random urine samples were collected from women, with and without BV, attending a Swedish clinic for sexually transmitted diseases, and these samples were analyzed for TMA and TMAO. The results show that a local production of TMA occurs in the vagina that is not part of the general metabolism of TMA-TMAO.

123 101 - 102 of 102
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf