liu.seSearch for publications in DiVA
Change search
Refine search result
1234567 101 - 150 of 428
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 101.
    Chen, Zhe
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Peng, Ru Lin
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Zhou, Jinming
    Division of Production and Materials Engineering, Lund University, Lund, Sweden.
    M'Saoubi, Rachid
    Seco Tools AB, Fagersta, Sweden.
    Gustafsson, David
    Siemens Industrial Turbomachinery AB, Finspång, Sweden.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Effect of Machining Parameters on Cutting Force and Surface Integrity when High-Speed Turning AD730™ with PCBN Tools2019In: The International Journal of Advanced Manufacturing Technology, ISSN 0268-3768, E-ISSN 1433-3015, Vol. 100, no 9-12, p. 2601-2615Article in journal (Refereed)
    Abstract [en]

    The novel wrought nickel-based superalloy, AD 730™, is a good candidate material for turbine disc applications at high temperatures beyond 650 °C. The present study focuses on the machining performance of this newly developed alloy under high-speed turning conditions with advanced PCBN tools. Meanwhile, the machined surface integrity as influenced by cutting speed and feed rate was also investigated. The surface integrity was thoroughly characterized in terms of surface roughness and morphology, machining-induced plastic deformation, white layer formation, and residual stresses. It has been found that the cutting speed and feed rate had a strong effect on the cutting forces and resultant surface integrity. The cutting forces required when machining the alloy were gradually reduced with increasing cutting speed, while at 250 m/min and above, the flank tool wear became stronger which led to increased thrust force and feed force. A higher feed rate, on the other hand, always resulted in higher cutting forces. Increasing the cutting speed and feed rate in general deteriorated the surface integrity. High cutting speeds within the range of 200–250 m/min and a low feed rate of 0.1 mm/rev are preferable in order to implement more cost-effective machining without largely reducing the surface quality achieved. The formation of tensile residual stresses on the machined AD 730™, however, could be of a concern where good fatigue resistance is critical.

  • 102.
    Chen, Zhe
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Widman, Olle
    Ytstruktur Arboga AB, Arboga, Sweden.
    Gustafsson, David
    Siemens Industrial Turbomachinery AB, Finspång, Sweden.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Effect of Cooling and Shot Peening on Residual Stresses and Fatigue Performance of Milled Inconel 7182017In: Residual Stresses 2016 ICRS 10 / [ed] T.M. Holden, O. Muránsky, and L. Edwards, 2017, Vol. 2, p. 13-18Conference paper (Refereed)
    Abstract [en]

    The present study highlights the effect of cooling and post-machining surface treatment of shot peening on the residual stresses and corresponding fatigue life of milled superalloy Inconel 718. It was found that tensile residual stresses were created on the milled surface, regardless of the use of coolant, however, the wet milling operation led to a lower surface tension and a reduced thickness of the tensile layer. The shot peening performed on the dry-milled specimens completely annihilated the surface tensile residual tresses and introduced a high level of surface compression. A comparable fatigue life for the wet-milled specimens was obtained as compared with the specimens prepared by dry milling. This is very likely attributed to that the milling-induced surface damage with respect to cracked non-metallic inclusions is the predominant cause of the fatigue failure. The presence of the compressive layer induced by shot peening resulted in a significant increase of the fatigue life and strength, while the extent to which the lifetime was prolonged was decreased as the applied load was increased.

  • 103.
    Chen, Zhe
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Zhou, Jinming
    Division of Production and Materials Engineering, Lund university.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Bushlya, Volodymyr
    Division of Production and Materials Engineering, Lund university.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    ECCI and EBSD Study of Surbsurface Damages in High Speed Turning of Inconel 718 under Different Tools and Machining Parameters2013Conference paper (Refereed)
  • 104.
    Chen, Zhe
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Zhou, Jinming
    Division of Production and Materials Engineering,Lunds University, Sweden.
    Peng, Ru Lin
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    M'Saoubi, R
    Seco Tools AB, Fagersta, Sweden.
    Gustafsson, David
    Siemens Industrial Turbomachinery AB, Finspång, Sweden.
    Palmert, Frans
    Siemens Industrial Turbomachinery AB, Finspång.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Plastic Deformation and Residual Stress in High Speed Turning of AD730™ Nickel-based Superalloy with PCBN and WC Tools2018In: Procedia CIRP 71 (2018) pp 440-445, Elsevier, 2018, Vol. 71, p. 440-445Conference paper (Refereed)
    Abstract [en]

    A higher gas turbine efficiency can be achieved by increasing the operating temperature in hot sections. AD730™ is a recently-developed wrought/cast nickel-based superalloy which can maintain excellent mechanical properties above 700 ℃. However, machining of AD730™ could be a difficult task like other nickel-based superalloys. Therefore, studies are needed with respect to the machinability of this new alloy.

    In this paper, high-speed turning was performed on AD730™ using polycrystalline cubic boron nitride (PCBN) tools and coated tungsten carbide (WC) tools at varied cutting speeds. The surface integrity was assessed in two important aspects, i.e., surface and sub-surface plastic deformation and residual stresses. The PCBN tools generally showed better performance compared with the WC tools since it led to reduced machining time without largely compromising the surface integrity achieved. The optimal cutting speed was identified in the range of 200-250 m/min when using the PCBN tools, which gives rise to a good combination of machining efficiency and surface integrity. The further increase of the cutting speed to 300 m/min resulted in severe and deep plastic deformation. Meanwhile, a continuous white layer was formed at the machined surface. When turning with the WC tools, the increased cutting speed from 80 m/min to 100 m/min showed very little effect with respect to the plastic deformation on the machined surface. It was found that tensile residual stresses were developed on all machined surfaces no matter when the PCBN or WC tools were used, and the surface tension was generally increased with increasing cutting speed. The tensile layer might need to be modified by e.g., post-machining surface treatments such as shot peening, if taking good fatigue performance into consideration.

  • 105.
    Cong, D Y
    et al.
    School of Materials and Metallurgy, Northeastern University, Shenyang, China.
    Wang, Yandong
    Key Lab for Anisotropy & Texture of Mater., Northeastern Univ., Shenyang, China.
    Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials . Linköping University, The Institute of Technology.
    Zetterström, P
    The Studsvik Neutron Research Laboratory, Uppsala University.
    Zhao, X
    School of Materials and Metallurgy, Northeastern University, Shenyang, China.
    Liaw, P K
    Dept of Materials Science and Eng, The University of Tennessee, Knoxville, USA.
    Zuo, L
    School of Materials and Metallurgy, Northeastern University, Shenyang, China.
    Crystal structures and textures in the hot-forged Ni-Mn-Ga shape memory alloys2006In: Metallurgical and Materials Transactions. A, ISSN 1073-5623, E-ISSN 1543-1940, Vol. 37A, no 5, p. 1397-1403Article in journal (Refereed)
    Abstract [en]

    Three ferromagnetic shape-memory alloys with the chemical compositions of Ni53Mn25Ga22, Ni48Mn30Ga22, and Ni48Mn25Ga22Co5 were prepared by the induction-melting and hot-forging process. The crystal structures were investigated by the neutron powder diffraction technique, showing that Ni53Mn25Ga22 and Ni48Mn25Ga22Co5 have a tetragonal, I4/mmm martensitic structure at room temperature, while Ni48Mn30Ga22 has a cubic, L2(1) austenitic structure at room temperature. The development of textures in the hot-forged samples shows the in-plane plastic flow anisotropy from the measured pole figures by means of the neutron diffraction technique. Significant texture changes were observed for the Ni48Mn25Ga22Co5 alloy after room temperature deformation, which is due to the deformation-induced rearrangements of martensitic variants. An excellent shape-memory effect (SME) with a recovery ratio of 74 pct was reported in this Ni48Mn25Ga22Co5 polycrystalline alloy after annealing above the martensitic transformation temperature, and the "shape-memory" influence also occurs in the distributions of grain orientations.

  • 106.
    Cong, D Y
    et al.
    School of Materials and Metallurgy, Northeastern University, Shenyang, China.
    Wang, Yandong
    Key Lab for Anisotropy & Texture of Mater., Northeastern Univ., Shenyang, China.
    Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials . Linköping University, The Institute of Technology.
    Zetterström, P
    The Studsvik Neutron Research Laboratory, Uppsala University.
    Zhao, X
    School of Materials and Metallurgy, Northeastern University, Shenyang, China.
    Liaw, P K
    Dept of Materials Science and Eng, The University of Tennessee, Knoxville, USA.
    Zuo, L
    School of Materials and Metallurgy, Northeastern University, Shenyang, China.
    Crystal Structures and Textures in the Hot-Froged Ni-Mn-Ga Shape Memory Alloys2006In: Metallurgical and Materials Transactions. A, ISSN 1073-5623, E-ISSN 1543-1940, Vol. 37A, no 5, p. 1397-1403Article in journal (Refereed)
  • 107. Cong, DY
    et al.
    Wang, YD
    Zetterstrom, P
    Peng, Ru
    Linköping University, The Institute of Technology. Linköping University, Department of Management and Engineering, Engineering Materials .
    Delaplane, R
    Zhao, X
    Zuo, L
    Crystal structures and textures of hot forged Ni48Mn30Ga22 alloy investigated by neutron diffraction technique2005In: Materials Science and Technology, ISSN 0267-0836, E-ISSN 1743-2847, Vol. 21, no 12, p. 1412-1416Article in journal (Refereed)
    Abstract [en]

    A ferromagnetic shape memory alloy of Ni48Mn30Ga22 prepared by induction melting was successfully hot forged. Strong textures and a large anisotropy of in plane plastic flow were developed during the hot forging process. The crystal structures, both in austenitic and martensitic states, were investigated by means of neutron powder diffraction technique. The result suggests that Ni48Mn30Ga22 has a cubic L2(1) Heusler structure at room temperature, the same as that in the stoichiometric Ni2MnGa. When cooled to 243 K, the Ni48Mn30Ga22 alloy changes into a seven layered orthorhombic martensitic structure. No substantial change of the neutron diffraction pattern was observed upon further cooling to 19 K, indicating that there is no intermartensitic transformation in the investigated alloy, which is different from the transformation processes in the Ni-Mn-Ga alloys with higher martensitic transformation temperatures.

  • 108.
    Cruchley, S
    et al.
    University of Birmingham, England .
    Evans, H E.
    University of Birmingham, England .
    Taylor, M P.
    University of Birmingham, England .
    Hardy, M C.
    Rolls Royce Plc, England .
    Stekovic, Svjetlana
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Chromia layer growth on a Ni-based superalloy: Sub-parabolic kinetics and the role of titanium2013In: Corrosion Science, ISSN 0010-938X, E-ISSN 1879-0496, Vol. 75, p. 58-66Article in journal (Refereed)
    Abstract [en]

    Oxidation of the Ni-based superalloy RR1000 has been undertaken in air over the temperature range 600-900 degrees C for times up to 5000 h. The surface oxide consisted of a protective Ti-doped chromia layer but with rutile forming on its outer surface. Sub-surface oxidation of Al and Ti also occurred. The thickening kinetics of the chromia layer were sub-parabolic with initial rates around two orders of magnitude higher than expected for Ti-free chromia. This enhancement and the sub-parabolic kinetics are accounted for by Ti-doping of the chromia layer. Over time the enhancement reduced because of Ti-depletion in the alloy.

  • 109.
    Cruchley, S.
    et al.
    University of Birmingham, England .
    Sun, J.F.
    University of Birmingham, England .
    Taylor, M.P.
    University of Birmingham, England .
    Evans, H.E.
    University of Birmingham, England .
    Bowen, P.
    University of Birmingham, England .
    Sumner, J.
    Cranfield University, England .
    Nicholls, J.R.
    Cranfield University, England .
    Simms, N.J.
    Cranfield University, England .
    Shollock, B.A.
    University of London Imperial Coll Science Technology and Med, England .
    Chater, R.J.
    University of London Imperial Coll Science Technology and Med, England .
    Foss, B.J.
    University of London Imperial Coll Science Technology and Med, England .
    Hardy, M.C.
    Rolls Royce PLC, England .
    Stekovic, Svjetlana
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Cautionary note on use of focused ion beam sectioning as technique for characterising oxidation damage in Ni based superalloys2014In: Materials at High Temperature, ISSN 0960-3409, E-ISSN 1878-6413, Vol. 31, no 1, p. 27-33Article in journal (Refereed)
    Abstract [en]

    Previous observations on Ni based superalloys, obtained through the use of focused ion beam (FIB) sample preparation and imaging, have reported the presence of subsurface voids after oxidation. In this present study, oxidised specimens of the Ni based superalloy, RR1000, were subjected to conventional sample preparation as well as both dual and single beam FIB preparation, with the aim of re-examining the previous observations of subsurface void formation. It is clear from FIB preparations that features previously interpreted as networks of voids have been demonstrated to be internal oxides by varying the sample tilt angles and imaging signal using either secondary electrons (SEs) or secondary ions (SIs). Conventional preparation methods illustrate the presence of subsurface alumina intrusions and the absence of voids, supporting previous evidence. The positive identification of voids and oxides by FIB can be complex and prone to misinterpretation and thus, the use of several imaging conditions and tilt angles must be used, along with conventional preparation methods, to confirm or refute the presence of voids underneath oxides.

  • 110.
    Deng, Dunyong
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Additively Manufactured Inconel 718: Microstructures and Mechanical Properties2018Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Additive manufacturing (AM), also known as 3D printing, has gained significant interest in aerospace, energy, automotive and medical industries due to its capabilities of manufacturing components that are either prohibitively costly or impossible to manufacture by conventional processes. Among the various additive manufacturing processes for metallic components, electron beam melting (EBM) and selective laser melting (SLM) are two of the most widely used powder bed based processes, and have shown great potential for manufacturing high-end critical components, such as turbine blades and customized medical implants. The futures of the EBM and SLM are doubtlessly promising, but to fully realize their potentials there are still many challenges to overcome.

    Inconel 718 (IN718) is a nickel-base superalloy and has impressive combination of good mechanical properties and low cost. Though IN718 is being mostly used as a turbine disk material now, the initial introduction of IN718 was to overcome the poor weldability of superalloys in 1960s, since sluggish precipitation of strengthening phases λ’/λ’’ enables good resistance to strain-age cracking during welding or post weld heat treatment. Given the similarity between AM and welding processes, IN718 has been widely applied to the metallic AM field to facilitate the understandings of process-microstructure-property relationships.

    The work presented in this licentiate thesis aims to better understand microstructures and mechanical properties EBM and SLM IN718, which have not been systematically investigated. Microstructures of EBM and SLM IN718 have been characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and correlated with the process conditions. Monotonic mechanical properties (e.g., Vickers microhardness and tensile properties) have also been measured and rationalized with regards to the microstructure evolutions before and after heat treatments.

    For EBM IN718, the results show the microstructure is not homogeneous but dependant on the location in the components, and the anisotropic mechanical properties are probably attributed to alignment of porosities rather than texture. Post heat treatment can slightly increase the mechanical strength compared to the as-manufactured condition but does not alter the anisotropy. SLM IN718 shows significantly different microstructure and mechanical properties to EBM IN718. The as-manufactured SLM IN718 has very fine dendritic microstructure and Laves phases in the interdendrites, and is “work-hardened” by the residual strains and dislocations present in the material. Mechanical properties are different between horizontally and vertically built samples, and heat treatment can minimize this difference. Results from this licentiate thesis provide the basis for the further research on the cyclic mechanical properties of EBM and SLM IN718, which would be the focus of following phase of the Ph.D. research.

    List of papers
    1. Microstructure and Anisotropic Mechanical Properties of EBM Manufactued Inconel 718 and Effects of Post Heat Treatment
    Open this publication in new window or tab >>Microstructure and Anisotropic Mechanical Properties of EBM Manufactued Inconel 718 and Effects of Post Heat Treatment
    2017 (English)In: Materials Science & Engineering: A, ISSN 0921-5093, E-ISSN 1873-4936, Vol. 693, p. 151-163Article in journal (Refereed) Published
    Abstract [en]

    Materials manufactured with electron beam melting (EBM) have different microstructures and properties to those manufactured using conventional manufacturing methods. A detailed study of the microstructures and mechanical properties of Inconel 718 manufactured with EBM was performed in both as-manufactured and heat-treated conditions. Different scanning strategies resulted in different microstructures: contour scanning led to heterogeneous grain morphologies and weak texture, while hatch scanning resulted in predominantly columnar grains and strong 〈001〉 building direction texture. Precipitates in the as-manufactured condition included γ′, γ″, δ  , TiN and NbC, among which considerable amounts of γ″ yielded relatively high hardness and strength. Strong texture, directionally aligned pores and columnar grains can lead to anisotropic mechanical properties when loaded in different directions. Heat treatments increased the strength and led to different δ precipitation behaviours depending on the solution temperatures, but did not remove the anisotropy. Ductility seemed to be not significantly affected by heat treatment, but instead by the NbC and defects inherited from manufacturing. The study thereby might provide the potential processing windows to tailor the microstructure and mechanical properties of EBM IN718.

    Place, publisher, year, edition, pages
    Elsevier, 2017
    Keywords
    Electron beam melting; Nickel based superalloy; Microstructure; Anisotropy; Mechanical properties; Heat treatments
    National Category
    Materials Engineering
    Identifiers
    urn:nbn:se:liu:diva-137289 (URN)10.1016/j.msea.2017.03.085 (DOI)000401384400018 ()2-s2.0-85016252903 (Scopus ID)
    Note

    Funding agencies: Sandvik Machining Solutions AB in Sandviken, Sweden; Faculty Grant SFO-MAT-LiU at Linkoping University [2009-00971]; Chinese Scholarship Council; Agora Materiae

    Available from: 2017-05-10 Created: 2017-05-10 Last updated: 2019-11-07Bibliographically approved
  • 111.
    Deng, Dunyong
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering. 202100-3096.
    On the Microstructures and Anisotropic Mechanical Behaviours of Additively Manufactured IN7182019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Additive manufacturing (AM), also known as 3D printing, offers great design flexibility for manufacturing components with complex geometries, and has attracted significant interest in the aero and energy industries in the past decades. Among the commercial AM processes, selective laser melting (SLM) and electron beam melting (EBM) are the two most widely used ones for metallic materials. Inconel 718 (IN718) is a nickel-base superalloy and has impressive combination of good mechanical properties, weldability and low cost. Due to its excellent weldability, IN718 has been intensively applied in the AM filed, to gain more understanding of the AM processes and fully realize AM’s potentials.

    The study objects in the present thesis include both EBM and SLM IN718. The solidification conditions in EBM and SLM are very different and are different to that of conventional cast, leading to unique microstructures mechanical properties. Therefore, this thesis aims to gain better understanding of the microstructures and anisotropic mechanical behaviours of both EBM and SLM IN718, by detailed characterizations and by comparisons with the forged counterpart.

    The as-built microstructure of EBM IN718 is spatially dependent: the periphery (contour) region has a mixture of equiaxed and columnar grains, while the bulk (hatch) region has columnar grains elongated along the building direction; the last solidified region close to the top sample surface shows segregation and Laves phases, otherwise the rest of the whole sample is well homogenized. Differently, the as-built microstructure of SLM IN718 is spatially homogeneous: the grains is rather equiaxed and with subgrain cell structures. These microstructures also respond differently to the standard heat treatment routines for the conventional counterparts.

    Anisotropic mechanical properties are evident in the room temperature tensile tests and high temperature dwell-fatigue tests. The anisotropic tensile properties of EBM IN718 at room temperature are more likely due to the directional alignment of porosities along the building direction rather than the strong crysiii tallographic texture of 100 _ building direction. While for SLM IN718, the anisotropy is more likely attributed to the different extents of ‘work-hardening’ or dislocations accumulated between the horizontally and vertically built specimens. The anisotropy mechanisms in dwell-fatigue crack propagations at 550 C for EBM and SLM IN718 are identical: higher effective stress intensity factor when intergranular cracking path is perpendicular to the loading direction, but lower effective stress intensity factor when intergranular cracking path is parallel to or slightly deviated from the loading direction.

    The 2160s dwell-fatigue cracking behaviours at 550 C are of significant interest for AM IN718, of which test condition is similar to that of real service for IN718 disk in turbine engine. Generally, after conventional or short-term heat treatments, EBM IN718 shows better dwell-fatigue cracking resistance than SLM IN718. The damage mechanism is different for EBM and SLM IN718: the intergranular cracking in EBM IN718 is due to environmentally assisted grain boundary attack, while creep damage is active for SLM IN718. The considerably ‘deformed’ microstructure, specifically the subgrain cell structures in SLM IN718 resulted from the manufacturing process, is believed to activate creep damage even at a low temperature of 550 C. And for SLM IN718, heat treatment routine must be carefully established to alter the ‘deformed’ microstructure for better time dependent cracking resistance at elevated temperature.

    List of papers
    1. Microstructure and Anisotropic Mechanical Properties of EBM Manufactued Inconel 718 and Effects of Post Heat Treatment
    Open this publication in new window or tab >>Microstructure and Anisotropic Mechanical Properties of EBM Manufactued Inconel 718 and Effects of Post Heat Treatment
    2017 (English)In: Materials Science & Engineering: A, ISSN 0921-5093, E-ISSN 1873-4936, Vol. 693, p. 151-163Article in journal (Refereed) Published
    Abstract [en]

    Materials manufactured with electron beam melting (EBM) have different microstructures and properties to those manufactured using conventional manufacturing methods. A detailed study of the microstructures and mechanical properties of Inconel 718 manufactured with EBM was performed in both as-manufactured and heat-treated conditions. Different scanning strategies resulted in different microstructures: contour scanning led to heterogeneous grain morphologies and weak texture, while hatch scanning resulted in predominantly columnar grains and strong 〈001〉 building direction texture. Precipitates in the as-manufactured condition included γ′, γ″, δ  , TiN and NbC, among which considerable amounts of γ″ yielded relatively high hardness and strength. Strong texture, directionally aligned pores and columnar grains can lead to anisotropic mechanical properties when loaded in different directions. Heat treatments increased the strength and led to different δ precipitation behaviours depending on the solution temperatures, but did not remove the anisotropy. Ductility seemed to be not significantly affected by heat treatment, but instead by the NbC and defects inherited from manufacturing. The study thereby might provide the potential processing windows to tailor the microstructure and mechanical properties of EBM IN718.

    Place, publisher, year, edition, pages
    Elsevier, 2017
    Keywords
    Electron beam melting; Nickel based superalloy; Microstructure; Anisotropy; Mechanical properties; Heat treatments
    National Category
    Materials Engineering
    Identifiers
    urn:nbn:se:liu:diva-137289 (URN)10.1016/j.msea.2017.03.085 (DOI)000401384400018 ()2-s2.0-85016252903 (Scopus ID)
    Note

    Funding agencies: Sandvik Machining Solutions AB in Sandviken, Sweden; Faculty Grant SFO-MAT-LiU at Linkoping University [2009-00971]; Chinese Scholarship Council; Agora Materiae

    Available from: 2017-05-10 Created: 2017-05-10 Last updated: 2019-11-07Bibliographically approved
    2. On the formation of microstructural gradients in a nickel-base superalloy during electron beam melting
    Open this publication in new window or tab >>On the formation of microstructural gradients in a nickel-base superalloy during electron beam melting
    2018 (English)In: Materials & design, ISSN 0264-1275, E-ISSN 1873-4197, Vol. 160, p. 251-261Article in journal (Refereed) Published
    Abstract [en]

    Electron beam melting (EBM) is one of the most widely used additive manufacturing (AM) methods for metallic components and has demonstrated great potential to fabricate high-end components in the aerospace and energy industries. The thermal condition within a melt pool and the complicated thermal cycles during the EBM process are of interest but not yet well-understood, and will significantly affect the microstructural homogeneity of as-manufactured nickel-base superalloy components. To establish the thermal profile evolution during electron beam melting of nickel-base superalloys, Inconel 718 (IN718) is manufactured and characterized in the as-manufactured condition, on account of its representative segregation and precipitation behaviours. The microstructure gradient within a build, specifically the Laves phase volume fraction evolution, is rationalized with the solidification condition and the following in-situ annealing. Precipitations of carbide/nitride/carbonitride, delta and gamma/gamma are also discussed. Hardness is measured and correlated to the Laves phase volume fraction evolution and the precipitation of gamma/gamma . The results of this study will (i) shed light on microstructure evolution during the EBM process with regard to thermal history; and (ii) deepen the current understandings of solidification metallurgy for additive manufacturing of Ni-base superalloys. (C) 2018 Elsevier Ltd. All rights reserved.

    Place, publisher, year, edition, pages
    ELSEVIER SCI LTD, 2018
    Keywords
    Electron beam melting; Inconel 718; Laves; Solidification; In-situ annealing; Thermal history
    National Category
    Manufacturing, Surface and Joining Technology
    Identifiers
    urn:nbn:se:liu:diva-153669 (URN)10.1016/j.matdes.2018.09.006 (DOI)000453008100023 ()
    Note

    Funding Agencies|Sandvik Machining Solutions AB in Sandviken, Sweden; Linkoping University [SFO-MAT-LiU#2009-00971]; Chinese Scholarship Council; Agora Materiae; Swedish Governmental Agency for Innovation Systems (Vinnova) [2016-02675]

    Available from: 2019-01-07 Created: 2019-01-07 Last updated: 2019-11-07
    3. Microstructure and mechanical properties of Inconel 718 produced by selective laser melting: Sample orientation dependence and effects of post heat treatments
    Open this publication in new window or tab >>Microstructure and mechanical properties of Inconel 718 produced by selective laser melting: Sample orientation dependence and effects of post heat treatments
    2018 (English)In: Materials Science & Engineering: A, ISSN 0921-5093, E-ISSN 1873-4936, Vol. 713, p. 294-306Article in journal (Refereed) Published
    Abstract [en]

    Inconel 718 produced by selective laser melting (SLM) has been characterized with focus on the microstructure, the dependence of sample orientation on the mechanical properties and the effects of post heat treatments. The as-manufactured IN718 has a very fine cellular-dendritic structure with fine Laves phases precipitating in the interdendritic region, and electron backscatter diffraction (EBSD) analysis shows that both the vertically and horizontally built samples have relatively weak texture. The vertically built samples show lower tensile strength but higher ductility than the horizontally built samples, and the mechanism is shown to be partly due to the crystallographic feature but more importantly due to the different amount of residual stress and dislocations accumulated in these two kinds of samples. Applying heat treatments can significantly increase the strength while decrease the ductility correspondingly, and difference in yield strength between the vertically and horizontally built samples decreases with increasing the heat treatment temperatures, mainly due to the removal of residual stress and dislocations.

    Place, publisher, year, edition, pages
    ELSEVIER SCIENCE SA, 2018
    Keywords
    Selective laser melting; Nickel based superalloy; Microstructure; Mechanical properties; Crystallographic orientation; Residual stress
    National Category
    Other Materials Engineering
    Identifiers
    urn:nbn:se:liu:diva-145799 (URN)10.1016/j.msea.2017.12.043 (DOI)000425557900036 ()
    Note

    Funding Agencies|Siemens AG in Berlin, Germany [IN718]; Linkoping University [2009-00971]; Chinese Scholarship Council; Agora Materiae

    Available from: 2018-03-22 Created: 2018-03-22 Last updated: 2019-11-07
    4. On the dwell-fatigue crack propagation behavior of a high strength superalloy manufactured by electron beam melting
    Open this publication in new window or tab >>On the dwell-fatigue crack propagation behavior of a high strength superalloy manufactured by electron beam melting
    2019 (English)In: Materials Science & Engineering: A, ISSN 0921-5093, E-ISSN 1873-4936, Vol. 760, p. 448-457Article in journal (Refereed) Published
    Abstract [en]

    To demonstrate the reliability of additively manufactured superalloys for critical turbine engine components, dynamic tests simulating in-service condition are required. The present study aims to study the dwell-fatigue crack propagation behaviors of IN718 manufactured via electron beam melting (EBM). The textured and columnar-grained microstructure of EBM IN718 shows anisotropic dwell-fatigue cracking resistance when loading axis is aligned parallel and perpendicular to the columnar grains. High and low angle grain boundaries interact differently with the dwell-fatigue cracking path. The effect of different heat treatments on the cracking behavior is also discussed. The dwell-fatigue crack propagation rate of EBM IN718 is compared with forged IN718 under both dwell-fatigue test condition and pure fatigue test condition. The superiority of dwell-fatigue cracking resistance of EBM IN718 to forged IN718 is shown and discussed.

    Place, publisher, year, edition, pages
    ELSEVIER SCIENCE SA, 2019
    Keywords
    IN718; Electron beam melting (EBM); Dwell; Fatigue; Crack propagation
    National Category
    Other Materials Engineering
    Identifiers
    urn:nbn:se:liu:diva-159148 (URN)10.1016/j.msea.2019.06.013 (DOI)000474501200044 ()
    Note

    Funding Agencies|Sandvik Machining Solutions AB in Sandviken, Sweden; Chinese Scholarship Council; Swedish Governmental Agency for Innovation Systems (Vinnova) [2016-05175]; Faculty grant SFO-MAT-LiU at Linkoping University [2009-00971]; Agora Materiae

    Available from: 2019-07-30 Created: 2019-07-30 Last updated: 2019-11-07
  • 112.
    Deng, Dunyong
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Peng, Ru Lin
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Söderberg, Hans
    Microstructural Heterogeneity Along the Building Direction of Inconel 718 Produced by Electron Beam Melting (EBM)2017Conference paper (Refereed)
  • 113.
    Deng, Dunyong
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Peng, Ru Lin
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Söderberg, Hans
    Sandvik Machining Solutions AB, Sandviken, Sweden.
    Microstructure and Anisotropic Mechanical Properties of EBM Manufactued Inconel 718 and Effects of Post Heat Treatment2017In: Materials Science & Engineering: A, ISSN 0921-5093, E-ISSN 1873-4936, Vol. 693, p. 151-163Article in journal (Refereed)
    Abstract [en]

    Materials manufactured with electron beam melting (EBM) have different microstructures and properties to those manufactured using conventional manufacturing methods. A detailed study of the microstructures and mechanical properties of Inconel 718 manufactured with EBM was performed in both as-manufactured and heat-treated conditions. Different scanning strategies resulted in different microstructures: contour scanning led to heterogeneous grain morphologies and weak texture, while hatch scanning resulted in predominantly columnar grains and strong 〈001〉 building direction texture. Precipitates in the as-manufactured condition included γ′, γ″, δ  , TiN and NbC, among which considerable amounts of γ″ yielded relatively high hardness and strength. Strong texture, directionally aligned pores and columnar grains can lead to anisotropic mechanical properties when loaded in different directions. Heat treatments increased the strength and led to different δ precipitation behaviours depending on the solution temperatures, but did not remove the anisotropy. Ductility seemed to be not significantly affected by heat treatment, but instead by the NbC and defects inherited from manufacturing. The study thereby might provide the potential processing windows to tailor the microstructure and mechanical properties of EBM IN718.

  • 114.
    Deng, Dunyong
    et al.
    Linköping University, Department of Management and Engineering. Linköping University, Faculty of Science & Engineering.
    Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Brodin, Håkan
    Siemens Ind Turbomachinery AB, Sweden.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Microstructure and mechanical properties of Inconel 718 produced by selective laser melting: Sample orientation dependence and effects of post heat treatments2018In: Materials Science & Engineering: A, ISSN 0921-5093, E-ISSN 1873-4936, Vol. 713, p. 294-306Article in journal (Refereed)
    Abstract [en]

    Inconel 718 produced by selective laser melting (SLM) has been characterized with focus on the microstructure, the dependence of sample orientation on the mechanical properties and the effects of post heat treatments. The as-manufactured IN718 has a very fine cellular-dendritic structure with fine Laves phases precipitating in the interdendritic region, and electron backscatter diffraction (EBSD) analysis shows that both the vertically and horizontally built samples have relatively weak texture. The vertically built samples show lower tensile strength but higher ductility than the horizontally built samples, and the mechanism is shown to be partly due to the crystallographic feature but more importantly due to the different amount of residual stress and dislocations accumulated in these two kinds of samples. Applying heat treatments can significantly increase the strength while decrease the ductility correspondingly, and difference in yield strength between the vertically and horizontally built samples decreases with increasing the heat treatment temperatures, mainly due to the removal of residual stress and dislocations.

  • 115.
    Deng, Dunyong
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    On the dwell-fatigue crack propagation behavior of a high strength superalloy manufactured by electron beam melting2019In: Materials Science & Engineering: A, ISSN 0921-5093, E-ISSN 1873-4936, Vol. 760, p. 448-457Article in journal (Refereed)
    Abstract [en]

    To demonstrate the reliability of additively manufactured superalloys for critical turbine engine components, dynamic tests simulating in-service condition are required. The present study aims to study the dwell-fatigue crack propagation behaviors of IN718 manufactured via electron beam melting (EBM). The textured and columnar-grained microstructure of EBM IN718 shows anisotropic dwell-fatigue cracking resistance when loading axis is aligned parallel and perpendicular to the columnar grains. High and low angle grain boundaries interact differently with the dwell-fatigue cracking path. The effect of different heat treatments on the cracking behavior is also discussed. The dwell-fatigue crack propagation rate of EBM IN718 is compared with forged IN718 under both dwell-fatigue test condition and pure fatigue test condition. The superiority of dwell-fatigue cracking resistance of EBM IN718 to forged IN718 is shown and discussed.

  • 116.
    Deng, Dunyong
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Soderberg, Hans
    Sandvik Machining Solut AB, Sweden.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    On the formation of microstructural gradients in a nickel-base superalloy during electron beam melting2018In: Materials & design, ISSN 0264-1275, E-ISSN 1873-4197, Vol. 160, p. 251-261Article in journal (Refereed)
    Abstract [en]

    Electron beam melting (EBM) is one of the most widely used additive manufacturing (AM) methods for metallic components and has demonstrated great potential to fabricate high-end components in the aerospace and energy industries. The thermal condition within a melt pool and the complicated thermal cycles during the EBM process are of interest but not yet well-understood, and will significantly affect the microstructural homogeneity of as-manufactured nickel-base superalloy components. To establish the thermal profile evolution during electron beam melting of nickel-base superalloys, Inconel 718 (IN718) is manufactured and characterized in the as-manufactured condition, on account of its representative segregation and precipitation behaviours. The microstructure gradient within a build, specifically the Laves phase volume fraction evolution, is rationalized with the solidification condition and the following in-situ annealing. Precipitations of carbide/nitride/carbonitride, delta and gamma/gamma are also discussed. Hardness is measured and correlated to the Laves phase volume fraction evolution and the precipitation of gamma/gamma . The results of this study will (i) shed light on microstructure evolution during the EBM process with regard to thermal history; and (ii) deepen the current understandings of solidification metallurgy for additive manufacturing of Ni-base superalloys. (C) 2018 Elsevier Ltd. All rights reserved.

  • 117.
    Deng, Dunyong
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Saarimäki, Jonas
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Söderberg, Hans
    AB Sandvik Coromant, Sandviken.
    Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Brodin, Håkan
    Siemens Industrial Turbomachinery AB, Finspång.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Microstructural Characterization of AS-Manufactured and Heat Treated Electron Beam Melted Inconel 7182016In: Materials Science and Technology 2016 (MS&T16): Proceedings, Warrendale, PA: Materials Science & Technology , 2016, p. 105-112Conference paper (Refereed)
    Abstract [en]

    As manufactured and heat treated electron beam melted Inconel 718 exhibit inhomogeneous grain morphologies, mainly equiaxed close to the surface and more elongated columnar grains in the bulk. Different processing settings i.e., contouring in the surface region and hatching in the bulk region are responsible for differences in grain morphologies and textures, which are characterized using the SEM techniques electron contrast channeling imagine (ECCI) and electron backscattering diffraction (EBSD). Niobium carbides prefer to nucleate at TiN and are found to be in the grain growth direction. Regarding processing conditions, defects, such as porosities and segregations are discussed, as well as differences in microstructure emphasizing on grain morphologies and precipitates with regards to heat treatment and hardness indentation.

  • 118.
    Deng, Jiangning
    et al.
    Northeastern University.
    Yang, Yanling
    Northeastern University.
    Wang, Yandong
    Northeastern University.
    Chen, Jingeng
    Northeastern University.
    Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials . Linköping University, The Institute of Technology.
    Yuan, Chenchen
    Northeastern University.
    Bouzy, Emmanuel
    University of Metz.
    Fundenberger , Jean-Jacques
    University of Metz.
    Texture Evolution in Heavily Cold-Rolled FeCo-2V Alloy during Annealing2009In: JOURNAL OF MATERIALS SCIENCE and TECHNOLOGY, ISSN 1005-0302 , Vol. 25, no 2, p. 219-224Article in journal (Refereed)
    Abstract [en]

    The recrystallization texture evolution in heavily cold-rolled (93%) FeCo-2V alloy with annealing temperature and time was investigated by X-ray diffraction and electron backscatter diffraction. It was found that the orientation density of a-fiber texture component fluctuates with increasing annealing temperature and time. The transmission electron microscopy images show that abundant precipitates appear inside the recrystallized grains and around the grain boundaries. The amount and size of the precipitates also vary with annealing temperature and time. The enhancement of the a-fiber coincides well with the increase of number density of fine precipitates, indicating that the fine precipitates facilitate the development of a-fiber. The annealing texture evolution observed in the FeCo alloy could be attributed to the facilitating effect of the precipitates on the development of a-fiber and the ordering process.

  • 119. Deng, JN
    et al.
    Bouzy, E
    Fundenberger, JJ
    Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials . Linköping University, The Institute of Technology.
    He, CS
    Zhang, Z F
    Shenyang National Laboratory for Materials Science, Inst of Metal Research, Chinese Academy of Sciences, Shenyang, China.
    Yang, Yanling
    Key Lab for Anisotropy & Texture of Mater., Northeastern Univ., Shenyang, China.
    Textures and local textures in severely cold-rolled and annealed ultra-fine-grained FeCo alloy2005In: Materials Science Forum, ISSN 0255-5476, E-ISSN 1662-9752, Vol. 495-497, p. 731-736Article in journal (Refereed)
    Abstract [en]

    We find that a severely rolled FeCo alloy has anomalous enhancement of the rotated-cube {100}< 011 > texture component and a decrease of the {111} components after annealing, which is contrast to the recrystalliization behaviors reported in traditional BCC metals and alloys. The local texture measurements show that two kinds of grains with obviously different orientations, i.e. {100} and {111}, are heterogeneously distributed in the deformed specimen and the migration of high-angle grain boundaries is observed after annealing in the disordering temperature region.

  • 120.
    Dugic, Izudin
    Linköping University, Department of Management and Engineering, Engineering Materials . Linköping University, The Institute of Technology.
    The mechanisms of metal expansion penetration during solidification of grey cast iron2006Doctoral thesis, monograph (Other academic)
    Abstract [en]

    The production of high quality castings requires the casting surface to be clean and free from defects. One type of defect often found is caused by metal penetration into the sand mould. Metal penetration is a casting surface condition resulting from either physical, mechanical and/or thermochemical reactions or a combination of these at the mould–metal interface. The metal penetrates into the voids between the sand grains to various depths without displacing the grains, thus yielding a phase of sand grains surrounded by metal and frequently by mould-metal reaction products. The present work is devoted to investigating the mechanisms of metal expansion penetration during solidification of grey cast iron.

    The phenomenon of metal expansion penetration has been examined experimentally. A series of test castings were produced at two foundries, to study the influence of chemical composition, the casting temperature and the addition of inoculants with respect to both primary and eutectic phases.

    The experiments show that the type and amount of inoculant, the casting temperature and the chemical composition influence the metal expansion penetration.

    Two major types of metal expansion penetration mechanisms are suggested with respect to the nucleation and growth of the primary and eutectic phases. The expansion penetration mechanisms found in the experimental work were also identified on complex shaped industrial castings such as clutch components and cylinder heads.

    The entire casting process was simulated using commercial software, and in which nucleation and growth of all relevant phases was considered in order to investigate the solidification characteristics and porosity formation in the casting. A good correlation between the simulation and experiments on real castings was found.

    Density and volume change in grey cast iron seem to play a decisive roll in the occurrence of metal expansion penetration. Laboratory measurements of density variations are difficult. A novel method of modeling the density variation in cast iron has been introduced.

  • 121.
    Ericsson, Torsten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Residual Stresses Produced by Quenching of Martensitic Steels2014In: Comprehensive Materials Processing, Elsevier, 2014, p. 271-298Chapter in book (Other academic)
  • 122.
    Eriksson, Robert
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    High-temperature degradation of plasma sprayed thermal barrier coating systems2011Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Thermal barrier coating systems (TBCs) are used in gas turbines to prevent high-temperature degradation of metallic materials in the combustor and turbine. One of the main concerns regarding TBCs is poor reliability, and accurate life prediction models are necessary in order to fully utilise the beneficial effects of TBCs. This research project aims at developing deeper understanding of the degradation and failure mechanisms acting on TBCs during high temperature exposure, and to use this knowledge to improve life assessments of TBCs. The present work includes a study on the influence of coating interface morphology on the fatigue life of TBCs and a study on the influence of some different heat treatments on the adhesive properties of TBCs.

    The influence of coating interface morphology on fatigue life has been studied both experimentally and by modelling. Large interface roughness has been found experimentally to increase fatigue life of TBCs. The modelling work do, to some extent, capture this behaviour. It is evident, from the study, that interface morphology has a large impact on fatigue life of TBCs.

    Three thermal testing methods, that degrade TBCs, have been investigated: isothermal oxidation, furnace cycling and burner rig test. The degraded TBCs have been evaluated by adhesion tests and microscopy. The adhesion of TBCs has been found to depend on heat treatment type and length. Cyclic heat treatments, (furnace cycling and burner rig test), lower the adhesion of TBCs while isothermal oxidation increases adhesion. The fracture surfaces from the adhesion tests reveal that failure strongly depends on the pre-existing defects in the TBC.

    List of papers
    1. Fracture Mechanical Modelling of a Plasma Sprayed TBC System
    Open this publication in new window or tab >>Fracture Mechanical Modelling of a Plasma Sprayed TBC System
    2009 (English)In: Advanced Ceramic Coatings and Interfaces IV / [ed] Dongming Zhu and Hua-Tay Lin, Westerville, OH, United States: American Ceramic Society Inc. , 2009, Vol. 30, no 3, p. 113-124Conference paper, Published paper (Refereed)
    Abstract [en]

    A thermal barrier coating (TBC) system subjected to thermal cycling will develop a microcrack partem near the interface between the metallic bond coat and the ceramic top coat. These small cracks link up and form internal TBC delaminations during repeated heating / cooling. After a longer time period, the internal delamination cracks will form a larger spallation damage, where the TBC is detached from the underlying material. Since cracks are initiated in multiple sites of the thermal barrier coating, the damage is initially considered to be governed by local stress conditions. The purpose of the present work is to compare experimental data with predictions of a physically based fatigue life model. The present study has been performed on plasma-sprayed TBCs where the interface geometry has been varied. In the present work, calculation of fatigue life is done for a number of cases under thermal fatigue loading. Different interface geometries are compared in order to understand the influence of variations in the TC/BC interface roughness on oxidation behaviour and thermal fatigue life. Thermal fatigue tests indicate that an increased surface roughness is beneficial from a fatigue life point of view.

    Place, publisher, year, edition, pages
    Westerville, OH, United States: American Ceramic Society Inc., 2009
    Series
    Ceramic Engineering and Science Proceedings, ISSN 0196-6219 ; 3
    Keywords
    Fracture mechanical modelling, thermal barrier coating, plasma spraying, thermal cycling, metallic bond coat
    National Category
    Materials Chemistry
    Identifiers
    urn:nbn:se:liu:diva-57007 (URN)10.1002/9780470584293.ch12 (DOI)000281124900012 ()978-0-470-45753-5 (ISBN)
    Conference
    33rd International Conference on Advanced Ceramics and Composites, Daytona Beach, FL, USA, January 18-23, 2009
    Available from: 2010-06-14 Created: 2010-06-09 Last updated: 2016-05-17Bibliographically approved
    2. Influence of isothermal and cyclic heat treatments on the adhesion of plasma sprayed thermal barrier coatings
    Open this publication in new window or tab >>Influence of isothermal and cyclic heat treatments on the adhesion of plasma sprayed thermal barrier coatings
    Show others...
    2011 (English)In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 205, no 23-24, p. 5422-5429Article in journal (Refereed) Published
    Abstract [en]

    The adhesion of thermal barrier coatings (TBC) has been studied using the standard method described in ASTM C633, which makes use of a tensile test machine to measure the adhesion. The studied specimens consist of air plasma sprayed (APS) TBC deposited on disc-shaped substrate coupons of Ni-base alloy Hastelloy X. The bond coat (BC) is of a NiCoCrAlY type and the top coat (TC) consists of yttria–stabilised–zirconia. Before the adhesion test, the specimens were subjected to three different heat treatments: 1) isothermal oxidation at 1100 °C up to 290 h, 2) thermal cycling fatigue (TCF) at 1100 °C up to 300 cycles and 3) thermal shock at ~ 1140 °C BC/TC interface temperature up to 1150 cycles. The adhesion of the specimens is reported and accompanied by a microstructural study of the BC and the thermally grown oxides (TGO), as well as a discussion on the influence of BC/TC interfacial damage on adhesion properties of TBC. The adhesion was found to vary with heat treatment, as well as with heat treatment length.

    Place, publisher, year, edition, pages
    Elsevier, 2011
    Keywords
    Thermal barrier coating, TBC, adhesion, thermal cycling fatigue, thermal shock, burner rig test
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-67882 (URN)10.1016/j.surfcoat.2011.06.007 (DOI)000294103700025 ()
    Available from: 2011-05-02 Created: 2011-05-02 Last updated: 2017-12-11Bibliographically approved
    3. Fractographic and microstructural study of isothermally and cyclically heat treated thermal barrier coatings
    Open this publication in new window or tab >>Fractographic and microstructural study of isothermally and cyclically heat treated thermal barrier coatings
    Show others...
    2014 (English)In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 243, p. 82-90Article in journal (Refereed) Published
    Abstract [en]

    The fracture surfaces from adhesion tested thermal barrier coatings (TBC) have been studied by scanning electron microscopy. The adhesion test have been made using the standard method described in ASTM 633, which makes use of a tensile test machine to measure the adhesion. The studied specimens consist of air plasma sprayed (APS) TBC deposited on disc-shaped substrates of Hastelloy X. The bond coat (BC) is of NiCoCrAlY type and the top coat (TC) consists of yttria–stabilised–zirconia. Before the adhesion test, the specimens were subjected to three different heat treatments: 1) isothermal oxidation 2) thermal cycling fatigue (TCF) and 3) burner rig test (BRT). The fracture surfaces of the adhesion tested specimens where characterised. A difference in fracture mechanism were found for the different heat treatments. Isothermal oxidation gave fracture mainly in the top coat while the two cyclic heat treatments gave increasing amount of BC/TC interface fracture with number of cycles. Some differences could also be seen between the specimens subjected to burner rig test and furnace cycling.

    Keywords
    Thermal barrier coating, TBC, fractography, adhesion, thermal cycling, burner rig
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-67883 (URN)10.1016/j.surfcoat.2012.02.040 (DOI)000335542100014 ()
    Note

    On the day of the defence date of the Thesis the status of this article was Manuscript.

    Available from: 2011-05-02 Created: 2011-05-02 Last updated: 2017-12-11Bibliographically approved
    4. Fractographic Study of Adhesion Tested Thermal Barrier Coatings Subjected to Isothermal and Cyclic Heat Treatments
    Open this publication in new window or tab >>Fractographic Study of Adhesion Tested Thermal Barrier Coatings Subjected to Isothermal and Cyclic Heat Treatments
    Show others...
    2011 (English)In: Procedia Engineering, ISSN 1877-7058, E-ISSN 1877-7058, Vol. 10, p. 195-200Article in journal (Refereed) Published
    Abstract [en]

    Thermal barrier coatings (TBC) are used in gas turbines to protect metallic components from high temperature. In the present study adhesion tests have been conducted on APS TBC coated specimens subjected to different heat treatments. Isothermal and cyclic heat treatments have been conducted at temperatures around 1100 °C and the adhesion have been tested using the method described in ASTM C633. The fracture surfaces resulting from the adhesion test have been investigated and the fracture behavior has been characterized. A difference in fracture mechanism between the three heat treatments has been found. The two cyclic heat treatments give fracture in the top coat/bond coat interface while isothermal heat treatment gives fracture in the top coat.

    Place, publisher, year, edition, pages
    Elsevier: , 2011
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-70541 (URN)10.1016/j.proeng.2011.04.035 (DOI)
    Available from: 2011-09-12 Created: 2011-09-12 Last updated: 2017-12-08
  • 123.
    Eriksson, Robert
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Thermal Barrier Coatings: Durability Assessment and Life Prediction2013Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Thermal barrier coating (TBC) systems are coating systems containing a metallic bond coat and a ceramic top coat. TBCs are used in gas turbines for thermal insulation and oxidation resistance. Life prediction of TBCs is important as high-temperature exposure degrades the coatings through mechanisms such as thermal fatigue and the formation and growth of thermally grown oxides (TGOs). This thesis presents research on durability assessment and life prediction of air plasma sprayed TBCs.

    The adhesion of thermal barrier coatings subjected to isothermal oxidation, thermal cycling fatigue and thermal shock was studied. The adhesion strength and fracture characteristics were found to vary with heat treatment type.

    The influence of interdiffusion between bond coat and substrate was studied on TBCs deposited on two different substrates. The thermal fatigue life was found to differ between the two TBC systems. While fractography and nanoindentation revealed no differences between the TBC systems, the oxidation kinetics was found to differ for non-alumina oxides.

    The influence of bond coat/top coat interface roughness on the thermal fatigue life was studied; higher interface roughness promoted longer thermal fatigue life. Different interface geometrieswere tried in finite element crack growth simulations, and procedures for creating accurate interface models were suggested.

    The influence of water vapour and salt deposits on the oxidation/corrosion of a NiCoCrAlY coating and a TBC were studied. Salt deposits gave thicker TGOs and promoted an Y-rich phase. The effect of salt deposits was also evident for TBC coated specimens.

    A microstructure-based life model was developed using the Thermo-Calc software. The model included coupled oxidation-diffusion, as well as diffusion blocking due to the formation of internal oxides and pores. The model predicted Al-depletion in acceptable agreement with experimental observations.

    List of papers
    1. Influence of isothermal and cyclic heat treatments on the adhesion of plasma sprayed thermal barrier coatings
    Open this publication in new window or tab >>Influence of isothermal and cyclic heat treatments on the adhesion of plasma sprayed thermal barrier coatings
    Show others...
    2011 (English)In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 205, no 23-24, p. 5422-5429Article in journal (Refereed) Published
    Abstract [en]

    The adhesion of thermal barrier coatings (TBC) has been studied using the standard method described in ASTM C633, which makes use of a tensile test machine to measure the adhesion. The studied specimens consist of air plasma sprayed (APS) TBC deposited on disc-shaped substrate coupons of Ni-base alloy Hastelloy X. The bond coat (BC) is of a NiCoCrAlY type and the top coat (TC) consists of yttria–stabilised–zirconia. Before the adhesion test, the specimens were subjected to three different heat treatments: 1) isothermal oxidation at 1100 °C up to 290 h, 2) thermal cycling fatigue (TCF) at 1100 °C up to 300 cycles and 3) thermal shock at ~ 1140 °C BC/TC interface temperature up to 1150 cycles. The adhesion of the specimens is reported and accompanied by a microstructural study of the BC and the thermally grown oxides (TGO), as well as a discussion on the influence of BC/TC interfacial damage on adhesion properties of TBC. The adhesion was found to vary with heat treatment, as well as with heat treatment length.

    Place, publisher, year, edition, pages
    Elsevier, 2011
    Keywords
    Thermal barrier coating, TBC, adhesion, thermal cycling fatigue, thermal shock, burner rig test
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-67882 (URN)10.1016/j.surfcoat.2011.06.007 (DOI)000294103700025 ()
    Available from: 2011-05-02 Created: 2011-05-02 Last updated: 2017-12-11Bibliographically approved
    2. Fractographic and microstructural study of isothermally and cyclically heat treated thermal barrier coatings
    Open this publication in new window or tab >>Fractographic and microstructural study of isothermally and cyclically heat treated thermal barrier coatings
    Show others...
    2014 (English)In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 243, p. 82-90Article in journal (Refereed) Published
    Abstract [en]

    The fracture surfaces from adhesion tested thermal barrier coatings (TBC) have been studied by scanning electron microscopy. The adhesion test have been made using the standard method described in ASTM 633, which makes use of a tensile test machine to measure the adhesion. The studied specimens consist of air plasma sprayed (APS) TBC deposited on disc-shaped substrates of Hastelloy X. The bond coat (BC) is of NiCoCrAlY type and the top coat (TC) consists of yttria–stabilised–zirconia. Before the adhesion test, the specimens were subjected to three different heat treatments: 1) isothermal oxidation 2) thermal cycling fatigue (TCF) and 3) burner rig test (BRT). The fracture surfaces of the adhesion tested specimens where characterised. A difference in fracture mechanism were found for the different heat treatments. Isothermal oxidation gave fracture mainly in the top coat while the two cyclic heat treatments gave increasing amount of BC/TC interface fracture with number of cycles. Some differences could also be seen between the specimens subjected to burner rig test and furnace cycling.

    Keywords
    Thermal barrier coating, TBC, fractography, adhesion, thermal cycling, burner rig
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-67883 (URN)10.1016/j.surfcoat.2012.02.040 (DOI)000335542100014 ()
    Note

    On the day of the defence date of the Thesis the status of this article was Manuscript.

    Available from: 2011-05-02 Created: 2011-05-02 Last updated: 2017-12-11Bibliographically approved
    3. Influence of substrate material on the life of atmospheric plasmas prayed thermal barrier coatings
    Open this publication in new window or tab >>Influence of substrate material on the life of atmospheric plasmas prayed thermal barrier coatings
    Show others...
    2013 (English)In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 232, no 15, p. 795-803Article in journal (Refereed) Published
    Abstract [en]

    Thermal barrier coatings (TBCs) are used in gas turbines to prolong the life of the underlying substrates and to increase the efficiency of the turbines by enabling higher combustion temperatures. TBCs may fail during service due to thermal fatigue or through the formation of non-protective thermally grown oxides (TGOs). This study compares two atmospheric plasma sprayed (APS) TBC systems comprising of two identical TBCs deposited on two different substrates (Haynes 230 and Hastelloy X). The thermal fatigue life was found to differ between the two TBC systems. The interdiffusion of substrate elements into the coating was more pronounced in the TBC system with shorter life, however, very few of the substrate elements (only Mn and to some extent Fe) formed oxides in the bond coat/top coat interface. Fractography revealed no differences in the fracture behaviour of the TBCs; the fracture occurred, in both cases, to about 60% in the top coat close to the interface and the remainder in the interface. Nanoindentation revealed only small differences in mechanical properties between the TBC systems and a finite element crack growth analysis showed that such small differences did not cause any significant change in the crack driving force. The oxidation kinetics was found to be similar for both TBC systems for the formation of Al2O3 but differed for the kinetics of non-Al2O3 TGOs where the TBC system with shortest life had a faster formation of non-Al2O3 TGOs caused by a faster Al depletion. The difference in non-Al2O3 TGO growth kinetics was considered to be the main reason for the difference in life.

    Place, publisher, year, edition, pages
    Elsevier, 2013
    Keywords
    Thermal barrier coating; TBC; Substrate influence; Interdiffusion; Fatigue life; Oxidation kinetics
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-96810 (URN)10.1016/j.surfcoat.2013.06.101 (DOI)000327691300103 ()
    Available from: 2013-08-27 Created: 2013-08-27 Last updated: 2017-12-06Bibliographically approved
    4. TBC bond coat-top coat interface roughness: influence on fatigue life and modelling aspects
    Open this publication in new window or tab >>TBC bond coat-top coat interface roughness: influence on fatigue life and modelling aspects
    Show others...
    2013 (English)In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 236, p. 230-238Article in journal (Refereed) Published
    Abstract [en]

    Thermal barrier coatings (TBCs), when used in gas turbines, may fail through thermal fatigue, causing the ceramic top coat to spall off the metallic bond coat. The life prediction of TBCs often involves finite element modelling of the stress field close to the bond coat/top coat interface and thus relies on accurate modelling of the interface. The present research studies the influence of bond coat/top coat interface roughness on the thermal fatigue life of plasma sprayed TBCs. By using different spraying parameters, specimens with varying interface roughness were obtained. During thermal cycling it was found that higher interface roughness promoted longer thermal fatigue life. The interfaces were characterised by roughness parameters, such as Ra, Rq and Rq, as well as by autocorrelation, material ratio curves, probability plots and slope distribution. The variation of spray parameters was found to affect amplitude parameters, such as Ra, but not spacing parameters, such as RSm. Three different interface geometries were tried for finite element crack growth simulation: cosine, ellipse and triangular shape. The cosine model was found to be an appropriate interface model and a procedure for obtaining the necessary parameters, amplitude and wavelength, was suggested. The positive effect of high roughness on life was suggested to be due to a shift from predominantly interface failure, for low roughness, to predominantly top coat failure, for high roughness.

    Keywords
    thermal barrier coating, TBC, thermal cycling fatigue, interface, roughness, Ra
    National Category
    Engineering and Technology
    Identifiers
    urn:nbn:se:liu:diva-96811 (URN)10.1016/j.surfcoat.2013.09.051 (DOI)000329884300032 ()
    Available from: 2013-08-27 Created: 2013-08-27 Last updated: 2017-12-06Bibliographically approved
    5. Cyclic Hot Corrosion of Thermal Barrier Coatings and Overlay Coatings
    Open this publication in new window or tab >>Cyclic Hot Corrosion of Thermal Barrier Coatings and Overlay Coatings
    Show others...
    2013 (English)In: Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, GT2013, The American Society of Mechanical Engineers (ASME) , 2013, Vol. 4, p. 1-8Conference paper, Published paper (Refereed)
    Abstract [en]

    The influence, and interdependence, of water vapor and Na2SO4–50 mol% NaCl on the oxidation of a NiCoCrAlY coating and a thermal barrier coating (TBC) were studied at 750 °C. Water vapor was found to have a negligible effect on oxide composition, but influenced the oxide morphology on the NiCoCrAlY coating. Na2SO4–50 mol% NaCl deposits on the coatings influencedoxide composition, most notably by the promotion of a Y rich phase. The effect of Na2SO4–50 mol% NaCl deposits was also evident for the TBC coated specimen, where the formed metal/ceramic interface oxide was affected by salt reaching the interface by penetration of the zirconia TBC.

    Place, publisher, year, edition, pages
    The American Society of Mechanical Engineers (ASME), 2013
    National Category
    Materials Engineering
    Identifiers
    urn:nbn:se:liu:diva-95556 (URN)10.1115/GT2013-95526 (DOI)000361499900009 ()978-0-7918-5518-8 (ISBN)
    Conference
    ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, GT2013, San Antonio, Texas, USA, June 3-7, 2013
    Note

    Paper No. GT2013-95526

    Available from: 2013-07-08 Created: 2013-07-08 Last updated: 2016-05-13Bibliographically approved
    6. Modeling of the microstructural evolution and lifetime prediction of MCrAlX coatings on Nickel based superalloys in high temperature oxidation
    Open this publication in new window or tab >>Modeling of the microstructural evolution and lifetime prediction of MCrAlX coatings on Nickel based superalloys in high temperature oxidation
    Show others...
    2013 (English)In: Surface and Coatings Technology, Vol. 232, no 15, p. 204-215Article in journal (Refereed) Published
    Abstract [en]

    At high temperature, MCrAlX coatings are deposited onto the surface of superalloy to provide oxidation and corrosion protection by forming a thermalgrowing oxide scale. In this project, the oxidation behavior of an HVOF CoNiCrAlYSi coating on IN792 was studied in both isothermal oxidation (900, 1000 and 1100 °C) and thermal cycling (1100-100 °C). The microstructural evolution in the MCrAlX coatings after oxidation was investigated. It was found that Al-rich β phase is gradually consumed due to two effects: surface oxidation and coating-substrate interdiffusion. Some voids and oxides along the coating-substrate interface, or inside the coating, were considered to play a role in blocking the diffusion of alloying elements. Based on the microstructural observation, an oxidation-diffusion model was developed by using Matlab and DICTRA software to predict the lifetime of MCrAlX coatings. Several effects influencing the microstructural evolution were included: surface oxidation, coating-substrate interdiffusion and diffusion blocking. The results showed good agreement between the experimental composition profiles and modeling ones. Furthermore, by choosing suitable diffusion blocking factors, the accuracy of coating life prediction could be improved.

    Place, publisher, year, edition, pages
    Elsevier, 2013
    Keywords
    MCrAlX coating; HVOF; Life prediction; Interdiffusion; Oxidation; Diffusion blocking
    National Category
    Engineering and Technology Materials Engineering
    Identifiers
    urn:nbn:se:liu:diva-90013 (URN)10.1016/j.surfcoat.2013.05.008 (DOI)000327691300027 ()
    Available from: 2013-03-14 Created: 2013-03-14 Last updated: 2014-10-08Bibliographically approved
    7. Microstructure-based Life Prediction of Thermal Barrier Coatings
    Open this publication in new window or tab >>Microstructure-based Life Prediction of Thermal Barrier Coatings
    2014 (English)Conference paper, Published paper (Refereed)
    Abstract [en]

    The widespread use of thermal barrier coatings (TBC) in gas turbines stresses the importance of accurate life prediction models for TBCs. During service, the TBC may fail due to thermal fatigue or through the formation of thermally grown oxides (TGOs). The current paper presents a Thermo-Calc/Dictra-based approach to life prediction of isothermally oxidised atmospheric plasma sprayed (APS) TBCs. The β-phase depletion of the coating was predicted and compared to life prediction criteria based on TGO thickness and Al content in the coating. All tried life models underestimated the life of the coating where the β-depletion-based model was the most conservative.

    Place, publisher, year, edition, pages
    Trans Tech Publications Inc., 2014
    Keywords
    Thermal barrier coating, TBC, life prediction, isothermal oxidation, interdiffusion
    National Category
    Engineering and Technology Materials Engineering
    Identifiers
    urn:nbn:se:liu:diva-95554 (URN)10.4028/www.scientific.net/KEM.592-593.413 (DOI)000336694400091 ()
    Conference
    THERMEC,2-6 December, 2013, Las Vegas, USA
    Available from: 2013-07-08 Created: 2013-07-08 Last updated: 2018-10-08Bibliographically approved
  • 124.
    Eriksson, Robert
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Brodin, Håkan
    Siemens Industrial Turbomachinery AB, Finspong, Sweden.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Östergren, Lars
    GKN Aerospace Engine Systems, Trollhättan, Sweden.
    Li, Xin-Hai
    Siemens Industrial Turbomachinery AB, Finspong, Sweden.
    Cyclic Hot Corrosion of Thermal Barrier Coatings and Overlay Coatings2013In: Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, GT2013, The American Society of Mechanical Engineers (ASME) , 2013, Vol. 4, p. 1-8Conference paper (Refereed)
    Abstract [en]

    The influence, and interdependence, of water vapor and Na2SO4–50 mol% NaCl on the oxidation of a NiCoCrAlY coating and a thermal barrier coating (TBC) were studied at 750 °C. Water vapor was found to have a negligible effect on oxide composition, but influenced the oxide morphology on the NiCoCrAlY coating. Na2SO4–50 mol% NaCl deposits on the coatings influencedoxide composition, most notably by the promotion of a Y rich phase. The effect of Na2SO4–50 mol% NaCl deposits was also evident for the TBC coated specimen, where the formed metal/ceramic interface oxide was affected by salt reaching the interface by penetration of the zirconia TBC.

  • 125.
    Eriksson, Robert
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Brodin, Håkan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Östergren, Lars
    Volvo Aero Corporation, Trollhättan, Sweden.
    Li, Xin-Hai
    Siemens Industrial Turbomachinery AB, SE-61283 Finspång, Sweden.
    Fractographic and microstructural study of isothermally and cyclically heat treated thermal barrier coatings2014In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 243, p. 82-90Article in journal (Refereed)
    Abstract [en]

    The fracture surfaces from adhesion tested thermal barrier coatings (TBC) have been studied by scanning electron microscopy. The adhesion test have been made using the standard method described in ASTM 633, which makes use of a tensile test machine to measure the adhesion. The studied specimens consist of air plasma sprayed (APS) TBC deposited on disc-shaped substrates of Hastelloy X. The bond coat (BC) is of NiCoCrAlY type and the top coat (TC) consists of yttria–stabilised–zirconia. Before the adhesion test, the specimens were subjected to three different heat treatments: 1) isothermal oxidation 2) thermal cycling fatigue (TCF) and 3) burner rig test (BRT). The fracture surfaces of the adhesion tested specimens where characterised. A difference in fracture mechanism were found for the different heat treatments. Isothermal oxidation gave fracture mainly in the top coat while the two cyclic heat treatments gave increasing amount of BC/TC interface fracture with number of cycles. Some differences could also be seen between the specimens subjected to burner rig test and furnace cycling.

  • 126.
    Eriksson, Robert
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Management and Engineering, Engineering Materials.
    Brodin, Håkan
    Linköping University, The Institute of Technology. Linköping University, Department of Management and Engineering, Engineering Materials.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Östergren, Lars
    Volvo Aero Corporation, Trollhättan.
    Li, Xin-Hai
    Siemens, Industrial Turbomachinery AB, Finspång.
    Fractographic Study of Adhesion Tested Thermal Barrier Coatings Subjected to Isothermal and Cyclic Heat Treatments2011In: Procedia Engineering, ISSN 1877-7058, E-ISSN 1877-7058, Vol. 10, p. 195-200Article in journal (Refereed)
    Abstract [en]

    Thermal barrier coatings (TBC) are used in gas turbines to protect metallic components from high temperature. In the present study adhesion tests have been conducted on APS TBC coated specimens subjected to different heat treatments. Isothermal and cyclic heat treatments have been conducted at temperatures around 1100 °C and the adhesion have been tested using the method described in ASTM C633. The fracture surfaces resulting from the adhesion test have been investigated and the fracture behavior has been characterized. A difference in fracture mechanism between the three heat treatments has been found. The two cyclic heat treatments give fracture in the top coat/bond coat interface while isothermal heat treatment gives fracture in the top coat.

  • 127.
    Eriksson, Robert
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Brodin, Håkan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Östergren, Lars
    Volvo Aero Corporation, SE-46181 Trollhättan, Sweden.
    Li, Xin-Hai
    Siemens Industrial Turbomachinery AB, SE-61283 Finspång, Sweden.
    Influence of isothermal and cyclic heat treatments on the adhesion of plasma sprayed thermal barrier coatings2011In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 205, no 23-24, p. 5422-5429Article in journal (Refereed)
    Abstract [en]

    The adhesion of thermal barrier coatings (TBC) has been studied using the standard method described in ASTM C633, which makes use of a tensile test machine to measure the adhesion. The studied specimens consist of air plasma sprayed (APS) TBC deposited on disc-shaped substrate coupons of Ni-base alloy Hastelloy X. The bond coat (BC) is of a NiCoCrAlY type and the top coat (TC) consists of yttria–stabilised–zirconia. Before the adhesion test, the specimens were subjected to three different heat treatments: 1) isothermal oxidation at 1100 °C up to 290 h, 2) thermal cycling fatigue (TCF) at 1100 °C up to 300 cycles and 3) thermal shock at ~ 1140 °C BC/TC interface temperature up to 1150 cycles. The adhesion of the specimens is reported and accompanied by a microstructural study of the BC and the thermally grown oxides (TGO), as well as a discussion on the influence of BC/TC interfacial damage on adhesion properties of TBC. The adhesion was found to vary with heat treatment, as well as with heat treatment length.

  • 128.
    Eriksson, Robert
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Management and Engineering, Engineering Materials.
    Brodin, Håkan
    Linköping University, The Institute of Technology. Linköping University, Department of Management and Engineering, Engineering Materials.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Östergren, Lars
    Volvo Aero Corporation, Trollhättan.
    Li, Xin-Hai
    Siemens Industrial Turbomachinery AB, Finspång.
    The Influence of Substate Material on the Thermal Cycling Fatigue Life of Thermal Barrier Coating Systems2012In: ECF19 Proceedings, 2012Conference paper (Refereed)
  • 129.
    Eriksson, Robert
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Brodin, Håkan
    Linköping University, The Institute of Technology. Linköping University, Department of Management and Engineering, Engineering Materials.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Östergren, Lars
    GKN Aerospace Engine Systems, Trollhättan.
    Li, Xin-Hai
    Siemens Industrial Turbomachinery AB, Finspång.
    Thermal Cycling Fatigue of Thermal Barrier Coatings- Rig and Experiment Design2014Conference paper (Refereed)
    Abstract [en]

    Ceramic thermal barrier coatings are used for thermal insulation in gas turbines to protect metallic components from high-temperature degradation. The ceramic coating may, due to its different coefficient of thermal expansion, crack and spall off the metallic component, thus rendering the component unprotected against high-temperature. Thermal cycling rigs of various designs are used to evaluate the durability of thermal barrier coatings. The present paper reports the result from a round robin test including three thermal cycling rigs at different locations. To better understand the influence of rig design on the thermal cyclic lives of thermal barrier coatings, some test parameters, such as the material of the specimen table and the cooling rate, were varied in one of the rigs. Furthermore, two different specimen geometries, rectangular and disc-shaped, were tested. The specimen table material was found to greatly influence the cooling rate of the specimens, more so than variations in the cooling airflow. The rectangular specimens were found to be more sensitive to test setup than the disc-shaped specimens; under certain conditions, the rectangular specimens could be made to fracture from the long side, rather than the short side of the specimen edge, which shortened the thermal cyclic life of the coatings.

  • 130.
    Eriksson, Robert
    et al.
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    Chen, Zhe
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Jonnalagadda, Krisha Praveen
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    BENDING FATIGUE OF THERMAL BARRIER COATINGS2017In: PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2017, VOL 6, AMER SOC MECHANICAL ENGINEERS , 2017, article id V006T24A004Conference paper (Refereed)
    Abstract [en]

    Thermal barrier coatings (TBCs) are ceramic coatings used in gas turbines to lower the base metal temperature. During operation, the TBC may fail through, for example, fatigue. In the present study, a TBC system deposited on a Ni-base alloy was tested in tensile bending fatigue. The TBC system was tested as-sprayed and oxidized and two load levels were used. After interrupting the tests, at 10000-50000 cycles, the TBC tested at the lower load had extensive delamination damage whereas the TBC tested at the higher load was relatively undamaged. At the higher load, the TBC formed vertical cracks which relieved the stresses in the TBC and retarded delamination damage. A finite element analysis was used to establish a likely vertical crack configuration (spacing and depth) and it could be confirmed that the corresponding stress drop in the TBC should prohibit delamination damage at the higher load.

  • 131.
    Eriksson, Robert
    et al.
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    Chen, Zhe
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Jonnalagadda, Krisha Praveen
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Bending Fatigue of Thermal Barrier Coatings2017In: Journal of engineering for gas turbines and power, ISSN 0742-4795, E-ISSN 1528-8919, Vol. 139, no 12, p. 122101-1-122101-6Article in journal (Refereed)
    Abstract [en]

    Thermal barrier coatings (TBCs) are ceramic coatings used in gas turbines to lower the base metal temperature. During operation, the TBC may fail through, for example, fatigue. In this study, a TBC system deposited on a Ni-base alloy was tested in tensile bending fatigue. The TBC system was tested as-sprayed and oxidized, and two load levels were used. After interrupting the tests, at 10,000–50,000 cycles, the TBC tested at the lower load had extensive delamination damage, whereas the TBC tested at the higher load was relatively undamaged. At the higher load, the TBC formed vertical cracks which relieved the stresses in the TBC and retarded delamination damage. A finite element (FE) analysis was used to establish a likely vertical crack configuration (spacing and depth), and it could be confirmed that the corresponding stress drop in the TBC should prohibit delamination damage at the higher load.

  • 132.
    Eriksson, Robert
    et al.
    Siemens Industrial Turbomachinery AB, Berlin, Germany.
    Gupta, Mohit
    University West, Trollhättan, Sweden.
    Broitman, Esteban
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Jonnalagadda, Krisha Praveen
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Nylén, Per
    University West, Trollhättan, Sweden.
    Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Stresses and Cracking During Chromia-Spinel- NiO Cluster Formation in TBC Systems2015In: Journal of thermal spray technology (Print), ISSN 1059-9630, E-ISSN 1544-1016, Vol. 24, no 6, p. 1002-1014Article in journal (Refereed)
    Abstract [en]

    Thermal barrier coatings (TBC) are used in gas turbines to reduce the temperatures in the underlying substrate. There are several mechanisms that may cause the TBC to fail; one of them is cracking in the coating interface due to extensive oxidation. In the present study, the role of so called chromia-spinel-NiO (CSN) clusters in TBC failure was studied. Such clusters have previously been found to be prone to cracking. Finite element modeling was performed on a CSN cluster to find out at which stage of its formation it cracks and what the driving mechanisms of cracking are. The geometry of a cluster was obtained from micrographs and modeled as close as possible. Nanoindentation was performed on the cluster to get the correct Young’s moduli. The volumetric expansion associated with the formation of NiO was also included. It was found that the cracking of the CSN clusters is likely to occur during its last stage of formation as the last Ni-rich core oxidizes. Furthermore, it was shown that the volumetric expansion associated with the oxidation only plays a minor role and that the main reason for cracking is the high coefficient of thermal expansion of NiO.

  • 133.
    Eriksson, Robert
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Brodin, Håkan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Broitman, Esteban
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Östergren, Lars
    GKN Aerospace Engine Systems, Trollhättan, Sweden.
    Li, Xin-Hai
    Siemens Industrial Turbomachinery AB, Finspång, Sweden.
    Influence of substrate material on the life of atmospheric plasmas prayed thermal barrier coatings2013In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 232, no 15, p. 795-803Article in journal (Refereed)
    Abstract [en]

    Thermal barrier coatings (TBCs) are used in gas turbines to prolong the life of the underlying substrates and to increase the efficiency of the turbines by enabling higher combustion temperatures. TBCs may fail during service due to thermal fatigue or through the formation of non-protective thermally grown oxides (TGOs). This study compares two atmospheric plasma sprayed (APS) TBC systems comprising of two identical TBCs deposited on two different substrates (Haynes 230 and Hastelloy X). The thermal fatigue life was found to differ between the two TBC systems. The interdiffusion of substrate elements into the coating was more pronounced in the TBC system with shorter life, however, very few of the substrate elements (only Mn and to some extent Fe) formed oxides in the bond coat/top coat interface. Fractography revealed no differences in the fracture behaviour of the TBCs; the fracture occurred, in both cases, to about 60% in the top coat close to the interface and the remainder in the interface. Nanoindentation revealed only small differences in mechanical properties between the TBC systems and a finite element crack growth analysis showed that such small differences did not cause any significant change in the crack driving force. The oxidation kinetics was found to be similar for both TBC systems for the formation of Al2O3 but differed for the kinetics of non-Al2O3 TGOs where the TBC system with shortest life had a faster formation of non-Al2O3 TGOs caused by a faster Al depletion. The difference in non-Al2O3 TGO growth kinetics was considered to be the main reason for the difference in life.

  • 134.
    Eriksson, Robert
    et al.
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    Jonnalagadda, Krisha Praveen
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    A STUDY ON CRACK CONFIGURATIONS IN THERMAL BARRIER COATINGS2017In: PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2017, VOL 6, AMER SOC MECHANICAL ENGINEERS , 2017, article id V006T24A005Conference paper (Refereed)
    Abstract [en]

    Spallation of thermal barrier coatings subjected to thermal fatigue occurs through cracking in or close to the metal ceramic interface. To better match an experimentally observed damage progression curve with initially slow crack growth followed by rapid crack growth, a multitude of crack paths were modeled in a finite element analysis. Comparisons with experimental data enabled the most likely crack path to be identified. It was shown that the most likely failure type for the studied TBC system was crack initiation from pre-existing defects in the thermal barrier coating which propagated into the interface, leading to spallation. The results were used to fit a crack propagation model.

  • 135.
    Eriksson, Robert
    et al.
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Chen, Zhe
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    A low cycle fatigue life model for a shot peened gas turbine disc alloy2019In: International Journal of Fatigue, ISSN 0142-1123, E-ISSN 1879-3452, Vol. 124, p. 34-41Article in journal (Refereed)
    Abstract [en]

    Turbine disks in gas turbines are subjected to cyclic load at high temperature, making, especially the fir tree type blade attachments, susceptible to fatigue. Shot peening of the fir tree attachments may be used to increase the fatigue life by introducing compressive residual stresses. In the current study, both polished and shot peened notched specimens made from alloy 718 were subjected to low cycle fatigue at 450-550 degrees C. The shot peening generally increased the fatigue life, although the effect diminished for high loads. It was shown that the effect of shot peening could be handled as mean stress effects in a life model based on a Smith-Watson-Topper (SWT) type parameter, sigma(max)Delta epsilon/2. A material model which captured the mean stress was set up to get the SWT parameter at the notch root. It was shown that thermal relaxation of residual stresses and initial strain hardening from cold work could be excluded from the finite element analysis used to establish the mean stress; this since the plasticity in the first cycle dominated the plastic deformation of the specimen. Overall, the SWT-based life model worked satisfactorily. However, the prediction of correct mean stresses at 550 degrees C proved somewhat difficult as the degree of mean stress relaxation at this temperature varies widely in available literature data.

  • 136.
    Eriksson, Robert
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology. Siemens AG, Berlin, Germany.
    Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Li, Xin-Hai
    Siemens Industrial Turbomachinery AB, Finspång, Sweden.
    Influence of Cu and Zn Residues from Wire Electro-Discharge machining on TBS Durability2014In: Proceedings of the 2014 Energy Materials Conference  (CD-ROM), Wiley-TMS , 2014, p. 387-392Conference paper (Refereed)
    Abstract [en]

    Thermal barrier coatings (TBC) are deposited on superalloys in gas turbines to prolong component life. Electro-discharge machining (EDM) provides a convenient way of machining superalloys prior to coating deposition. Wire-EDM may leave residues from the wire material on the cut surface. A study was performed to investigate if brass residues from the EDM wire affected TBC oxidation behavior and spallation life. Isothermal oxidation at 1050 ℃ and thermal cycling at 1100 ℃ were performed on plasma sprayed TBCs on two different EDM cut substrates. No decrease in TBC life was detected due to the brass residues on the cut surfaces.

  • 137.
    Eriksson, Robert
    et al.
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    Simonsson, Kjell
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    Leidermark, Daniel
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Evaluation of notch effects in low cycle fatigue of alloy 718 using critical distances2018In: 12TH INTERNATIONAL FATIGUE CONGRESS (FATIGUE 2018), E D P SCIENCES , 2018, Vol. 165, article id 15001Conference paper (Refereed)
    Abstract [en]

    Gas turbine disks contain many notch-like features acting as stress raisers. The fatigue life based on the notch root stress may be overly conservative as the steep stress gradient in front of the notch may give rise to so-called notch support. In the current work, the theory of critical distances was applied to the prediction of the total fatigue life of low cycle fatigued, notched specimens made from alloy 718. The fatigue tests were performed at 450 degrees C and 550 degrees C. It was found that, for lives shorter than 5000-10000 cycles, the notched specimens had longer lives than would have been expected based on the notch root strain. For lives longer than 5000-10000 cycles, there were no notch support. The life prediction for notched specimens could be significantly improved by basing the prediction on the strain chosen some distance from the notch (the critical distance). An expression for calculating the critical distance based on the notch root strain was suggested.

  • 138.
    Eriksson, Robert
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Sjöström, Sören
    Linköping University, The Institute of Technology. Linköping University, Department of Management and Engineering, Solid Mechanics.
    Brodin, Håkan
    Linköping University, The Institute of Technology. Linköping University, Department of Management and Engineering, Engineering Materials.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Östergren, Lars
    GKN Aerospace Engine Systems, Trollhättan.
    Li, Xin-Hai
    Siemens Industrial Turbomachinery AB, Finspång.
    Influence of Interface Roughness on the Fatigue Life of Thermal Barrier Coatings2013Conference paper (Refereed)
  • 139.
    Eriksson, Robert
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Sjöström, Sören
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
    Brodin, Håkan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Östergren, Lars
    GKN Aerospace Engine Systems, Trollhättan, Sweden.
    Li, Xin-Hai
    Siemens Industrial Turbomachinery AB, Finspång, Sweden.
    TBC bond coat-top coat interface roughness: influence on fatigue life and modelling aspects2013In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 236, p. 230-238Article in journal (Refereed)
    Abstract [en]

    Thermal barrier coatings (TBCs), when used in gas turbines, may fail through thermal fatigue, causing the ceramic top coat to spall off the metallic bond coat. The life prediction of TBCs often involves finite element modelling of the stress field close to the bond coat/top coat interface and thus relies on accurate modelling of the interface. The present research studies the influence of bond coat/top coat interface roughness on the thermal fatigue life of plasma sprayed TBCs. By using different spraying parameters, specimens with varying interface roughness were obtained. During thermal cycling it was found that higher interface roughness promoted longer thermal fatigue life. The interfaces were characterised by roughness parameters, such as Ra, Rq and Rq, as well as by autocorrelation, material ratio curves, probability plots and slope distribution. The variation of spray parameters was found to affect amplitude parameters, such as Ra, but not spacing parameters, such as RSm. Three different interface geometries were tried for finite element crack growth simulation: cosine, ellipse and triangular shape. The cosine model was found to be an appropriate interface model and a procedure for obtaining the necessary parameters, amplitude and wavelength, was suggested. The positive effect of high roughness on life was suggested to be due to a shift from predominantly interface failure, for low roughness, to predominantly top coat failure, for high roughness.

  • 140.
    Eriksson, Robert
    et al.
    Linköping University, Department of Management and Engineering. Linköping University, Faculty of Science & Engineering.
    Yuan, Kang
    Linköping University, Department of Management and Engineering. Linköping University, Faculty of Science & Engineering.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    INTERSPLAT OXIDATION OF ATMOSPHERIC PLASMA SPRAYED MCRALY COATINGS2014In: PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2014, VOL 6, AMER SOC MECHANICAL ENGINEERS , 2014, no V006T22A017Conference paper (Refereed)
    Abstract [en]

    MCrAlY coatings and thermal barrier coatings (TBC) are commonly used in gas turbines to prolong the life of structural parts. The atmospheric plasma spray (APS) process yields coatings with a typical splat-on-splat structure which oxidizes at intersplat boundaries during high-temperature exposure. A study was performed to establish the influence of intersplat oxidation on Al depletion. It was found that the P -depletion based life may be overestimated by a factor of 1.8-18 if intersplat oxidation is not considered. Two different mechanisms of intersplat oxidation were observed: At high temperature (1050 degrees C), a fraction of the intersplat boundaries remained in contact with the coating surface and oxidized with the same kinetics as the surface oxides. At lower temperature (900 degrees C), intersplat oxidation occurred by considerable slower growth rates than surface oxidation. The mechanisms behind intersplat oxide growth was further studied by O diffusion calculations.

  • 141.
    Eriksson, Robert
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Yuan, Kang
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Microstructure-based Life Prediction of Thermal Barrier Coatings2014Conference paper (Refereed)
    Abstract [en]

    The widespread use of thermal barrier coatings (TBC) in gas turbines stresses the importance of accurate life prediction models for TBCs. During service, the TBC may fail due to thermal fatigue or through the formation of thermally grown oxides (TGOs). The current paper presents a Thermo-Calc/Dictra-based approach to life prediction of isothermally oxidised atmospheric plasma sprayed (APS) TBCs. The β-phase depletion of the coating was predicted and compared to life prediction criteria based on TGO thickness and Al content in the coating. All tried life models underestimated the life of the coating where the β-depletion-based model was the most conservative.

  • 142.
    Eriksson, Robert
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Yuan, Kang
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Li, Xin-Hai
    Siemens Industrial Turbomachinery AB, Finspång.
    Life Prediction of High-Temperature MCr AIY Coatings Based on Microstructural Observations2014In: THERMEC 2013, Trans Tech Publications Inc., 2014, Vol. 922, p. 143-148Conference paper (Refereed)
    Abstract [en]

    Thermal barrier coatings are commonly used in gas turbines for protection against high tem-perature and oxidation. Life prediction of oxidation protective coatingsmay be done bymicrostructure-based techniques such as -depletion based life criteria. In this study, a thermal barrier coating sys-tem, with an overlay NiCoCrAlY coating as bond coat, was oxidised up to 10000 h at 900 C. Themicrostructure was studied and related to Al depletion. It was found that a -depletion based lifecriterion could not be used for the studied coating composition and temperature as it would be tooconservative. A 0-depletion based model was instead suggested and supported by interdiffusion sim-ulation.

  • 143.
    Eriksson, Robert
    et al.
    Siemens AG, Energy Sector, Berlin, Germany.
    Yuan, Kang
    Linköping University, Department of Management and Engineering. Linköping University, Faculty of Science & Engineering.
    Li, Xin-Hai
    Siemens Industrial Turbomachinery AB, Finspång, Sweden.
    Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Corrosion of NiCoCrAIY Coatings and TBC Systems Subjected to Water Vapor and Sodium Sulfate2015In: Journal of thermal spray technology (Print), ISSN 1059-9630, E-ISSN 1544-1016, Vol. 24, no 6, p. 953-964Article in journal (Refereed)
    Abstract [en]

    Thermal barrier coating (TBC) systems are commonly used in gas turbines for protection against high-temperature degradation. Penetration of the ceramic top coat by corrosive species may cause corrosion damage on the underlying NiCoCrAlY bond coat and cause failure of the TBC system. In the current study, four oxidation/corrosion conditions were tried: (i) lab air, (ii) water vapor, (iii) sodium sulfate deposited on the specimens, and (iv) water vapor + sodium sulfate. The test was done at 750 °C in a cyclic test rig with 48 h cycles. The corrosion damage was studied on NiCoCrAlY-coated specimens, thin APS TBC specimens, and thick APS TBC specimens. Water vapor was found to have very minor influence on the oxidation, while sodium sulfate increased the TGO thickness both for NiCoCrAlY specimens and TBC-coated specimens; the influence of the TBC thickness was found to be very small. Sodium sulfate promoted thicker TGO; more Cr-rich TGO; the formation of Y oxides, and internally, Y sulfides; pore formation in the coating as well as in the substrate; and the formation of a Cr-depleted zone in the substrate.

  • 144.
    Eriksson, Robert
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Yuan, Kang
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Li, Xin-Hai
    Siemens Industrial Turbomachinery AB, Finspång, Sweden.
    Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    MCrAIY Coating Design Based on Oxidation-Diffusion Modelling. Part II: Lifing Aspects2014In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 253, p. 27-37Article in journal (Refereed)
    Abstract [en]

    Coatings from MCrAlY-type alloys are commonly used for oxidation and corrosion protection in gas turbines. As coated components are exposed to high temperature, the coating provides oxidation protection by the formation of an alumina scale, thus depleting the coating of Al which, eventually, will cause the coating to fail. The present study deals with MCrAlY alloy design from a lifing perspective. A previously developed coupled oxidation-diffusion model was used to study the influence of coating composition, substrate composition and oxidation temperature on the expected life of MCrAlY coatings. Eight model coatings, covering the wide range of MCrAlY compositions used industrially, and two model substrates, corresponding to a blade material and a combustor material, were evaluated by the oxidation-diffusion model. Three life criteria were tried: 1) beta-phase-depletion, 2) critical Al content at the coating surface, and 3) a critical TGO thickness. It was shown that the critical TGO thickness was the most conservative life criterion for high-Al coatings on high-Al substrates. For low-Cr and low-Co coatings, the beta-depletion criterion was usually the most conservative. For cases where beta-stability was high (such as at low temperatures and for coatings high in Cr, Co and Al) the critical-Al criterion was often the most conservative.

  • 145.
    Ewest, D.
    et al.
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering. Siemens Ind Turbomachinery AB, Sweden.
    Almroth, P.
    Siemens Ind Turbomachinery AB, Sweden.
    Sjodin, B.
    Siemens Ind Turbomachinery AB, Sweden.
    Simonsson, Kjell
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    Leidermark, Daniel
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    A modified compliance method for fatigue crack propagation applied on a single edge notch specimen2016In: International Journal of Fatigue, ISSN 0142-1123, E-ISSN 1879-3452, Vol. 92, p. 61-70Article in journal (Refereed)
    Abstract [en]

    Crack length measurements with high accuracy are often difficult to achieve during fatigue crack propagation testing under non-isothermal conditions. In this work a modified approach to the compliance method defined in e.g. ASTM E647 is described, which is better suited for high loads, varying temperatures and for taking the scatter in Youngs modulus into account. A numerical finite element study is performed for a single edge notch specimen, to investigate the influence of initiation locations on the accuracy of the method. The change in cracked area versus change in stiffness for three different cases are numerically shown to collapse to one curve, i.e. the result is not significantly affected by how the crack is initiated. The numerical study is compared to results from two experiments using different materials, with heat tinting during the tests for extracting snapshots of the crack fronts. A good agreement between the experiments and the numerical study is shown. A new compliance curve and a new geometry function for the stress intensity factor is proposed for the single edge notch specimen. (C) 2016 Elsevier Ltd. All rights reserved.

  • 146.
    Forsberg, Urban
    et al.
    Sandvik Mat Technology, Sweden.
    Chai, Guocai
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering. Sandvik Mat Technology, Sweden.
    Hernblom, Johan
    Sandvik Mat Technology, Sweden.
    Peltola, Timo
    Sandvik Mat Technology, Sweden.
    Darley, Glenn
    Sandvik Mat Technology, Sweden.
    UNS S31035/1.4990-a newly developed high strength heat resistant austenitic stainless steel for advanced high efficient coal fired power plants2016In: ADVANCES IN MATERIALS TECHNOLOGY FOR FOSSIL POWER PLANTS: PROCEEDINGS FROM THE EIGHTH INTERNATIONAL CONFERENCE, 2016, ASM INTERNATIONAL , 2016, p. 310-317Conference paper (Refereed)
    Abstract [en]

    Energy requirement and environmental concerns have promoted a development in higher efficiency coal fired power technologies. Advanced ultra-super critical power plant with an efficiency of higher than 50% is the target in the near future. The materials to be used due to the tougher environments become therefore critical issues. This paper provides a review on a newly developed advanced high strength heat resistant austenitic stainless steel, Sandvik Sanicro 25, for this purpose. The material shows good resistance to steam oxidation and flue gas corrosion, and has higher creep rupture strength than any other austenitic stainless steels available today, and has recently obtained two AMSE code cases. This makes it an interesting option in higher pressures/temperature applications. In this paper, the material development, structure stability, creep strength, steam oxidation and hot corrosion behaviors, fabricability and weldability of this alloy have been discussed. The conclusion is that the Sanicro 25 is a potential candidate for superheaters and reheaters in higher-efficiency coal fired boilers i.e. for applications seeing up to 700 degrees C material temperature.

  • 147. Gaddam, Raghuveer
    et al.
    Chai, Guocai
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Stenvall, Peter
    peter.stenvall@sandvik.com.
    Impact Behaviour of Supler Duplex Stainless Steel Weldments at Sub-Zero Temperatures2015Conference paper (Refereed)
  • 148.
    Gigan, Gael
    et al.
    Chalmers Univ Technol, Sweden.
    Norman, Viktor
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Ahlström, Johan
    Chalmers Univ Technol, Sweden.
    Vernersson, Tore
    Chalmers Univ Technol, Sweden; AF Ind AB, Sweden.
    Thermomechanical fatigue of grey cast iron brake discs for heavy vehicles2019In: Proceedings of the Institution of mechanical engineers. Part D, journal of automobile engineering, ISSN 0954-4070, E-ISSN 2041-2991, Vol. 233, no 2, p. 453-467Article, review/survey (Refereed)
    Abstract [en]

    The development of fatigue life assessment models for vehicle components exposed to thermomechanical fatigue supports the establishing of adequate maintenance intervals that neither cause unnecessary vehicle downtime, nor jeopardize the function of the components. In modern automotive applications, braking is closely related to safety and is commonly performed with disc brakes. Failure here may result in structural damage or even breakdown and loss of lives. In the present work, the cyclic response of grey cast iron is analysed and the fatigue life of brake discs made from this material is studied by use of four different fatigue life assessment models: the Smith-Watson-Topper model, the Coffin-Manson model and two mechanism-based damage models. Results from isothermal and thermomechanical experiments on uniaxially loaded specimens are used for calibration of the models. Finally, the models are used to assess the life of a brake disc for a simulated brake dynamometer experiment. It is found that the fatigue model parameters that are calibrated using different sets of isothermal uniaxial test data show a substantial spread. A comparison with results from full-scale brake rig experiments shows that predictions by any of the models that have been calibrated using data from a well-designed thermomechanical test are in reasonable agreement with the estimated crack initiation phase for actual brake disc lives. It can be concluded that it is not sufficient to calibrate the studied fatigue life models using isothermal uniaxial tests for predictions of thermomechanical fatigue lives.

  • 149.
    Gupta, M
    et al.
    University West, Trollhättan, Sweden.
    Eriksson, Robert
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Sand, U
    EDR Medeso, Västerås, Sweden.
    Nylén, P
    University West, Trollhättan, Sweden.
    A Diffusion-based Oxide Layer Growth Model Using Real Interface Roughness in Thermal Barrier Coatings for Lifetime Assessment2015In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 271, p. 181-191Article in journal (Refereed)
    Abstract [en]

    The development of thermo-mechanical stresses during thermal cycling can lead to the formation of detrimental cracks in Atmospheric Plasma Sprayed (APS) Thermal Barrier Coatings systems (TBCs). These stresses are significantly increased by the formation of a Thermally Grown Oxide (TGO) layer that forms through the oxidation of mainly aluminium in the bondcoat layer of the TBC. As shown in previous work done by the authors, the topcoat–bondcoat interface roughness plays a major role in the development of the stress profile in the topcoat and significantly affects the lifetime of TBCs. This roughness profile varies as the TGO layer grows and changes the stress profile in the topcoat leading to crack propagation and thus failure.

    In this work, a two-dimensional TGO growth model is presented, based on oxygen and aluminium diffusion–reaction equations, using real interface profiles extracted from cross-section micrographs. The model was first validated by comparing the TGO profiles artificially created by the model to thermally cycled specimens with varying interface roughness. Thereafter, stress profiles in the TBC system, before and after the TGO layer growth, were estimated using a finite element modelling model described in previous work done by the authors. Three experimental specimens consisting of the same chemistry but with different topcoat–bondcoat interface roughness were studied by the models and the stress state was compared to the lifetimes measured experimentally. The combination of the two models described in this work was shown to be an effective approach to assess the stress behaviour and lifetime of TBCs in a comparative way.

  • 150.
    Gupta, Mohit
    et al.
    University of West, Sweden.
    Markocsan, Nicolaie
    University of West, Sweden.
    Li, Xin-Hai
    Siemens Ind Turbomachinery AB, Sweden.
    Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Improving the lifetime of suspension plasma sprayed thermal barrier coatings2017In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 332, p. 550-559Article in journal (Refereed)
    Abstract [en]

    Development of thermal barrier coating systems (TBCs) for gas turbine applications allowing higher combustion temperatures is of high interest since it results in higher fuel efficiency and lower emissions. TBCs produced by suspension plasma spraying (SPS) have been shown to exhibit significantly lower thermal conductivity as compared to conventional systems due to their very fine porosity microstructure. However they have not been commercialised yet due to low reliability and life expectancy of the coatings. In addition to the initial topcoat microstructure and its sintering resistance, lifetime of a TBC system is highly dependent on bondcoat chemistry as it influences the growth rate of thermally grown oxide (TGO) layer. To enhance the lifetime of SPS TBCs, fundamental understanding of relationships between topcoat microstructure and its evolution with time, bondcoat chemistry, TGO growth rate, and lifetime is essential. The objective of this work was to study the effect of topcoat microstructure evolution and TGO growth rate on lifetime in SPS TBC systems. Experimental MCrAIY bondcoat powders with different aluminium activities were investigated and compared to a commercial bondcoat powder. High velocity air fuel spraying was used for bondcoat deposition while axial-SPS was used for yttria stabilized zirconia topcoat deposition. Lifetime was examined by thermal cyclic fatigue testing. Isothermal heat treatment was performed to study TGO evolution with time. The changes in microstructure of SPS coatings due to sintering under long term exposure at high temperatures were investigated. Different failure modes in SPS TBCs were also examined. The bondcoat with higher aluminium activity resulted in a significantly higher thermal cyclic lifetime of the corresponding TBC as it could have promoted protective alumina layer growth for a longer period of time. The results indicate that the significant changes in topcoat microstructure due to sintering as observed in this work could have a detrimental effect on TBC lifetime.

1234567 101 - 150 of 428
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf