liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
1234567 101 - 150 av 313
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 101.
    Fabiano, Simone
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Usta, Hakan
    Polyera Corp, IL 60077 USA; Abdullah Gul University, Turkey.
    Forchheimer, Robert
    Linköpings universitet, Institutionen för systemteknik, Informationskodning. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Facchetti, Antonio
    Polyera Corp, IL 60077 USA.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Selective Remanent Ambipolar Charge Transport in Polymeric Field-Effect Transistors For High-Performance Logic Circuits Fabricated in Ambient2014Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 26, nr 44, s. 7438-7443Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    n/a

  • 102.
    Fahlman, Mats
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gueskine, Viktor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel T
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik.
    Interfaces in organic electronics2019Ingår i: Nature Reviews Materials, E-ISSN 2058-8437, Vol. 4, nr 10, s. 627-650Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Undoped, conjugated, organic molecules and polymers possess properties of semiconductors, including the electronic structure and charge transport, which can be readily tuned by chemical design. Moreover, organic semiconductors (OSs) can be n-doped or p-doped to become organic conductors and can exhibit mixed electronic and ionic conductivity. Compared with inorganic semiconductors and metals, organic (semi)conductors possess a unique feature: no insulating oxide forms on their surface when exposed to air. Thus, OSs form clean interfaces with many materials, including metals and other OSs. OS–metal and OS–OS interfaces have been intensely investigated over the past 30 years, from which a consistent theoretical description has emerged. Since the 2000s, increased attention has been paid to interfaces in organic electronics that involve dielectrics, electrolytes, ferroelectrics and even biological organisms. In this Review, we consider the central role of these interfaces in the function of organic electronic devices and discuss how the physico-chemical properties of the interfaces govern the interfacial transport of light, excitons, electrons and ions, as well as the transduction of electrons into the molecular language of cells.

  • 103.
    Faxälv, Lars
    et al.
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för mikrobiologi och molekylär medicin. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Diagnostikcentrum, Klinisk kemi.
    Bolin, Maria
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Lindahl, Tomas
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för mikrobiologi och molekylär medicin. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Diagnostikcentrum, Klinisk kemi.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Electronic control of platelet adhesion using conducting polymer microarrays2014Ingår i: Lab on a Chip, ISSN 1473-0197, E-ISSN 1473-0189, Vol. 14, nr 16, s. 3043-3049Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We hereby report a method to fabricate addressable micropatterns of e-surfaces based on the conducting polymer poly(3,4-ethylenedioxythiophene) doped with the anion tosylate (PEDOT:Tos) to gain dynamic control over the spatial distribution of platelets in vitro. With thin film processing and microfabrication techniques, patterns down to 10 mu m were produced to enable active regulation of platelet adhesion at high spatial resolution. Upon electronic addressing, both reduced and oxidized surfaces were created within the same device. This surface modulation dictates the conformation and/or orientation, rather than the concentration, of surface proteins, thus indirectly regulating the adhesion of platelets. The reduced electrode supported platelet adhesion, whereas the oxidized counterpart inhibited adhesion. PEDOT:Tos electrode fabrication is compatible with most of the classical patterning techniques used in printing as well as in the electronics industry. The first types of tools promise ultra-low-cost production of low-resolution (greater than30 mu m) electrode patterns that may combine with traditional substrates and dishes used in a classical analysis setup. Platelets play a pronounced role in cardiovascular diseases and have become an important drug target in order to prevent thrombosis. This clinical path has in turn generated a need for platelet function tests to monitor and assess platelet drug efficacy. The spatial control of platelet adherence presented here could prove valuable for blood cell separation or biosensor microarrays, e.g. in diagnostic applications where platelet function is evaluated.

  • 104.
    Franco Gonzalez, Juan Felipe
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Pavlopoulou, Eleni
    Bordeaux INP, Université de Bordeaux, CNRS, LCPO UMR 5629, 33600 Pessac, France.
    Stavrinidou, Eleni
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Gabrielsson, Roger
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel T
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor V
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Morphology of a self-doped conducting oligomer for green energy applications2017Ingår i: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 9, nr 36, s. 13717-13724Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A recently synthesized self-doped conducting oligomer, salt of bis[3,4-ethylenedioxythiophene]3thiophene butyric acid, ETE-S, is a novel promising material for green energy applications. Recently, it has been demonstrated that it can polymerize in vivo, in plant systems, leading to a formation of long-range conducting wires, charge storage and supercapacitive behaviour of living plants. Here we investigate the morphology of ETE-S combining the experimental characterisation using Grazing Incidence Wide Angle X-ray Scattering (GIWAXS) and atomistic molecular dynamics (MD) simulations. The GIWAXS measurements reveal a formation of small crystallites consisting of π–π stacked oligomers (with the staking distance 3.5 Å) that are further organized in h00 lamellae. These experimental results are confirmed by MD calculations, where we calculated the X-ray diffraction pattern and the radial distribution function for the distance between ETE-S chains. Our MD simulations also demonstrate the formation of the percolative paths for charge carriers that extend throughout the whole structure, despite the fact that the oligomers are short (6–9 rings) and crystallites are thin along the π–π stacking direction, consisting of only two or three π–π stacked oligomers. The existence of the percolative paths explains the previously observed high conductivity in in vivo polymerized ETE-S. We also explored the geometrical conformation of ETE-S oligomers and the bending of their aliphatic chains as a function of the oligomer lengths.

  • 105.
    Gabrielsson, Erik
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Armgarth, Astrid
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Hammarström, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska fakulteten.
    Nilsson, Peter
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Spatiotemporal Control of Amyloid-Like A Plaque Formation Using a Multichannel Organic Electronic Device2016Ingår i: Macromolecular materials and engineering (Print), ISSN 1438-7492, E-ISSN 1439-2054, Vol. 301, nr 4, s. 359-363Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We herein report on an iontronic device to drive and control A1-40 and A1-42 fibril formation. This system allows kinetic control of A aggregation by regulation of H+ flows. The formed aggregates show both nanometer-sized fibril structure and microscopic growth, thus mimicking senile plaques, at the H+-outlet. Mechanistically we observed initial accumulation of A1-40 likely driven by electrophoretic migration which preceded nucleation of amyloid structures in the accumulated peptide cluster.

  • 106.
    Gabrielsson, Erik
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Polyphosphonium-based bipolar membranes for rectification of ionic currents2013Ingår i: Biomicrofluidics, ISSN 1932-1058, E-ISSN 1932-1058, Vol. 7, nr 6, s. 064117-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Bipolar membranes (BMs) have interesting applications within the field of bioelectronics, as they may be used to create non-linear ionic components (e. g., ion diodes and transistors), thereby extending the functionality of, otherwise linear, electrophoretic drug delivery devices. However, BM based diodes suffer from a number of limitations, such as narrow voltage operation range and/or high hysteresis. In this work, we circumvent these problems by using a novel polyphosphonium-based BM, which is shown to exhibit improved diode characteristics. We believe that this new type of BM diode will be useful for creating complex addressable ionic circuits for delivery of charged biomolecules.

  • 107.
    Gabrielsson, Erik O.
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Armgarth, Astrid
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Hammarström, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska högskolan.
    Nilsson, K. Peter N.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Controlled Microscopic Formation of Amyloid-Like Aβ Aggregates Using an Organic Electronic DeviceManuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    Alzheimer’s disease (AD), primarily associated with formation of fibrillar amyloid-beta peptide (Aβ) aggregates in the brain, is one of the most common old-age diseases. It is therefore crucial with an elevated scientific interest in Aβ, and its fundamental properties in a wide sense, to develop efficient methods for early detection and to combat AD. For the development of new techniques, both for AD detection and prevention, researchers are dependent on either tissue samples from deceased patients, animal models or in vitro systems. In vitro systems, such as producing protein aggregates of the Aβ-peptide in a test tube by incubation under denaturing conditions, offers us a simple but rather blunt tool for evaluating aggregation inhibition caused by compounds or to investigate new detection methods. We recently introduced the organic electronic ion pump (OEIP) as a method for creating amyloid-like aggregates at high spatiotemporal control as compared to the resulting aggregates manufactured using regular test tube-conditions. Combined with a fluorescent probe that is specific for the fibrillar aggregated form of misfolded peptides commonly seen in AD, this allowed us to control and to monitor the aggregation of a model peptide system in a highly confined space.

    To further elaborate the functionality of the OEIP together with amyloid-specific probes, we here present experiments demonstrating electronically controlled micron sized formation of Aβ-aggregates with morphologies ranging from fine fibers, to bundles of fibers, and thick mesh-like fiber structures. We foresee that the methodology can be implemented in multi array systems that can be utilized for studies of protein aggregation in confined spaces or together with cultured cells, as well as for the development of screening platforms for assessment of molecules influencing the Aβ-aggregation process.

  • 108.
    Gabrielsson, Erik O.
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Janson, Per
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Simon, Daniel T.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    A Four-Diode Full-Wave Ionic Current Rectifier Based on Bipolar Membranes: Overcoming the Limit of Electrode Capacity2014Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 26, nr 30, s. 5143-5147Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Full-wave rectification of ionic currents is obtained by constructing the typical four-diode bridge out of ion conducting bipolar membranes. Together with conjugated polymer electrodes addressed with alternating current, the bridge allows for generation of a controlled ionic direct current for extended periods of time without the production of toxic species or gas typically arising from electrode side-reactions.

  • 109.
    Gabrielsson, Erik O.
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Ion diode logics for pH control2012Ingår i: Lab on a Chip, ISSN 1473-0197, E-ISSN 1473-0189, Vol. 12, nr 14, s. 2507-2513Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electronic control over the generation, transport, and delivery of ions is useful in order to regulate reactions, functions, and processes in various chemical and biological systems. Different kinds of ion diodes and transistors that exhibit non-linear current versus voltage characteristics have been explored to generate chemical gradients and signals. Bipolar membranes (BMs) exhibit both ion current rectification and water splitting and are thus suitable as ion diodes for the regulation of pH. To date, fast switching ion diodes have been difficult to realize due to accumulation of ions inside the device structure at forward bias – charges that take a long time to deplete at reverse bias. Water splitting occurs at elevated reverse voltage bias and is a feature that renders high ion current rectification impossible. This makes integration of ion diodes in circuits difficult. Here, we report three different designs of micro-fabricated ion bipolar membrane diodes (IBMDs). The first two designs consist of single BM configurations, and are capable of either splitting water or providing high current rectification. In the third design, water-splitting BMs and a highly-rectifying BM are connected in series, thus suppressing accumulation of ions. The resulting IBMD shows less hysteresis, faster off-switching, and also a high ion current rectification ratio as compared to the single BM devices. Further, the IBMD was integrated in a diode-based AND gate, which is capable of controlling delivery of hydroxide ions into a receiving reservoir.

  • 110.
    Gabrielsson, Erik O.
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Polyphosphonium-Based Ion Bipolar Junction Transistors2014Ingår i: Biomicrofluidics, ISSN 1932-1058, E-ISSN 1932-1058, Vol. 8, nr 6, s. 064116-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Advancements in the field of electronics during the past few decades have inspired the use of transistors in a diversity of research fields, including biology and medicine. However, signals in living organisms are not only carried by electrons, but also through fluxes of ions and biomolecules. Thus, in order to implement the transistor functionality to control biological signals, devices that can modulate currents of ions and biomolecules, i.e. ionic transistors and diodes, are needed. One successful approach for modulation of ionic currents is to use oppositely charged ion-selective membranes to form so called ion bipolar junction transistors (IBJTs). Unfortunately, overall IBJT device performance has been hindered due to the typical low mobility of ions, large geometries of the ion bipolar junction materials, and the possibility of electric field enhanced (EFE) water dissociation in the junction. Here, we introduce a novel polyphosphonium-based anion-selective material into npn-type IBJTs. The new material does not show EFE water dissociation and therefore allows for a reduction of junction length down to 2 μm, which significantly improves the switching performance of the ion transistor to 2 s. The presented improvement in speed as well the simplified design will be useful for future development of advanced iontronic circuits employing IBJTs, for example addressable drug-delivery devices.

  • 111.
    Gabrielsson, Erik O
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Hammarström, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biokemi. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Nilsson, Peter
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Organisk Kemi. Linköpings universitet, Tekniska högskolan.
    Spatially Controlled Amyloid Reactions Using Organic Electronics2010Ingår i: SMALL, ISSN 1613-6810, Vol. 6, nr 19, s. 2153-2161Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Abnormal protein aggregates, so called amyloid fibrils, are mainly known as pathological hallmarks of a wide range of diseases, but in addition these robust well-ordered self-assembled natural nanostructures can also be utilized for creating distinct nanomaterials for bioelectronic devices. However, current methods for producing amyloid fibrils in vitro offer no spatial control. Herein, we demonstrate a new way to produce and spatially control the assembly of amyloid-like structures using an organic electronic ion pump (OEIP) to pump distinct cations to a reservoir containing a negatively charged polypeptide. The morphology and kinetics of the created proteinaceous nanomaterials depends on the ion and current used, which we leveraged to create layers incorporating different conjugated thiophene derivatives, one fluorescent (p-FTAA) and one conducting (PEDOT-S). We anticipate that this new application for the OEIP will be useful for both biological studies of amyloid assembly and fibrillogenesis as well as for creating new bioelectronic nanomaterials and devices.

  • 112.
    Gabrielsson, Erik
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Biocompatible Circuits for Human–Machine Interfacing2018Ingår i: Green Materials for Electronics / [ed] Mihai Irimia-Vladu, Eric D. Głowacki, Niyazi Sariciftci, Siegfried Bauer, Wiley-VCH Verlagsgesellschaft, 2018, s. 91-118Kapitel i bok, del av antologi (Övrigt vetenskapligt)
    Abstract [en]

    Conventional electronic devices have evolved from the first transistors introduced in the 1940s to integrated circuits and today's modern (CMOS) computer chips fabricated on silicon wafers using photolithography. This chapter reviews such iontronic devices for signal translation and their application in bioelectronics. It begins with a brief description of the ion transport mechanisms that lay the conceptual groundwork for this type of iontronic devices. The chapter presents various iontronic devices aimed at bioelectronic applications. It outlines the future possible developments of iontronics for human-machine interfacing. The physical interface between electronic devices and biological tissues is of particular interest, as this interface bridges the gap between artificial, humanmade technologies and biological "circuits". Ion-conducting diodes and transistors can be used to build circuits for modulation of ion flow, with the possibility of mimicking the dynamic and nonlinear processes occurring in the body.

  • 113.
    Gerasimov, Jennifer
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Karlsson, Roger H
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Forchheimer, Robert
    Linköpings universitet, Institutionen för systemteknik, Informationskodning. Linköpings universitet, Tekniska fakulteten.
    Stavrinidou, Eleni
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel T
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    An Evolvable Organic Electrochemical Transistor for Neuromorphic Applications2019Ingår i: ADVANCED SCIENCE, ISSN 2198-3844, Vol. 6, nr 7, artikel-id 1801339Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    An evolvable organic electrochemical transistor (OECT), operating in the hybrid accumulation-depletion mode is reported, which exhibits short-term and long-term memory functionalities. The transistor channel, formed by an electropolymerized conducting polymer, can be formed, modulated, and obliterated in situ and under operation. Enduring changes in channel conductance, analogous to long-term potentiation and depression, are attained by electropolymerization and electrochemical overoxidation of the channel material, respectively. Transient changes in channel conductance, analogous to short-term potentiation and depression, are accomplished by inducing nonequilibrium doping states within the transistor channel. By manipulating the input signal, the strength of the transistor response to a given stimulus can be modulated within a range that spans several orders of magnitude, producing behavior that is directly comparable to short- and long-term neuroplasticity. The evolvable transistor is further incorporated into a simple circuit that mimics classical conditioning. It is forecasted that OECTs that can be physically and electronically modulated under operation will bring about a new paradigm of machine learning based on evolvable organic electronics.

  • 114.
    Ghosh, Sarbani
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gueskine, Viktor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Electronic Structures and Optical Absorption of N-Type Conducting Polymers at Different Doping Levels2019Ingår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 123, nr 25, s. 15467-15476Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Theoretical understanding of the electronic structure and optical transitions in n-doped conducting polymers is still controversial for polaronic and bipolaronic states and is completely missing for the case of a high doping level. In the present paper, the electronic structure and optical properties of the archetypical n-doped conducting polymer, double-stranded benzimidazo-benzophenanthroline ladder (BBL), are studied using the density functional theory (DFT) and the time dependent DFT method. We find that a polaronic state in the BBL chain is a spin-resolved doublet where the spin degeneracy is lifted. The ground state of two electrons corresponds to a triplet polaron pair, which is in stark contrast to a commonly accepted picture where two electrons are postulated to form a spinless bipolaron. The total spin gradually increases until the reduction level reaches c(red) = 100% (i.e., one electron per monomer unit). With further increase of the reduction level, the total spin decreases until it becomes 0 for the reduction level c(red) = 200%. The calculated results reproduce the experimentally observed spin signal without any phenomenological parameters. A detailed analysis of the evolution of the electronic structure of BBL and its absorption spectra with increase in reduction level is presented. The calculated UV-vis-NIR spectra are compared with the available experimental results. The electronic structure and optical absorption for different reduction levels presented here are generic to a wide class of conducting polymers, which is illustrated by the corresponding calculations for another archetypical conducting polymer, poly(3,4-ethylenedioxythiophene) (best known as PEDOT).

    Publikationen är tillgänglig i fulltext från 2020-06-06 11:25
  • 115.
    Gladisch, Johannes
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Stavrinidou, Eleni
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ghosh, Sarbani
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Giovannitti, Alexander
    Imperial Coll London, England.
    Moser, Maximilian
    Imperial Coll London, England.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    McCulloch, Iain
    Imperial Coll London, England; KAUST, Saudi Arabia.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Reversible Electronic Solid-Gel Switching of a Conjugated Polymer2019Ingår i: ADVANCED SCIENCE, artikel-id 1901144Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Conjugated polymers exhibit electrically driven volume changes when included in electrochemical devices via the exchange of ions and solvent. So far, this volumetric change is limited to 40% and 100% for reversible and irreversible systems, respectively, thus restricting potential applications of this technology. A conjugated polymer that reversibly expands by about 300% upon addressing, relative to its previous contracted state, while the first irreversible actuation can achieve values ranging from 1000-10 000%, depending on the voltage applied is reported. From experimental and theoretical studies, it is found that this large and reversible volumetric switching is due to reorganization of the polymer during swelling as it transforms between a solid-state phase and a gel, while maintaining percolation for conductivity. The polymer is utilized as an electroactive cladding to reduce the void sizes of a porous carbon filter electrode by 85%.

  • 116.
    Gomez, Eliot
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Surface Acoustic Waves to Drive Plant Transpiration.2017Ingår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, artikel-id 45864Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Emerging fields of research in electronic plants (e-plants) and agro-nanotechnology seek to create more advanced control of plants and their products. Electronic/nanotechnology plant systems strive to seamlessly monitor, harvest, or deliver chemical signals to sense or regulate plant physiology in a controlled manner. Since the plant vascular system (xylem/phloem) is the primary pathway used to transport water, nutrients, and chemical signals-as well as the primary vehicle for current e-plant and phtyo-nanotechnology work-we seek to directly control fluid transport in plants using external energy. Surface acoustic waves generated from piezoelectric substrates were directly coupled into rose leaves, thereby causing water to rapidly evaporate in a highly localized manner only at the site in contact with the actuator. From fluorescent imaging, we find that the technique reliably delivers up to 6x more water/solute to the site actuated by acoustic energy as compared to normal plant transpiration rates and 2x more than heat-assisted evaporation. The technique of increasing natural plant transpiration through acoustic energy could be used to deliver biomolecules, agrochemicals, or future electronic materials at high spatiotemporal resolution to targeted areas in the plant; providing better interaction with plant physiology or to realize more sophisticated cyborg systems.

  • 117.
    Gomez-Carretero, S.
    et al.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Libberton, B.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Svennersten, K.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Persson, Kristin M.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Rhen, M.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Sweden.
    Richter-Dahlfors, A.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Correction: Redox-active conducting polymers modulate Salmonella biofilm formation by controlling availability of electron acceptors (vol 3, article number 19, 2017)2018Ingår i: npj Biofilms and Microbiomes, ISSN 2055-5008, Vol. 4, nr 1, artikel-id 19Artikel i tidskrift (Refereegranskat)
  • 118.
    Gomez-Carretero, S.
    et al.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Libberton, B.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Svennersten, K.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Persson, Kristin M.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Rhen, M.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Sweden.
    Richter-Dahlfors, A.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Redox-active conducting polymers modulate Salmonella biofilm formation by controlling availability of electron acceptors (vol 3, article number 19, 2017)2017Ingår i: npj Biofilms and Microbiomes, ISSN 2055-5008, Vol. 3, artikel-id 19Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Biofouling is a major problem caused by bacteria colonizing abiotic surfaces, such as medical devices. Biofilms are formed as the bacterial metabolism adapts to an attached growth state. We studied whether bacterial metabolism, hence biofilm formation, can be modulated in electrochemically active surfaces using the conducting conjugated polymer poly(3,4-ethylenedioxythiophene) (PEDOT). We fabricated composites of PEDOT doped with either heparin, dodecyl benzene sulfonate or chloride, and identified the fabrication parameters so that the electrochemical redox state is the main distinct factor influencing biofilm growth. PEDOT surfaces fitted into a custom-designed culturing device allowed for redox switching in Salmonella cultures, leading to oxidized or reduced electrodes. Similarly large biofilm growth was found on the oxidized anodes and on conventional polyester. In contrast, biofilm was significantly decreased (52-58%) on the reduced cathodes. Quantification of electrochromism in unswitched conducting polymer surfaces revealed a bacteria-driven electrochemical reduction of PEDOT. As a result, unswitched PEDOT acquired an analogous electrochemical state to the externally reduced cathode, explaining the similarly decreased biofilm growth on reduced cathodes and unswitched surfaces. Collectively, our findings reveal two opposing effects affecting biofilm formation. While the oxidized PEDOT anode constitutes a renewable electron sink that promotes biofilm growth, reduction of PEDOT by a power source or by bacteria largely suppresses biofilm formation. Modulating bacterial metabolism using the redox state of electroactive surfaces constitutes an unexplored method with applications spanning from antifouling coatings and microbial fuel cells to the study of the role of bacterial respiration during infection.

  • 119.
    Gomez-Carretero, Salvador
    et al.
    Dep. of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
    Persson, Kristin M
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Libberton, Benjamin
    Dep. of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
    Svennersten, Karl
    Dep. of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Rhen, Mikael
    Dep. of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
    Richter-Dahlfors, Agneta
    Dep. of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
    Salmonella Biofilm Modulation with Electrically Conducting Polymers2014Manuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    Biofilms are ubiquitous in many human activities, constituting a threat or an advantage depending on the context of application. It is therefore of great interest to obtain new materials to study and control how biofilms are formed. Here, heparin and DBS (dodecylbenzenesulfonate) are incorporated as counter-ions to the PEDOT (poly(3,4-ethylenedioxythiophene)) backbone, forming conducting polymer thin-films. Polymer synthesis is based on electrodeposition, allowing for the adjustment, during fabrication, of properties like charge and hydrophobicity, important in bacterial adhesion. The electrochemical redox state of the polymer is of fundamental importance in Salmonella enterica Serovar Typhimurium biofilm modulation. Oxidized composites show increased levels of biofilm growth compared to reduced and pristine polymer films. As a result, biofilm formation is modulated by the application of a low electric voltage. Moreover, biofilm morphology and topology are affected by both the electrochemical redox state and the incorporated counter-ion, making these materials a useful tool in biofilm engineering.

  • 120.
    Granlund, Thomas
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Theander, Mathias
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Andersson, M
    Chalmers Tekniska Högskola.
    Ruzeckas, A
    Lunds universitet.
    Sundström, V
    Lunds universitet.
    Björk, G
    KTH.
    Granström, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Inganäs, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    A polythiophene microcavity laser1998Ingår i: Chemical Physics Letters, ISSN 0009-2614, E-ISSN 1873-4448, Vol. 288, nr 5-6, s. 879-884Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We report photopumped lasing in a microcavity device with a polythiophene layer as the emitter. These microcavity devices are built by joining two polymer coated dielectric mirrors at elevated temperature. When photopumping the film, a lasing threshold is observed at 120 nJ/cm(2). Comparative studies with fast pump-probe spectroscopy of thin polythiophene films and the same polymer in photopumped lasing studies, indicate that the gain coefficient is 80 +/- 20 cm(-1), and that the exciton concentration is 2 X 10(17) cm(-3) at the lasing transition, well below the exciton-exciton recombination level. (C) 1998 Elsevier Science B.V. All rights reserved.

  • 121.
    Granlund, Thomas
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Theander, Mathias
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Andersson, Mats
    Chalmers Tekniska Högskola.
    Ruzeckas, A
    Lunds universitet.
    Sundström, V
    Lunds universitet.
    Björk, G
    KTH.
    Granström, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Inganäs, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Lasing in substituted polythiophene between dielectric mirrors1999Ingår i: Synthetic metals, ISSN 0379-6779, E-ISSN 1879-3290, Vol. 102, nr 1-3, s. 1038-1041Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We report photopumped lasing in a microcavity device with a polythiophene layer as emitter. The microcavity is made of a polymer film between two dielectric Bragg reflecting mirrors (DBR). The:microcavity devices is built by joining two polymer coated DBR mirrors at elevated temperature. When photopumping the film,a lasing threshold is observed at 120 nJ/cm(2). Comparative studies with fast pump-probe spectroscopy of thin polythiophene films, and the same polymer in photopumped lasing studies, indicate that the gain coefficient is 80 +/- 20 cm(2) and that the exciton concentration is 2X10(17) cm(2) at the lasing transition, well below the exciton-exciton recombination level.

  • 122.
    Granström, Magnus
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Inganäs, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Micrometer- and Nanometer-Sized Polymeric Light-Emitting Diodes1995Ingår i: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 267, nr 5203, s. 1479-1481Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A method for the fabrication of micrometer- and submicrometer-sized polymeric light-emitting diodes is presented. Such diodes have a variety of applications. Light sources of dimensions around 100 nanometers are required for subwavelength, near-field optical microscopy. Another possible application is patterning on the micrometer and nanometer scale. The diodes have been made in the form of a sandwich structure, with the conductive polymer poly(3,4-ethylene-dioxythiophene) polymerized in the pores of commercially available microfiltration membranes defining the hole-injecting contacts, poly[3-(4-octylphenyl)-2,2-bithiophene] as the light-omitting layer, and a thin film of calcium-aluminum as the electron injector.

  • 123.
    Granström, Magnus
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Inganäs, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Polymeric light-emitting diodes of submicron size - Structures and developments1996Ingår i: Synthetic metals, ISSN 0379-6779, E-ISSN 1879-3290, Vol. 76, nr 1-3, s. 141-143Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Micron- and submicron-sized light-emitting diodes (LEDs) made using conjugated polymers as electroluminescent layers and contact materials are presented. Two different routes to make arrays of such small light sources have been developed. The benefits and drawbacks of the use of the conjugated polymer poly(2,3-ethylene-dioxythiophene) (PEDOT) as hole injector in polymer LEDs are also discussed.

  • 124.
    Granström, Magnus
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Inganäs, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Andersson, Mats R.
    Chalmers Tekniska Högskola.
    Hjertberg, T.
    Chalmers Tekniska Högskola.
    Wennerström, O.
    Chalmers Tekniska Högskola.
    Phase separation of conjugated polymers - Tools for new functions in polymer LEDs1997Ingår i: Synthetic metals, ISSN 0379-6779, E-ISSN 1879-3290, Vol. 85, nr 1-3, s. 1193-1194Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Within the single family of substituted poly(thiophenes) it is possible to realize such diverse device designs as voltage controlled colours from polymer LEDs, sub-micron size LEDs, and white light emitters. Many of these features become possible by the use of polymer blends in which one or more poly(thiophenes) are mixed with a matrix polymer (PMMA). The phase structure in these blends can be controlled by stoichiometry and mode of formation. That phase structure can be used to prevent exciton transfer, and to define new colours in polymer LEDs. It also allows us to make anisotropic conductors suitable for contacting optical devices.

  • 125.
    Granström, Magnus
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Pede, Danilo
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Inganäs, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Andersson, Mats R.
    Chalmers Tekniska Högskola.
    Hjertberg, T.
    Chalmers Tekniska Högskola.
    Wennerström, O.
    Chalmers Tekniska Högskola.
    Self organizing polymer films - a route to novel electronic devices based on conjugated polymers1997Ingår i: Supramolecular science, ISSN 0968-5677, E-ISSN 1873-4146, Vol. 4, nr 1-2, s. 27-34Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Polymer blends are often used in polymer light emitting diodes as a tool to increase the efficiency of the devices. In this report, we show the necessity to take the phase separation properties of such blends into account, as the miscibility of the involved polymers drastically affects the resulting film structure. By using phase separated polymer blends involving conjugated poly(thiophenes) and different nonconjugated polymers as matrices, different types of applications, such as light emitting diodes with improved voltage control of emitted colour, sub-micron size LEDs and anisotropic conductors are demonstrated. (C) 1997 Elsevier Science Ltd. All rights reserved.

  • 126.
    Hamedi, Mahiar
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Herlogsson, Lars
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Marcilla, Rebeca
    CIDETEC, Spain.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Inganäs, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Fiber-Embedded Electrolyte-Gated Field-Effect Transistors for e-Textiles2009Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 21, nr 5, s. 573-577Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electrolyte-gate organic field-effect transistors embedded at the junction of textile microfibers are demonstrated. The fiber transistor operates below I V and delivers large current densities. The transience of the organic thin-film transistors current and the impedance spectroscopy measurements reveal that the channel is formed in two steps.

  • 127.
    Han, Shaobo
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Alvi, Naveed
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Granlof, Lars
    RISE Bioecon, Sweden.
    Granberg, Hjalmar
    RISE Bioecon, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    A Multiparameter Pressure-Temperature-Humidity Sensor Based on Mixed Ionic-Electronic Cellulose Aerogels2019Ingår i: ADVANCED SCIENCE, ISSN 2198-3844, Vol. 6, nr 8, artikel-id 1802128Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Pressure (P), temperature (T), and humidity (H) are physical key parameters of great relevance for various applications such as in distributed diagnostics, robotics, electronic skins, functional clothing, and many other Internet-of-Things (IoT) solutions. Previous studies on monitoring and recording these three parameters have focused on the integration of three individual single-parameter sensors into an electronic circuit, also comprising dedicated sense amplifiers, signal processing, and communication interfaces. To limit complexity in, e.g., multifunctional IoT systems, and thus reducing the manufacturing costs of such sensing/communication outposts, it is desirable to achieve one single-sensor device that simultaneously or consecutively measures P-T-H without cross-talks in the sensing functionality. Herein, a novel organic mixed ion-electron conducting aerogel is reported, which can sense P-T-H with minimal cross-talk between the measured parameters. The exclusive read-out of the three individual parameters is performed electronically in one single device configuration and is enabled by the use of a novel strategy that combines electronic and ionic Seebeck effect along with mixed ion-electron conduction in an elastic aerogel. The findings promise for multipurpose IoT technology with reduced complexity and production costs, features that are highly anticipated in distributed diagnostics, monitoring, safety, and security applications.

  • 128.
    Hansson (f.d. Wadeasa), Amal
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan. null.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan. null.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan. null.
    ZnO-Polymer hybrid electron only rectifiersManuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    The combination of organic semiconductors and ZnO nanorods provides new hybrid devices for large area optoelectronics targeting solar energy harvesting and light emission applications. The electronic transport across organic-ZnO heterojunction is not well understood. Here, we investigate systematically the creation of the ZnOpolymer interface and pinpoint potential issues in hybrid devices based on chemically grown ZnO nanorods. For the sake of simplicity, we focus on a ZnO-polymer hybrid device transporting only electrons. The semiconducting polymer used is poly {[N,N0-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,50-(2,20-dithiophene)}. The device shows easy electron injection from Au/ZnO contacts and a good rectification partially governed by the morphology of the heterojunction.

  • 129.
    Hennerdal, Lars-Olov
    et al.
    Acreo AB.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Picture-to-picture switching in full-color thermochromic paper displays2011Ingår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 99, nr 18, s. 183303-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Presently, we contemplate the merger of paper and electronics in different forms. There is a great desire to further explore this twinning of the information displaying features of printed papers and electronic inks. Here, we report a full-color paperboard display technology comprised of thermochromic and static inks combined with a patterned heater foil. Black and full-color thermochromic ink dots were screen-printed adjacent to, and on top of, static ink dots using a zero-angle mesh and template pattern orientation. As the heater is turned on and off, the display alter its content in between two predefined four-color pictures.

  • 130.
    Herland, Anna
    et al.
    Cell and Molecular Biology, Karolinska Institute, Stockholm.
    Persson, Kristin M
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Lundin, Vanessa
    Cell and Molecular Biology, Karolinska Institute, Stockholm.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Jager, Edwin W H
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Teixeira, Ana I
    Cell and Molecular Biology, Karolinska Institute, Stockholm.
    Electrochemical Control of Growth Factor Presentation To Steer Neural Stem Cell Differentiation2011Ingår i: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 50, nr 52, s. 12529-12533Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Graphical Abstract

    Let it grow: The conjugated polymer poly(3,4-ethylenedioxythiophene) (PEDOT) was synthesized with heparin as the counterion to form a cell culture substrate. The surface of PEDOT:heparin in the neutral state associated biologically active growth factors (see picture). Electrochemical in situ oxidation of PEDOT during live cell culture decreased the bioavailability of the growth factor and created an exact onset of neural stem cell differentiation.

  • 131.
    Herlogsson, Lars
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Robinson, Nathaniel D
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Sandberg, M.
    Thin Film Electronics AB.
    Hagel, O.-J.
    Thin Film Electronics AB.
    Gustafsson, G.
    Acreo AB.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Low-Voltage Polymer Field-Effect Transistors Gated via a Proton Conductor2007Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 19, nr 1, s. 97-101Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Low operating voltages for p-channel organic field-effect transistors (OFETs) can be achieved by using an electrolyte as the gate insulator. However, mobile anions in the electrolyte can lead to undesired electrochemistry in the channel. In order to avoid this, a polyanionic electrolyte is used as the gate insulator. The resulting OFET has operating voltages of less than 1 V (see figure) and shows fast switching (less than 0.3 ms) in ambient atmosphere.

  • 132.
    Herlogsson, Lars
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Tierney, Steve
    Merck Chemicals Ltd..
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Polyelectrolyte-Gated Organic Complementary Circuits Operating at Low Power and Voltage2011Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 23, nr 40, s. 4684-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this work, polyanionic and polycationic electrolytes are used as gate insulators in p- and n-channel thin-film transistors, respectively. These material combinations are motivated by that the mobile ions in the electrolytes will be attracted to the oppositely charged gate electrodes when the transistors are operated in the accumulation mode. The electronic charges in the semiconductor channels will thus be balanced by the polyions, which are effectively immobile and cannot penetrate into the semiconductor bulk and cause electrochemical doping.

  • 133.
    Herlogsson, Lars
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Cölle, Michael
    Merck Chemicals Ltd Chilworth Science Park Southampton, SO16 7QD, UK.
    Tierney, Steven
    Merck Chemicals Ltd Chilworth Science Park Southampton, SO16 7QD,l UK.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Low-Voltage Ring Oscillators Based on Polyelectrolyte-Gated Polymer Thin-Film Transistors2010Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 22, nr 1, s. 72-76Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A polyanionic electrolyte is used as gate insulator in top-gate p-channel polymer thin-film transistors. The high capacitance of the polyelectrolyte film allows the transistors and integrated circuits to operate below 1.5 V. Seven-stage ring oscillators that operate at supply voltages down to 0.9 V and exhibit signal propagation delays as low as 300 µs per stage are reported.

  • 134.
    Herlogsson, Lars
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Noh, Yong-Young
    Cavendish Laboratory University of Cambridge, UK.
    Zhao, Ni
    Cavendish Laboratory University of Cambridge, UK.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Sirringhaus, Henning
    Cavendish Laboratory University of Cambridge, UK.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Downscaling of Organic Field-Effect Transistors with a Polyelectrolyte Gate Insulator2008Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 20, nr 24, s. 4708-4713Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A polyelectrolyte is used as gate insulator material in organic field-effect transistors with self-aligned inkjet printed sub–micrometer channels. The small separation of the charges in the electric double layer at the electrolyte-semiconductor interface, which builds up in tens of microseconds, provides a very high transverse electric field in the channel that effectively suppresses short-channel effects at low applied gate voltages.

  • 135.
    Hwang, Sunbin
    et al.
    KIST, South Korea.
    Jang, Sukjae
    KIST, South Korea.
    Kang, Minji
    KIST, South Korea.
    Bae, Sukang
    KIST, South Korea.
    Lee, Seoung-Ki
    KIST, South Korea.
    Hong, Jae-Min
    KIST, South Korea.
    Lee, Sang Hyun
    Chonnam Natl Univ, South Korea.
    Wang, Gunuk
    Korea Univ, South Korea.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Kim, Tae-Wook
    KIST, South Korea.
    Two-in-One Device with Versatile Compatible Electrical Switching or Data Storage Functions Controlled by the Ferroelectricity of P(VDF-TrFE) via Photocrosslinking2019Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 11, nr 28, s. 25358-25368Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Organic electronics demand new platforms that can make integrated circuits and undergo mass production while maintaining diverse functions with high performance. The field-effect transistor has great potential to be a multifunctional device capable of sensing, data processing, data storage, and display. Currently, transistor-based devices cannot be considered intrinsic multifunctional devices because all installed functions are mutually coupled. Such incompatibilities are a crucial barrier to developing an all-in-one multifunctional device capable of driving each function individually. In this study, we focus on the decoupling of electric switching and data storage functions in an organic ferroelectric memory transistor. To overcome the incompatibility of each function, the high permittivity needed for electrical switching and the ferroelectricity needed for data storage become compatible by restricting the motion of poly(vinylidene fluoride-trifluoroethylene) via photocrosslinking with bis-perfluorobenzoazide. The two-in-one device consisting of a photocrosslinked ferroelectric layer exhibits reversible and individual dual-functional operation as a typical transistor with nonvolatile memory. Moreover, a p-MOS depletion load inverter composed of the two transistors with different threshold voltages is also demonstrated by simply changing only one of the threshold voltages by polarization switching. We believe that the two-in-one device will be considered a potential component of integrated organic logic circuits, including memory, in the future.

  • 136.
    Håkansson, Anna
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Han, Shaobo
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Wang, Suhao
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Lu, Jun
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Braun, Slawomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Effect of (3-Glycidyloxypropyl)Trimethoxysilane (GOPS) on the Electrical Properties of PEDOT:PSS Films2017Ingår i: Journal of Polymer Science Part B: Polymer Physics, ISSN 0887-6266, E-ISSN 1099-0488, Vol. 55, nr 10, s. 814-820Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) has been reported as a successful functional material in a broad variety of applications. One of the most important advantages of PEDOT:PSS is its water-solubility, which enables simple and environmental friendly manufacturing processes. Unfortunately, this also implies that pristine PEDOT:PSS films are unsuitable for applications in aqueous environments. To reach stability in polar solvents, (3-glycidyloxypropyl)trimethoxysilane (GOPS) is typically used to cross-link PEDOT:PSS. Although this strategy is widely used, its mechanism and effect on PEDOT:PSS performance have not been articulated yet. Here, we present a broad study that provides a better understanding of the effect of GOPS on the electrical and electronic properties of PEDOT:PSS. We show that the GOPS reacts with the sulfonic acid group of the excess PSS, causing a change in the PEDOT:PSS film morphology, while the oxidation level of PEDOT remains unaffected. This is at the origin of the observed conductivity changes. (c) 2017 Wiley Periodicals, Inc.

  • 137.
    Iandolo, Donata
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ravichandran, Akhilandeshwari
    School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Wen, Feng
    School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore.
    Chan, Jerry K Y
    Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Teoh, Swee-Hin
    School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore.
    Simon, Daniel T
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Development and Characterization of Organic Electronic Scaffolds for Bone Tissue Engineering2016Ingår i: Advanced Healthcare Materials, ISSN 2192-2640, E-ISSN 2192-2659, Vol. 5, nr 12, s. 1505-1512Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Bones have been shown to exhibit piezoelectric properties, generating electrical potential upon mechanical deformation and responding to electrical stimulation with the generation of mechanical stress. Thus, the effects of electrical stimulation on bone tissue engineering have been extensively studied. However, in bone regeneration applications, only few studies have focused on the use of electroactive 3D biodegradable scaffolds at the interphase with stem cells. Here a method is described to combine the bone regeneration capabilities of 3D-printed macroporous medical grade polycaprolactone (PCL) scaffolds with the electrical and electrochemical capabilities of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT). PCL scaffolds have been highly effective in vivo as bone regeneration grafts, and PEDOT is a leading material in the field of organic bioelectronics, due to its stability, conformability, and biocompatibility. A protocol is reported for scaffolds functionalization with PEDOT, using vapor-phase polymerization, resulting in a conformal conducting layer. Scaffolds' porosity and mechanical stability, important for in vivo bone regeneration applications, are retained. Human fetal mesenchymal stem cells proliferation is assessed on the functionalized scaffolds, showing the cytocompatibility of the polymeric coating. Altogether, these results show the feasibility of the proposed approach to obtain electroactive scaffolds for electrical stimulation of stem cells for regenerative medicine.

  • 138.
    Inganäs, Olle
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Andersson, Mats R.
    Chalmers Tekniska Högskola.
    Gustafsson, Göran
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Hjertberg, T.
    Chalmers Tekniska Högskola.
    Wennerström, O.
    Chalmers Tekniska Högskola.
    Dyreklev, Peter
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Granström, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Thiophene polymers in light emitting diodes: Making multicolour devices1995Ingår i: Synthetic metals, ISSN 0379-6779, E-ISSN 1879-3290, Vol. 71, nr 1-3, s. 2121-2124Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We can control the bandgap of thiophene polymers over 2 eV by choosing the nature, position and regularity of side chain substitutions. Electroluminescence from these polymers cover the full visible spectrum, from the blue into the near infra-red. Blends of these polymer materials allow us to construct voltage controlled variable colour light sources. A newly developed transfer technique allow us to mount thin oriented films of the polymers in polymer LEDs to obtain polarised light sources giving polarisation anisotropys of up to 3. Sub-lambda light sources have been constructed from these polymer materials using nanometer polymer electrodes.

  • 139.
    Inganäs, Olle
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Granlund, T
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Theander, M
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Andersson, MR
    Chalmers Tekniska Högskola.
    Ruseckas, A
    Lunds universitet.
    Sundström, V
    Lunds universitet.
    Optical emission from confined poly(thiophene) chains1998Ingår i: Optical materials (Amsterdam), ISSN 0925-3467, E-ISSN 1873-1252, Vol. 9, nr 1-4, s. 104-108Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We discuss the stages of the luminescence processes in substituted and soluble poly(thiophenes), using results from determinations of absolute quantum yields of photoluminescence, fast pump-probe experiments and microcavity devices. Enhancement of the quantum yield of photoluminescence, with poly(thiophenes) in the solid state, call be obtained by dispersing the conjugated chain in a molecularly dispersed polymer blend, or by adding side chains designed for forcing the conjugated main chains apart. At the wavelength of stimulated emission, we observe a narrow bandwidth emission in the high-Q one-dimensional microcavity devices prepared by sandwiching two dielectric mirrors around a thin polymer film, A strong enhancement of the power efficiency is observed at a pump power of 1 mu W/cm(2), but does not conclusively show lasing characteristics. (C) 1998 Elsevier Science B.V.

  • 140.
    Isaksson, Joakim
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Kjäll, Peter
    Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
    Nilsson, David
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Robinson, Nathaniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Richter-Dahlfors, Agneta
    Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
    Electronic Control of Ca2+ Signalling in Neuronal Cells using an Organic Electronic Ion Pump2007Ingår i: Nature Materials, ISSN 1476-1122, Vol. 6, nr 9, s. 673-679Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Cells and tissues use finely regulated ion fluxes for their intra- and intercellular communication. Technologies providing spatial and temporal control for studies of such fluxes are however, limited. We have developed an electrophoretic ion pump made of poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulphonate) (PEDOT:PSS) to mediate electronic control of the ion homeostasis in neurons. Ion delivery from a source reservoir to a receiving electrolyte via a PEDOT:PSS thin-film channel was achieved by electronic addressing. Ions are delivered in high quantities at an associated on/off ratio exceeding 300. This induces physiological signalling events that can be recorded at the single-cell level. Furthermore, miniaturization of the device to a 50-um-wide channel allows for stimulation of individual cells. As this technology platform allows for electronic control of ion signalling in individual cells with proper spatial and temporal resolution, it will be useful in further studies of communication in biological systems.

  • 141.
    Isaksson, Joakim
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Nilsson, David
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Kjäll, Peter
    Karolinska Institutet.
    Robinson, Nathaniel
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi.
    Richter-Dahlfors, Agneta
    Karolinska Institutet.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Electronically Controlled pH Gradients and Proton Oscillations2008Ingår i: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 9, nr 3, s. 303-309Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    An organic electronic ion pump, including poly(3,4-ethylenedioxythiophene) as the active material has been used to electronically control the transport of protons between two electrolytes and to change the pH of the target solution from 7 to 3 in a few minutes. The number of transported protons equals the time-integrated current between the two addressing electrodes. If no voltage is applied the leakage due to diffusion is not detectable, which indicates an overall proton delivery on/off ratio exceeding 1000. Locally, the pH drop can be even larger and the relationship between the proton delivery rate of the pump and proton diffusion in the electrolyte forms pH gradients. If the device is instead addressed with short pulses, local pH oscillations are created. The transport of protons presented here can be extended to other small sized ions, which in combination with the biocompatibility of the delivery surface make the device promising for cell communication studies and lab-on-a-chip applications.

  • 142.
    Isaksson, Joakim
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Robinson, Linda
    Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Robinson, Nathaniel D
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Berggren, Magnus
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Electronic Control of Contact Angles and Liquid Movement on Conducting Polymer Surfaces2005Ingår i: MRS Fall Meeting,,2005, 2005Konferensbidrag (Refereegranskat)
  • 143.
    Isaksson, Joakim
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Robinson, Nathaniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Electronic Modulation of an Electrochemically induced Wettability Gradient to Control Water Movement on a Polyaniline Surface2006Ingår i: Thin Solid Films, ISSN 0040-6090, Vol. 515, nr 4, s. 2003-2008Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Wettability gradients can be electronically controlled in a multiple-electrode electrochemical structure that consists of a solid electrolyte and the conducting polymer polyaniline doped with dodecylbenzenesulfonic acid as the active surface. A bias applied directly between a counter electrode and the surface to be switched determines the initial water contact angle, while the potential between two electrodes on either side of the switch surface, connected to each other and the switch surface only through an electrolyte, induces a surface energy gradient. The spreading of water on the switchable surface can be modulated with both potentials. The wettability at each point of the switch surface is correlated to the local electrochromic state (visible color) of the material, offering a visual indication of how a water drop will spread before it is applied. This new device has potential applications in scientific areas such as micro-fluidics and biomaterials.

  • 144.
    Isaksson, Joakim
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Tengstedt, Carl
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Robinson, Nathaniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    A Solid-state Organic Electronic Wettability Switch2004Ingår i: Advanced Materials, ISSN 0935-9648, Vol. 16, nr 4, s. 316-320Artikel i tidskrift (Refereegranskat)
  • 145.
    Isaksson, Joakim
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Tengstedt, Carl
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Fahlman, Mats
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Robinson, Nathaniel D
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Berggren, Magnus
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    A solid-state organic electrochemical wettability switch2004Ingår i: ISE - International Society of Electrochemistry,2004, 2004Konferensbidrag (Refereegranskat)
  • 146.
    Jager, Edwin
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Bolin, Maria
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Svennersten, Karl
    Karolinska Insitutet, Inst. för Neurovetenskap.
    Wang, X
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Richter-Dahlfors, Agneta
    Karolinska Insitutet, Inst. för Neurovetenskap.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Electroactive Surfaces Based on Conducting Polymers for Controlling Cell Adhesion, Signaling, and Proliferation2009Ingår i: Transducers 2009: The 15th International Conferece on solid-State Sensors, Actuators & Microsystems, IEEE conference proceedings, 2009, s. 1778-1781Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    We report on a variety of electroactive surfaces for the control of in vitro cell adhesion, proliferation, and stimulation. Planar cell culture substrates have been coated with the conducting polymer PEDOT and by switching the redox state, adhesion and proliferation of MDCK epithelial cells was controlled as well as stem cell seeding density. Electronically active 3D-scaffolds based on electrospun PET nano-fibers coated with PEDOT have been used as a substrate to culture SH-SY5Y neuroblastoma cells and to induce Ca2+ signaling. Finally, we report on micromechanical stimulation of cells using an electroactive topography surface based on micropattened polypyrrole.

  • 147.
    Jager, Edwin
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik.
    Svennersten, Karl
    Karolinska Institutet.
    Richter-Dahlfors, Agneta
    Karolinska Institutet.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Micromechanical Stimulation of Single Cells Using Polymer Actuators2010Ingår i: Actuator 2010, MESSE BREMEN-HVG HANSEATISCHE VERANSTALTUNGS-GMBH , 2010, s. 429-431Konferensbidrag (Refereegranskat)
    Abstract [en]

    The effect of mechanical forces on cells is a relatively unexplored area of cell biology. However, mechanical forces play an important role in cell proliferation and function. For instance in muscle contraction, bone growth, and morphogenesis. There is only a limited selection of tools to study this on a single cell level and/or follow the events in real time. Here, we present a new tool in order to mechanically stimulate cells both on a single cell level as well as parts of functional monolayers. The device is designed so that it can be used together with different imaging techniques used in cell biology. The device comprises polypyrrole microactuators. These microactuators can be operated in salt solutions including cell culture media, which makes them well suited for cell biology applications. In addition, polypyrrole is known to be biocompatible, making them a good choice for this device. We will present a device with which we can stretch cells and show the cellular response to this mechanical stimulation. Since the dawn of eukaryotic cells many parallel molecular mechanisms that respond to mechanical stimuli have evolved. This technology allows us to begin the investigation of these mechanisms on a single cell level.

  • 148.
    Jakesova, Marie
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Silverå Ejneby, Malin
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelning för neurobiologi. Linköpings universitet, Medicinska fakulteten.
    Derek, Vedran
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Schmidt, Tony
    Med Univ Graz, Austria.
    Gryszel, Maciej
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Brask, Johan
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelning för neurobiologi. Linköpings universitet, Medicinska fakulteten.
    Schindl, Rainer
    Med Univ Graz, Austria.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Elinder, Fredrik
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelning för neurobiologi. Linköpings universitet, Medicinska fakulteten.
    Glowacki, Eric
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Optoelectronic control of single cells using organic photocapacitors2019Ingår i: Science Advances, E-ISSN 2375-2548, Vol. 5, nr 4, artikel-id eaav5265Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Optical control of the electrophysiology of single cells can be a powerful tool for biomedical research and technology. Here, we report organic electrolytic photocapacitors (OEPCs), devices that function as extracellular capacitive electrodes for stimulating cells. OEPCs consist of transparent conductor layers covered with a donor-acceptor bilayer of organic photoconductors. This device produces an open-circuit voltage in a physiological solution of 330 mV upon illumination using light in a tissue transparency window of 630 to 660 nm. We have performed electrophysiological recordings on Xenopus laevis oocytes, finding rapid (time constants, 50 mu s to 5 ms) photoinduced transient changes in the range of 20 to 110 mV. We measure photoinduced opening of potassium channels, conclusively proving that the OEPC effectively depolarizes the cell membrane. Our results demonstrate that the OEPC can be a versatile nongenetic technique for optical manipulation of electrophysiology and currently represents one of the simplest and most stable and efficient optical stimulation solutions.

  • 149.
    Jakešová, Marie
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Arbring, Theresia
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik.
    Đerek, Vedran
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Poxson, David
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Glowacki, Eric
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel T
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Wireless organic electronic ion pumps driven by photovoltaics2019Ingår i: npj Flexible Electronics, ISSN 2397-4621, Vol. 3, nr 1, s. 14-14Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The organic electronic ion pump (OEIP) is an emerging bioelectronic technology for on-demand and local delivery of pharmacologically active species, especially targeting alkali ions, and neurotransmitters. While electrical control is advantageous for providing precise spatial, temporal, and quantitative delivery, traditionally, it necessitates wiring. This complicates implantation. Herein, we demonstrate integration of an OEIP with a photovoltaic driver on a flexible carrier, which can be addressed by red light within the tissue transparency window. Organic thin-film bilayer photovoltaic pixels are arranged in series and/or vertical tandem to provide the 2.5–4.5 V necessary for operating the high-resistance electrophoretic ion pumps. We demonstrate light-stimulated transport of cations, ranging in size from protons to acetylcholine. The device, laminated on top of the skin, can easily be driven with a red LED emitting through a 1.5-cm-thick finger. The end result of our work is a thin and flexible integrated wireless device platform.

1234567 101 - 150 av 313
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf