liu.seSearch for publications in DiVA
Change search
Refine search result
123 101 - 103 of 103
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 101.
    Zozoulenko, Igor
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Sachrajda, A.S.
    Inst. for Microstructural Science, National Research Council, Montreal Road, Ottawa, Ont. K1A 0R6, Canada.
    Gould, C.
    Inst. for Microstructural Science, National Research Council, Montreal Road, Ottawa, Ont. K1A 0R6, Canada, Dépt. de Physique and CRPS, Université de Sherbrooke, Sherbrooke, Que. J1K 2R1, Canada.
    Berggren, Karl-Fredrik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics .
    Zawadzki, P.
    Inst. for Microstructural Science, National Research Council, Montreal Road, Ottawa, Ont. K1A 0R6, Canada.
    Feng, Y.
    Inst. for Microstructural Science, National Research Council, Montreal Road, Ottawa, Ont. K1A 0R6, Canada.
    Wasilewski, Z.
    Inst. for Microstructural Science, National Research Council, Montreal Road, Ottawa, Ont. K1A 0R6, Canada.
    Magnetoconductance of a few-electron open quantum dot2000In: Physica. E, Low-Dimensional systems and nanostructures, ISSN 1386-9477, E-ISSN 1873-1759, Vol. 6, no 1, p. 409-413Article in journal (Refereed)
    Abstract [en]

    Magnetoconductance of a small open lateral dot is studied both theoretically and experimentally for the conditions when the dot contains down to approximately 15 electrons. We confirm the existence of a new regime for open dots in which the transport through the structure occurs through individual eigenstates of the corresponding closed dot. In particular, at low magnetic fields the characteristic features in the conductance are related to the underlying eigenspectrum shells. When the number of modes in the leads is reduced more detailed structures within the shells due to single eigenlevels becomes discernible. At higher fields Landau level condensation is evident as well as the crossing of levels collapsing to the different Landau levels.

  • 102.
    Zozoulenko, Igor
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Singh, Amritpal
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering. Chalmers Univ Technol, Sweden.
    Singh, Sandeep Kumar
    Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering.
    Gueskine, Viktor
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Polarons, Bipolarons, And Absorption Spectroscopy of PEDOT2019In: ACS APPLIED POLYMER MATERIALS, ISSN 2637-6105, Vol. 1, no 1, p. 83-94Article in journal (Refereed)
    Abstract [en]

    Electronic structure and optical absorption spectra of poly(3,4-ethyl-enedioxythiophene) (PEDOT) for different oxidation levels were studied using density functional theory (DFT) and time-dependent DFT. It is shown, that the DFT-based predictions for the polaronic and bipolaronic states and the nature of corresponding optical transitions are qualitatively different from the widely used traditional picture based on semi-empirical pre-DFT approaches that still dominate the current literature. On the basis of the results of our calculations, the experimental Vis/NIR absorbance spectroscopy and the electron paramagnetic resonance spectroscopy are re-examined, and a new interpretation of the measured spectra and the spin signal, which is qualitatively different from the traditional interpretation, is provided. The findings and conclusions concerning the nature of polaronic and bipolaronic states, band structure and absorption spectra presented for PEDOT, are generic for a wide class of conducting polymers (such as polythiophenes and their derivatives) that have a similar structure of monomer units.

  • 103.
    Zozoulenko, Igor V.
    et al.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Evaldsson, Martin
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Quantum antidot as a controllable spin injector and spin filter2004In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 85, no 15, p. 3136-3138Article in journal (Refereed)
    Abstract [en]

    We propose a device based on an antidot embedded in a narrow quantum wire in the edge-state regime, that can be used to inject and/or control spin-polarized current. The operational principle of the device is based on the effect of resonant backscattering from one edge state into another through localized quasibound states, combined with the effect of Zeeman splitting of the quasibound states in sufficiently high magnetic field. We outline the device geometry, present detailed quantum-mechanical transport calculations, and suggest a possible scheme to test the device performance and functionality.

123 101 - 103 of 103
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf