liu.seSearch for publications in DiVA
Change search
Refine search result
123 101 - 102 of 102
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 101. Zareie, Mehri
    et al.
    Riff, Jason
    Donato, Kevin
    McKay, Derek M
    Perdue, Mary H
    Söderholm, Johan D
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Biomedicine and Surgery, Division of surgery. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Surgery in Östergötland.
    Karmali, Mohamed
    Cohen, Mitchell B
    Hawkins, Jennifer
    Sherman, Philip M
    Novel effects of the prototype translocating Escherichia coli, strain C25 on intestinal epithelial structure and barrier function2005In: Cellular Microbiology, ISSN 1462-5814, E-ISSN 1462-5822, Vol. 7, no 12, p. 1782-1797Article in journal (Refereed)
    Abstract [en]

    Intestinal bacteria play an etiologic role in triggering and perpetuating chronic inflammatory bowel disorders. However, the precise mechanisms whereby the gut microflora influences intestinal cell function remain undefined. Therefore, the effects of the non-pathogenic prototype translocating Escherichia coli, strain C25 on the barrier properties of human T84 and Madine-Darby canine kidney type 1 epithelial cells were examined. T-84 cells were also infected with commensal E. coil, strains F18 and HB101, and enterohaemorrhagic E. coli, serotype O157:H7. Strains F18 and HB101 had no effect on transepithelial electrical resistance (TER) of T84 monolayers. By contrast, epithelial cells infected with strain C25 displayed a time-dependent decrease in TER, preceded by an altered distribution of the cytoskeletal protein alpha-actinin, comparable to infection with E. coli O157:H7. E. coli C25 infection also led to activation of nuclear factor κB (NF-κB), interleukin-8 secretion and alterations in localization of claudin-1, but not zona occludens-1 or claudin-4, in T84 cells. There were adherent C25 bacteria on the intact apical surface of infected T84 cells, while mitochondria appeared swollen and vacuolated. These novel findings demonstrate the ability of a translocating commensal bacterium to adhere to and modulate intestinal epithelial barrier function and to induce morphological changes in a manner distinct from the known enteric pathogen, E. coli O157:H7. © 2005 Blackwell Publishing Ltd.

  • 102.
    Zurek, Birte
    et al.
    University of Cologne, Germany .
    Schoultz, Ida
    Linköping University, Department of Clinical and Experimental Medicine, Surgery. Linköping University, Faculty of Health Sciences.
    Neerincx, Andreas
    University of Cologne, Germany .
    Napolitano, Luisa M
    Telethon Institute Genet and Med, Italy Cluster Biomed CBM, Italy .
    Birkner, Katharina
    University of Cologne, Germany .
    Bennek, Eveline
    University Hospital Aachen, Germany .
    Sellge, Gernot
    University Hospital Aachen, Germany .
    Lerm, Maria
    Linköping University, Department of Clinical and Experimental Medicine, Medical Microbiology. Linköping University, Faculty of Health Sciences.
    Meroni, Germana
    Cluster Biomed CBM, Italy .
    Söderholm, Johan D
    Linköping University, Department of Clinical and Experimental Medicine, Surgery. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Surgery in Östergötland.
    Kufer, Thomas A
    University of Cologne, Germany .
    TRIM27 Negatively Regulates NOD2 by Ubiquitination and Proteasomal Degradation2012In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 7, no 7Article in journal (Refereed)
    Abstract [en]

    NOD2, the nucleotide-binding domain and leucine-rich repeat containing gene family (NLR) member 2 is involved in mediating antimicrobial responses. Dysfunctional NOD2 activity can lead to severe inflammatory disorders, but the regulation of NOD2 is still poorly understood. Recently, proteins of the tripartite motif (TRIM) protein family have emerged as regulators of innate immune responses by acting as E3 ubiquitin ligases. We identified TRIM27 as a new specific binding partner for NOD2. We show that NOD2 physically interacts with TRIM27 via the nucleotide-binding domain, and that NOD2 activation enhances this interaction. Dependent on functional TRIM27, ectopically expressed NOD2 is ubiquitinated with K48-linked ubiquitin chains followed by proteasomal degradation. Accordingly, TRIM27 affects NOD2-mediated pro-inflammatory responses. NOD2 mutations are linked to susceptibility to Crohns disease. We found that TRIM27 expression is increased in Crohns disease patients, underscoring a physiological role of TRIM27 in regulating NOD2 signaling. In HeLa cells, TRIM27 is partially localized in the nucleus. We revealed that ectopically expressed NOD2 can shuttle to the nucleus in a Walker A dependent manner, suggesting that NOD2 and TRIM27 might functionally cooperate in the nucleus. We conclude that TRIM27 negatively regulates NOD2-mediated signaling by degradation of NOD2 and suggest that TRIM27 could be a new target for therapeutic intervention in NOD2-associated diseases.

123 101 - 102 of 102
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf