liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
1234 101 - 150 av 195
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 101.
    Grelsson, Bertil
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Performance boost in Convolutional Neural Networks by tuning shifted activation functions2017Rapport (Övrigt vetenskapligt)
    Abstract [en]

    The Exponential Linear Unit (ELU) has been proven to speed up learning and improve the classification performance over activation functions such as ReLU and Leaky ReLU for convolutional neural networks. The reasons behind the improved behavior are that ELU reduces the bias shift, it saturates for large negative inputs and it is continuously differentiable. However, it remains open whether ELU has the optimal shape and we address the quest for a superior activation function.

    We use a new formulation to tune a piecewise linear activation function during training, to investigate the above question, and learn the shape of the locally optimal activation function. With this tuned activation function, the classification performance is improved and the resulting, learned activation function shows to be ELU-shaped irrespective if it is initialized as a RELU, LReLU or ELU. Interestingly, the learned activation function does not exactly pass through the origin indicating that a shifted ELU-shaped activation function is preferable. This observation leads us to introduce the Shifted Exponential Linear Unit (ShELU) as a new activation function.

    Experiments on Cifar-100 show that the classification performance is further improved when using the ShELU activation function in comparison with ELU. The improvement is achieved when learning an individual bias shift for each neuron.

  • 102.
    Grelsson, Bertil
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
    Probabilistic Hough Voting for Attitude Estimation from Aerial Fisheye Images2013Ingår i: Image Analysis: 18th Scandinavian Conference, SCIA 2013, Espoo, Finland, June 17-20, 2013. Proceedings / [ed] Joni-Kristian Kämäräinen and Markus Koskela, Springer Berlin/Heidelberg, 2013, s. 478-488Konferensbidrag (Refereegranskat)
    Abstract [en]

    For navigation of unmanned aerial vehicles (UAVs), attitude estimation is essential. We present a method for attitude estimation (pitch and roll angle) from aerial fisheye images through horizon detection. The method is based on edge detection and a probabilistic Hough voting scheme.  In a flight scenario, there is often some prior knowledge of the vehicle altitude and attitude. We exploit this prior to make the attitude estimation more robust by letting the edge pixel votes be weighted based on the probability distributions for the altitude and pitch and roll angles. The method does not require any sky/ground segmentation as most horizon detection methods do. Our method has been evaluated on aerial fisheye images from the internet. The horizon is robustly detected in all tested images. The deviation in the attitude estimate between our automated horizon detection and a manual detection is less than 1 degree.

  • 103.
    Grelsson, Bertil
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
    Felsberg, Michael
    Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
    Isaksson, Folke
    Efficient 7D Aerial Pose Estimation2013Ingår i: 2013 IEEE Workshop on Robot Vision (WORV), IEEE , 2013, s. 88-95Konferensbidrag (Refereegranskat)
    Abstract [en]

    A method for online global pose estimation of aerial images by alignment with a georeferenced 3D model is presented.Motion stereo is used to reconstruct a dense local height patch from an image pair. The global pose is inferred from the 3D transform between the local height patch and the model.For efficiency, the sought 3D similarity transform is found by least-squares minimizations of three 2D subproblems.The method does not require any landmarks or reference points in the 3D model, but an approximate initialization of the global pose, in our case provided by onboard navigation sensors, is assumed.Real aerial images from helicopter and aircraft flights are used to evaluate the method. The results show that the accuracy of the position and orientation estimates is significantly improved compared to the initialization and our method is more robust than competing methods on similar datasets.The proposed matching error computed between the transformed patch and the map clearly indicates whether a reliable pose estimate has been obtained.

  • 104.
    Grelsson, Bertil
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan. Saab Dynamics, Linköping, Sweden.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
    Isaksson, Folke
    Vricon Systems, Saab, Linköping, Sweden.
    Highly Accurate Attitude Estimation via Horizon Detection2016Ingår i: Journal of Field Robotics, ISSN 1556-4959, E-ISSN 1556-4967, Vol. 33, nr 7, s. 967-993Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Attitude (pitch and roll angle) estimation from visual information is necessary for GPS-free navigation of airborne vehicles. We propose a highly accurate method to estimate the attitude by horizon detection in fisheye images. A Canny edge detector and a probabilistic Hough voting scheme are used to compute an approximate attitude and the corresponding horizon line in the image. Horizon edge pixels are extracted in a band close to the approximate horizon line. The attitude estimates are refined through registration of the extracted edge pixels with the geometrical horizon from a digital elevation map (DEM), in our case the SRTM3 database, extracted at a given approximate position. The proposed method has been evaluated using 1629 images from a flight trial with flight altitudes up to 600 m in an area with ground elevations ranging from sea level up to 500 m. Compared with the ground truth from a filtered inertial measurement unit (IMU)/GPS solution, the standard deviation for the pitch and roll angle errors obtained with 30 Mpixel images are 0.04° and 0.05°, respectively, with mean errors smaller than 0.02°. To achieve the high-accuracy attitude estimates, the ray refraction in the earth's atmosphere has been taken into account. The attitude errors obtained on real images are less or equal to those achieved on synthetic images for previous methods with DEM refinement, and the errors are about one order of magnitude smaller than for any previous vision-based method without DEM refinement.

  • 105.
    Grelsson, Bertil
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Robinson, Andreas
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Khan, Fahad Shahbaz
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    HorizonNet for visual terrain navigation2018Ingår i: Proceedings of 2018 IEEE International Conference on Image Processing, Applications and Systems (IPAS), Institute of Electrical and Electronics Engineers (IEEE), 2018, s. 149-155Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper investigates the problem of position estimation of unmanned surface vessels (USVs) operating in coastal areas or in the archipelago. We propose a position estimation method where the horizon line is extracted in a 360 degree panoramic image around the USV. We design a CNN architecture to determine an approximate horizon line in the image and implicitly determine the camera orientation (the pitch and roll angles). The panoramic image is warped to compensate for the camera orientation and to generate an image from an approximately level camera. A second CNN architecture is designed to extract the pixelwise horizon line in the warped image. The extracted horizon line is correlated with digital elevation model (DEM) data in the Fourier domain using a MOSSE correlation filter. Finally, we determine the location of the maximum correlation score over the search area to estimate the position of the USV. Comprehensive experiments are performed in a field trial in the archipelago. Our approach provides promising results by achieving position estimates with GPS-level accuracy.

  • 106.
    Hedborg, Johan
    et al.
    Linköpings universitet, Institutionen för systemteknik, Bildbehandling. Linköpings universitet, Tekniska högskolan.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Bildbehandling. Linköpings universitet, Tekniska högskolan.
    Fast and Robust Relative Pose Estimation for Forward and Sideways Motions2010Ingår i: SSBA, 2010Konferensbidrag (Övrigt vetenskapligt)
  • 107.
    Hedborg, Johan
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
    Fast Iterative Five point Relative Pose Estimation2013Konferensbidrag (Refereegranskat)
    Abstract [en]

    Robust estimation of the relative pose between two cameras is a fundamental part of Structure and Motion methods. For calibrated cameras, the five point method together with a robust estimator such as RANSAC gives the best result in most cases. The current state-of-the-art method for solving the relative pose problem from five points is due to Nistér [9], because it is faster than other methods and in the RANSAC scheme one can improve precision by increasing the number of iterations. In this paper, we propose a new iterative method, which is based on Powell's Dog Leg algorithm. The new method has the same precision and is approximately twice as fast as Nister's algorithm. The proposed method is easily extended to more than five points while retaining a efficient error metrics. This makes it also very suitable as an refinement step. The proposed algorithm is systematically evaluated on three types of datasets with known ground truth.

  • 108.
    Hedborg, Johan
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
    Fast Iterative Five point Relative Pose EstimationManuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    Robust estimation of the relative pose between two cameras is a fundamental part of Structure and Motion methods. For calibrated cameras, the five point method together with a robust estimator such as RANSAC gives the best result in most cases. The current state-of-the-art method for solving the relative pose problem from five points is due to Nist´er [1], because it is faster than other methods and in the RANSAC scheme one can improve precision by increasing the number of iterations.

    In this paper, we propose a new iterative method, which is based on Powell’s Dog Leg algorithm. The new method has the same precision and is approximately twice as fast as Nist´er’s algorithm. The proposed algorithm is systematically evaluated on two types of datasets with known ground truth.

  • 109.
    Hedborg, Johan
    et al.
    Linköpings universitet, Institutionen för systemteknik, Bildbehandling. Linköpings universitet, Tekniska högskolan.
    Forssén, Per-Erik
    Linköpings universitet, Institutionen för systemteknik, Bildbehandling. Linköpings universitet, Tekniska högskolan.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Bildbehandling. Linköpings universitet, Tekniska högskolan.
    Fast and Accurate Structure and Motion Estimation2009Ingår i: International Symposium on Visual Computing / [ed] George Bebis, Richard Boyle, Bahram Parvin, Darko Koracin, Yoshinori Kuno, Junxian Wang, Jun-Xuan Wang, Junxian Wang, Renato Pajarola and Peter Lindstrom et al., Berlin Heidelberg: Springer-Verlag , 2009, s. 211-222Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper describes a system for structure-and-motion estimation for real-time navigation and obstacle avoidance. We demonstrate it technique to increase the efficiency of the 5-point solution to the relative pose problem. This is achieved by a novel sampling scheme, where We add a distance constraint on the sampled points inside the RANSAC loop. before calculating the 5-point solution. Our setup uses the KLT tracker to establish point correspondences across tone in live video We also demonstrate how an early outlier rejection in the tracker improves performance in scenes with plenty of occlusions. This outlier rejection scheme is well Slated to implementation on graphics hardware. We evaluate the proposed algorithms using real camera sequences with fine-tuned bundle adjusted data as ground truth. To strenghten oar results we also evaluate using sequences generated by a state-of-the-art rendering software. On average we are able to reduce the number of RANSAC iterations by half and thereby double the speed.

  • 110.
    Hedborg, Johan
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
    Forssén, Per-Erik
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
    Ringaby, Erik
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
    Rolling Shutter Bundle Adjustment2012Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper introduces a bundle adjustment (BA) method that obtains accurate structure and motion from rolling shutter (RS) video sequences: RSBA. When a classical BA algorithm processes a rolling shutter video, the resultant camera trajectory is brittle, and complete failures are not uncommon. We exploit the temporal continuity of the camera motion to define residuals of image point trajectories with respect to the camera trajectory. We compare the camera trajectories from RSBA to those from classical BA, and from classical BA on rectified videos. The comparisons are done on real video sequences from an iPhone 4, with ground truth obtained from a global shutter camera, rigidly mounted to the iPhone 4. Compared to classical BA, the rolling shutter model requires just six extra parameters. It also degrades the sparsity of the system Jacobian slightly, but as we demonstrate, the increase in computation time is moderate. Decisive advantages are that RSBA succeeds in cases where competing methods diverge, and consistently produces more accurate results.

  • 111.
    Hedborg, Johan
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
    Ringaby, Erik
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
    Forssén, Per-Erik
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
    Structure and Motion Estimation from Rolling Shutter Video2011Ingår i: IEEE International Conference onComputer Vision Workshops (ICCV Workshops), 2011, IEEE Xplore , 2011, s. 17-23Konferensbidrag (Refereegranskat)
    Abstract [en]

    The majority of consumer quality cameras sold today have CMOS sensors with rolling shutters. In a rolling shutter camera, images are read out row by row, and thus each row is exposed during a different time interval. A rolling-shutter exposure causes geometric image distortions when either the camera or the scene is moving, and this causes state-of-the-art structure and motion algorithms to fail. We demonstrate a novel method for solving the structure and motion problem for rolling-shutter video. The method relies on exploiting the continuity of the camera motion, both between frames, and across a frame. We demonstrate the effectiveness of our method by controlled experiments on real video sequences. We show, both visually and quantitatively, that our method outperforms standard structure and motion, and is more accurate and efficient than a two-step approach, doing image rectification and structure and motion.

  • 112.
    Hedborg, Johan
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
    Robinson, Andreas
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
    Robust Three-View Triangulation Done Fast2014Ingår i: Proceedings: 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2014, IEEE , 2014, s. 152-157Konferensbidrag (Refereegranskat)
    Abstract [en]

    Estimating the position of a 3-dimensional world point given its 2-dimensional projections in a set of images is a key component in numerous computer vision systems. There are several methods dealing with this problem, ranging from sub-optimal, linear least square triangulation in two views, to finding the world point that minimized the L2-reprojection error in three views. This leads to the statistically optimal estimate under the assumption of Gaussian noise. In this paper we present a solution to the optimal triangulation in three views. The standard approach for solving the three-view triangulation problem is to find a closed-form solution. In contrast to this, we propose a new method based on an iterative scheme. The method is rigorously tested on both synthetic and real image data with corresponding ground truth, on a midrange desktop PC and a Raspberry Pi, a low-end mobile platform. We are able to improve the precision achieved by the closed-form solvers and reach a speed-up of two orders of magnitude compared to the current state-of-the-art solver. In numbers, this amounts to around 300K triangulations per second on the PC and 30K triangulations per second on Raspberry Pi.

  • 113.
    Hedborg, Johan
    et al.
    Linköpings universitet, Institutionen för systemteknik, Bildbehandling. Linköpings universitet, Tekniska högskolan.
    Skoglund, Johan
    Linköpings universitet, Institutionen för systemteknik, Bildbehandling. Linköpings universitet, Tekniska högskolan.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Bildbehandling. Linköpings universitet, Tekniska högskolan.
    KLT Tracking Implementation on the GPU2007Ingår i: Proceedings SSBA 2007 / [ed] Magnus Borga, Anders Brun and Michael Felsberg;, 2007Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    The GPU is the main processing unit on a graphics card. A modern GPU typically provides more than ten times the computational power of an ordinary PC processor. This is a result of the high demands for speed and image quality in computer games. This paper investigates the possibility of exploiting this computational power for tracking points in image sequences. Tracking points is used in many computer vision tasks, such as tracking moving objects, structure from motion, face tracking etc. The algorithm was successfully implemented on the GPU and a large speed up was achieved.

  • 114.
    Heinemann, Christian
    et al.
    Forschungszentrum Jülich, Germany.
    Åström, Freddie
    Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
    Baravdish, George
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Kommunikations- och transportsystem. Linköpings universitet, Tekniska högskolan.
    Krajsek, Kai
    Forschungszentrum Jülich, Germany.
    Felsberg, Michael
    Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
    Scharr, Hanno
    Forschungszentrum Jülich, Germany.
    Using Channel Representations in Regularization Terms: A Case Study on Image Diffusion2014Ingår i: Proceedings of the 9th International Conference on Computer Vision Theory and Applications, SciTePress, 2014, Vol. 1, s. 48-55Konferensbidrag (Refereegranskat)
    Abstract [en]

    In this work we propose a novel non-linear diffusion filtering approach for images based on their channel representation. To derive the diffusion update scheme we formulate a novel energy functional using a soft-histogram representation of image pixel neighborhoods obtained from the channel encoding. The resulting Euler-Lagrange equation yields a non-linear robust diffusion scheme with additional weighting terms stemming from the channel representation which steer the diffusion process. We apply this novel energy formulation to image reconstruction problems, showing good performance in the presence of mixtures of Gaussian and impulse-like noise, e.g. missing data. In denoising experiments of common scalar-valued images our approach performs competitive compared to other diffusion schemes as well as state-of-the-art denoising methods for the considered noise types.

  • 115.
    Heyden, Anders
    et al.
    Centre for Mathematical Sciences, Faculty of Engineering, LTH, Lund University.
    Laurendeau, DenisDépartement de génie électrique et de génie informatique, Université Laval, Québec, Canada.Felsberg, MichaelLinköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för systemteknik, Datorseende.Borga, MagnusLinköpings universitet, Institutionen för medicinsk teknik, Avdelningen för medicinsk teknik. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Proceedings. 22nd International Conferenceon Pattern Recognition ICPR 2014, 24-28 August 2014, Stockholm, Sweden2014Proceedings (redaktörskap) (Refereegranskat)
    Abstract [en]

    On behalf of the Organizing Committee, it is my honor and privilege to present the scientific program of the 22nd International Conference on Pattern Recognition. ICPR 2014 is hosted by the Swedish Society for Automated Image Analysis (SSBA) and supported by the universities of Linkoping, Lund and Uppsala.

    ICPR 2014 has five scientific tracks: Computer Vision; Pattern Recognition and Machine Learning; Image, Speech, Signal and Video Processing; Document Analysis, Biometrics and Pattern Recognition Applications; and Biomedical Image Analysis. For each track there is an Invited Speaker who will share their deep knowledge and experience with us. The perhaps most apparent novelty in this ICPR is the change from four to six paged papers, which is significantly more than a 50% increase in the actual content, disregarding the title, abstract and reference list. Our hope and belief is that this has improved the possibility for the reviewers to make well-justified evaluations of the manuscripts, and also improved the readability of the final papers and, as a consequence, improved the general quality of the accepted papers.

    The organization of ICPR 2014 would not have been possible without the generous contributions by our major partners, The City of Stockholm, SSBA, eSSENCE and SeRC. Also the financial contributions of our other partners and exhibitors as well as the technical co-sponsorship by IEEE Computer Society are gratefully acknowledged, and so is the support and advices from IAPR and the ICPR Liaison Committee. I also want to express my sincere gratitude to the Program and Publication Chairs, the Track Chairs, Area Chairs and all reviewers for their great efforts in putting this scientific program together. And, perhaps most of all, I want to thank all the contributing authors who filled it with contents of highest scientific quality. Finally, I would like to express my gratitude to all attendees. Without your presence, there simply wouldn't be any conference.

  • 116.
    Holmquist, Karl
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Senel, Deniz
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Computing a Collision-Free Path using the monogenic scale space2018Ingår i: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2018, s. 8097-8102Konferensbidrag (Refereegranskat)
    Abstract [en]

    Mobile robots have been used for various purposes with different functionalities which require them to freely move in environments containing both static and dynamic obstacles to accomplish given tasks. One of the most relevant capabilities in terms of navigating a mobile robot in such an environment is to find a safe path to a goal position. This paper shows that there exists an accurate solution to the Laplace equation which allows finding a collision-free path and that it can be efficiently calculated for a rectangular bounded domain such as a map which is represented as an image. This is accomplished by the use of the monogenic scale space resulting in a vector field which describes the attracting and repelling forces from the obstacles and the goal. The method is shown to work in reasonably convex domains and by the use of tessellation of the environment map for non-convex environments.

  • 117.
    Häger, Gustav
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för systemteknik, Datorseende.
    Bhat, Goutam
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för systemteknik, Datorseende.
    Danelljan, Martin
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för systemteknik, Datorseende.
    Khan, Fahad Shahbaz
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för systemteknik, Datorseende.
    Felsberg, Michael
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för systemteknik, Datorseende.
    Rudol, Piotr
    Linköpings universitet, Tekniska högskolan.
    Doherty, Patrick
    Linköpings universitet, Tekniska högskolan.
    Combining Visual Tracking and Person Detection for Long Term Tracking on a UAV2016Ingår i: Proceedings of the 12th International Symposium on Advances in Visual Computing, 2016Konferensbidrag (Refereegranskat)
    Abstract [en]

    Visual object tracking performance has improved significantly in recent years. Most trackers are based on either of two paradigms: online learning of an appearance model or the use of a pre-trained object detector. Methods based on online learning provide high accuracy, but are prone to model drift. The model drift occurs when the tracker fails to correctly estimate the tracked object’s position. Methods based on a detector on the other hand typically have good long-term robustness, but reduced accuracy compared to online methods.

    Despite the complementarity of the aforementioned approaches, the problem of fusing them into a single framework is largely unexplored. In this paper, we propose a novel fusion between an online tracker and a pre-trained detector for tracking humans from a UAV. The system operates at real-time on a UAV platform. In addition we present a novel dataset for long-term tracking in a UAV setting, that includes scenarios that are typically not well represented in standard visual tracking datasets.

  • 118.
    Häger, Gustav
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Khan, Fahad Shahbaz
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Countering bias in tracking evaluations2018Ingår i: Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications / [ed] Francisco Imai, Alain Tremeau and Jose Braz, Science and Technology Publications, Lda , 2018, Vol. 5, s. 581-587Konferensbidrag (Refereegranskat)
    Abstract [en]

    Recent years have witnessed a significant leap in visual object tracking performance mainly due to powerfulfeatures, sophisticated learning methods and the introduction of benchmark datasets. Despite this significantimprovement, the evaluation of state-of-the-art object trackers still relies on the classical intersection overunion (IoU) score. In this work, we argue that the object tracking evaluations based on classical IoU score aresub-optimal. As our first contribution, we theoretically prove that the IoU score is biased in the case of largetarget objects and favors over-estimated target prediction sizes. As our second contribution, we propose a newscore that is unbiased with respect to target prediction size. We systematically evaluate our proposed approachon benchmark tracking data with variations in relative target size. Our empirical results clearly suggest thatthe proposed score is unbiased in general.

  • 119.
    Johnander, Joakim
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Bhat, Goutam
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Danelljan, Martin
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Khan, Fahad Shahbaz
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    On the Optimization of Advanced DCF-Trackers2018Ingår i: Computer Vision – ECCV 2018 Workshops: Munich, Germany, September 8-14, 2018, Proceedings, Part I / [ed] Laura Leal-TaixéStefan Roth, Cham: Springer Publishing Company, 2018, s. 54-69Konferensbidrag (Refereegranskat)
    Abstract [en]

    Trackers based on discriminative correlation filters (DCF) have recently seen widespread success and in this work we dive into their numerical core. DCF-based trackers interleave learning of the target detector and target state inference based on this detector. Whereas the original formulation includes a closed-form solution for the filter learning, recently introduced improvements to the framework no longer have known closed-form solutions. Instead a large-scale linear least squares problem must be solved each time the detector is updated. We analyze the procedure used to optimize the detector and let the popular scheme introduced with ECO serve as a baseline. The ECO implementation is revisited in detail and several mechanisms are provided with alternatives. With comprehensive experiments we show which configurations are superior in terms of tracking capabilities and optimization performance.

  • 120.
    Johnander, Joakim
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Danelljan, Martin
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Khan, Fahad Shahbaz
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    DCCO: Towards Deformable Continuous Convolution Operators for Visual Tracking2017Ingår i: Computer Analysis of Images and Patterns: 17th International Conference, CAIP 2017, Ystad, Sweden, August 22-24, 2017, Proceedings, Part I / [ed] Michael Felsberg, Anders Heyden and Norbert Krüger, Springer, 2017, Vol. 10424, s. 55-67Konferensbidrag (Refereegranskat)
    Abstract [en]

    Discriminative Correlation Filter (DCF) based methods have shown competitive performance on tracking benchmarks in recent years. Generally, DCF based trackers learn a rigid appearance model of the target. However, this reliance on a single rigid appearance model is insufficient in situations where the target undergoes non-rigid transformations. In this paper, we propose a unified formulation for learning a deformable convolution filter. In our framework, the deformable filter is represented as a linear combination of sub-filters. Both the sub-filter coefficients and their relative locations are inferred jointly in our formulation. Experiments are performed on three challenging tracking benchmarks: OTB-2015, TempleColor and VOT2016. Our approach improves the baseline method, leading to performance comparable to state-of-the-art.

  • 121.
    Jonsson, Erik
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för systemteknik, Bildbehandling.
    Felsberg, Michael
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för systemteknik, Bildbehandling.
    Accurate Interpolation in Appearance-Based Pose Estimation2007Ingår i: Svenska Sällskapet för Automatiserad Bildanalys SSBA Symposium,2007, 2007, s. 13-16Konferensbidrag (Övrigt vetenskapligt)
  • 122.
    Jonsson, Erik
    et al.
    Linköpings universitet, Institutionen för systemteknik, Bildbehandling. Linköpings universitet, Tekniska högskolan.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Bildbehandling. Linköpings universitet, Tekniska högskolan.
    Accurate Interpolation in Appearance-Based Pose Estimation2007Ingår i: Image Analysis: 15th Scandinavian Conference, SCIA 2007, Aalborg, Denmark, June 10-14, 2007 / [ed] Bjarne Kjær Ersbøll and Kim Steenstrup Pedersen, Springer Berlin/Heidelberg, 2007, s. 1-10Konferensbidrag (Refereegranskat)
    Abstract [en]

    One problem in appearance-based pose estimation is the need for many training examples, i.e. images of the object in a large number of known poses. Some invariance can be obtained by considering translations, rotations and scale changes in the image plane, but the remaining degrees of freedom are often handled simply by sampling the pose space densely enough. This work presents a method for accurate interpolation between training views using local linear models. As a view representation local soft orientation histograms are used. The derivative of this representation with respect to the image plane transformations is computed, and a Gauss-Newton optimization is used to optimize all pose parameters simultaneously, resulting in an accurate estimate.

  • 123.
    Jonsson, Erik
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för systemteknik, Bildbehandling.
    Felsberg, Michael
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för systemteknik, Bildbehandling.
    Correspondence-Free Associative Learning2006Ingår i: ICPR,2006, 2006Konferensbidrag (Refereegranskat)
  • 124.
    Jonsson, Erik
    et al.
    Linköpings universitet, Institutionen för systemteknik, Bildbehandling. Linköpings universitet, Tekniska högskolan.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Bildbehandling. Linköpings universitet, Tekniska högskolan.
    Efficient computation of channel-coded feature maps through piecewise polynomials2009Ingår i: Image and Vision Computing, ISSN 0262-8856, Vol. 27, nr 11, s. 1688-1694Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Channel-coded feature maps (CCFMs) represent arbitrary image features using multi-dimensional histograms with soft and overlapping bins. This representation can be seen as a generalization of the SIFT descriptor, where one advantage is that it is better suited for computing derivatives with respect to image transformations. Using these derivatives, a local optimization of image scale, rotation and position relative to a reference view can be computed. If piecewise polynomial bin functions are used, e.g. B-splines, these histograms can be computed by first encoding the data set into a histogram-like representation with non-overlapping multi-dimensional monomials as bin functions. This representation can then be processed using multi-dimensional convolutions to obtain the desired representation. This allows to reuse much of the computations for the derivatives. By comparing the complexity of this method to direct encoding, it is found that the piecewise method is preferable for large images and smaller patches with few channels, which makes it useful, e.g. in early steps of coarse-to-fine approaches.

  • 125.
    Jonsson, Erik
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för systemteknik, Bildbehandling.
    Felsberg, Michael
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för systemteknik, Bildbehandling.
    Efficient Robust Mean Value Computation of 1D Features2005Ingår i: Efficient Robust Mean Value Computation of 1D Features,2005, 2005Konferensbidrag (Refereegranskat)
    Abstract [en]

     A robust mean value is often a good alternative to the standard mean value when dealing with data containing many outliers. An efficient method for samples of one-dimensional features and the truncated quadratic error norm is presented and compared to the method of channel averaging (soft histograms).

  • 126.
    Jonsson, Erik
    et al.
    Linköpings universitet, Institutionen för systemteknik, Bildbehandling. Linköpings universitet, Tekniska högskolan.
    Felsberg, Michael
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för systemteknik, Bildbehandling.
    Reconstruction of probability density functions from channel representations2005Ingår i: Scandinavian Conference on Image Analysis, 2005, Vol. 3540, s. 491-500Konferensbidrag (Refereegranskat)
    Abstract [en]

    The channel representation allows the construction of soft histograms, where peaks can be detected with a much higher accuracy than in regular hard-binned histograms. This is critical in e.g. reducing the number of bins of generalized Hough transform methods. When applying the maximum entropy method to the channel representation, a minimum-information reconstruction of the underlying continuous probability distribution is obtained. The maximum entropy reconstruction is compared to simpler linear methods in some simulated situations. Experimental results show that mode estimation of the maximum entropy reconstruction outperforms the linear methods in terms of quantization error and discrimination threshold. Finding the maximum entropy reconstruction is however computationally more expensive.

  • 127.
    Jonsson, Erik
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för systemteknik, Bildbehandling.
    Felsberg, Michael
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för systemteknik, Bildbehandling.
    Soft Histograms for Belief Propagation2006Ingår i: ECCV Workhop of the Representation and Use of Prior Knowledge in Vision,2006, 2006Konferensbidrag (Refereegranskat)
  • 128.
    Jonsson, Erik
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för systemteknik, Bildbehandling.
    Felsberg, Michael
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för systemteknik, Bildbehandling.
    Granlund, Gösta
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för systemteknik, Bildbehandling.
    Incremental Associative Learning2005Rapport (Övrigt vetenskapligt)
    Abstract [en]

      

  • 129.
    Järemo Lawin, Felix
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Danelljan, Martin
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Khan, Fahad Shahbaz
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Forssén, Per-Erik
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Density Adaptive Point Set Registration2018Ingår i: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2018, s. 3829-3837Konferensbidrag (Refereegranskat)
    Abstract [en]

    Probabilistic methods for point set registration have demonstrated competitive results in recent years. These techniques estimate a probability distribution model of the point clouds. While such a representation has shown promise, it is highly sensitive to variations in the density of 3D points. This fundamental problem is primarily caused by changes in the sensor location across point sets.    We revisit the foundations of the probabilistic registration paradigm. Contrary to previous works, we model the underlying structure of the scene as a latent probability distribution, and thereby induce invariance to point set density changes. Both the probabilistic model of the scene and the registration parameters are inferred by minimizing the Kullback-Leibler divergence in an Expectation Maximization based framework. Our density-adaptive registration successfully handles severe density variations commonly encountered in terrestrial Lidar applications. We perform extensive experiments on several challenging real-world Lidar datasets. The results demonstrate that our approach outperforms state-of-the-art probabilistic methods for multi-view registration, without the need of re-sampling.

  • 130.
    Järemo-Lawin, Felix
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Danelljan, Martin
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Tosteberg, Patrik
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Bhat, Goutam
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Khan, Fahad Shahbaz
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Deep Projective 3D Semantic Segmentation2017Ingår i: Computer Analysis of Images and Patterns: 17th International Conference, CAIP 2017, Ystad, Sweden, August 22-24, 2017, Proceedings, Part I / [ed] Michael Felsberg, Anders Heyden and Norbert Krüger, Springer, 2017, s. 95-107Konferensbidrag (Refereegranskat)
    Abstract [en]

    Semantic segmentation of 3D point clouds is a challenging problem with numerous real-world applications. While deep learning has revolutionized the field of image semantic segmentation, its impact on point cloud data has been limited so far. Recent attempts, based on 3D deep learning approaches (3D-CNNs), have achieved below-expected results. Such methods require voxelizations of the underlying point cloud data, leading to decreased spatial resolution and increased memory consumption. Additionally, 3D-CNNs greatly suffer from the limited availability of annotated datasets.

  • 131. Kalkan, Sinan
    et al.
    Calow, D.
    Felsberg, Michael
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för systemteknik, Bildbehandling.
    Wörgötter, Florentin
    Lappe, M.
    Krüger, Norbert
    Optic Flow Statistics and Intrinsic Dimensionality2004Ingår i: BICS2004,2004, 2004Konferensbidrag (Refereegranskat)
  • 132.
    Khan, Fahad Shahbaz
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
    Beigpour, Shida
    Norwegian Colour and Visual Computing Laboratory, Gjovik University College, Gjøvik, Norway.
    van de Weijer, Joost
    Computer Vision Center, CS Dept. Universitat Autonoma de Barcelona, Spain.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Painting-91: a large scale database for computational painting categorization2014Ingår i: Machine Vision and Applications, ISSN 0932-8092, E-ISSN 1432-1769, Vol. 25, nr 6, s. 1385-1397Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Computer analysis of visual art, especially paintings, is an interesting cross-disciplinary research domain. Most of the research in the analysis of paintings involve medium to small range datasets with own specific settings. Interestingly, significant progress has been made in the field of object and scene recognition lately. A key factor in this success is the introduction and availability of benchmark datasets for evaluation. Surprisingly, such a benchmark setup is still missing in the area of computational painting categorization. In this work, we propose a novel large scale dataset of digital paintings. The dataset consists of paintings from 91 different painters. We further show three applications of our dataset namely: artist categorization, style classification and saliency detection. We investigate how local and global features popular in image classification perform for the tasks of artist and style categorization. For both categorization tasks, our experimental results suggest that combining multiple features significantly improves the final performance. We show that state-of-the-art computer vision methods can correctly classify 50 % of unseen paintings to its painter in a large dataset and correctly attribute its artistic style in over 60 % of the cases. Additionally, we explore the task of saliency detection on paintings and show experimental findings using state-of-the-art saliency estimation algorithms.

  • 133.
    Khan, Fahad Shahbaz
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
    Muhammad Anwer, Rao
    Department of Information and Computer Science, Aalto University School of Science, Finland.
    van de Weijer, Joost
    Computer Vision Center, CS Dept. Universitat Autonoma de Barcelona, Spain.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Tekniska högskolan.
    Laaksonen, Jorma
    Department of Information and Computer Science, Aalto University School of Science, Finland.
    Compact color–texture description for texture classification2015Ingår i: Pattern Recognition Letters, ISSN 0167-8655, E-ISSN 1872-7344, Vol. 51, s. 16-22Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Describing textures is a challenging problem in computer vision and pattern recognition. The classification problem involves assigning a category label to the texture class it belongs to. Several factors such as variations in scale, illumination and viewpoint make the problem of texture description extremely challenging. A variety of histogram based texture representations exists in literature. However, combining multiple texture descriptors and assessing their complementarity is still an open research problem. In this paper, we first show that combining multiple local texture descriptors significantly improves the recognition performance compared to using a single best method alone. This gain in performance is achieved at the cost of high-dimensional final image representation. To counter this problem, we propose to use an information-theoretic compression technique to obtain a compact texture description without any significant loss in accuracy. In addition, we perform a comprehensive evaluation of pure color descriptors, popular in object recognition, for the problem of texture classification. Experiments are performed on four challenging texture datasets namely, KTH-TIPS-2a, KTH-TIPS-2b, FMD and Texture-10. The experiments clearly demonstrate that our proposed compact multi-texture approach outperforms the single best texture method alone. In all cases, discriminative color names outperforms other color features for texture classification. Finally, we show that combining discriminative color names with compact texture representation outperforms state-of-the-art methods by 7.8%,4.3%7.8%,4.3% and 5.0%5.0% on KTH-TIPS-2a, KTH-TIPS-2b and Texture-10 datasets respectively.

  • 134.
    Khan, Fahad Shahbaz
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
    Rao, Muhammad Anwer
    Computer vision Center Barcelona, Universitat Autonoma de Barcelona, Spain.
    van de Weijer, Joost
    Computer vision Center Barcelona, Universitat Autonoma de Barcelona, Spain.
    Bagdanov, Andrew
    Media Integration and Communication Center, University of Florence, Florence, Italy.
    Lopez, Antonio
    Computer vision Center Barcelona, Universitat Autonoma de Barcelona, Spain.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Coloring Action Recognition in Still Images2013Ingår i: International Journal of Computer Vision, ISSN 0920-5691, E-ISSN 1573-1405, Vol. 105, nr 3, s. 205-221Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this article we investigate the problem of human action recognition in static images. By action recognition we intend a class of problems which includes both action classification and action detection (i.e. simultaneous localization and classification). Bag-of-words image representations yield promising results for action classification, and deformable part models perform very well object detection. The representations for action recognition typically use only shape cues and ignore color information. Inspired by the recent success of color in image classification and object detection, we investigate the potential of color for action classification and detection in static images. We perform a comprehensive evaluation of color descriptors and fusion approaches for action recognition. Experiments were conducted on the three datasets most used for benchmarking action recognition in still images: Willow, PASCAL VOC 2010 and Stanford-40. Our experiments demonstrate that incorporating color information considerably improves recognition performance, and that a descriptor based on color names outperforms pure color descriptors. Our experiments demonstrate that late fusion of color and shape information outperforms other approaches on action recognition. Finally, we show that the different color–shape fusion approaches result in complementary information and combining them yields state-of-the-art performance for action classification.

  • 135.
    Khan, Fahad Shahbaz
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Rao, Muhammad Anwer
    Department of Information and Computer Science, Aalto University School of Science, Aalto, Finland.
    van de Weijer, Joost
    Computer Vision Center, CS Department, Universitet Autonoma de Barcelona, Barcelona, Spain.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Laaksonen, Jorma
    Department of Information and Computer Science, Aalto University School of Science, Aalto, Finland.
    Deep Semantic Pyramids for Human Attributes and Action Recognition2015Ingår i: Image Analysis: 19th Scandinavian Conference, SCIA 2015, Copenhagen, Denmark, June 15-17, 2015. Proceedings / [ed] Paulsen, Rasmus R., Pedersen, Kim S., Springer, 2015, Vol. 9127, s. 341-353Konferensbidrag (Refereegranskat)
    Abstract [en]

    Describing persons and their actions is a challenging problem due to variations in pose, scale and viewpoint in real-world images. Recently, semantic pyramids approach [1] for pose normalization has shown to provide excellent results for gender and action recognition. The performance of semantic pyramids approach relies on robust image description and is therefore limited due to the use of shallow local features. In the context of object recognition [2] and object detection [3], convolutional neural networks (CNNs) or deep features have shown to improve the performance over the conventional shallow features.

    We propose deep semantic pyramids for human attributes and action recognition. The method works by constructing spatial pyramids based on CNNs of different part locations. These pyramids are then combined to obtain a single semantic representation. We validate our approach on the Berkeley and 27 Human Attributes datasets for attributes classification. For action recognition, we perform experiments on two challenging datasets: Willow and PASCAL VOC 2010. The proposed deep semantic pyramids provide a significant gain of 17.2%, 13.9%, 24.3% and 22.6% compared to the standard shallow semantic pyramids on Berkeley, 27 Human Attributes, Willow and PASCAL VOC 2010 datasets respectively. Our results also show that deep semantic pyramids outperform conventional CNNs based on the full bounding box of the person. Finally, we compare our approach with state-of-the-art methods and show a gain in performance compared to best methods in literature.

  • 136.
    Khan, Fahad Shahbaz
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
    Van de Weijer, Joost
    Universitat Autonoma de Barcelona, Spain .
    Ali, Sadiq
    Universitat Autonoma de Barcelona, Spain .
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Evaluating the Impact of Color on Texture Recognition2013Ingår i: Computer Analysis of Images and Patterns: 15th International Conference, CAIP 2013, York, UK, August 27-29, 2013, Proceedings, Part I / [ed] Richard Wilson, Edwin Hancock, Adrian Bors, William Smith, Springer Berlin/Heidelberg, 2013, s. 154-162Konferensbidrag (Refereegranskat)
    Abstract [en]

    State-of-the-art texture descriptors typically operate on grey scale images while ignoring color information. A common way to obtain a joint color-texture representation is to combine the two visual cues at the pixel level. However, such an approach provides sub-optimal results for texture categorisation task.

    In this paper we investigate how to optimally exploit color information for texture recognition. We evaluate a variety of color descriptors, popular in image classification, for texture categorisation. In addition we analyze different fusion approaches to combine color and texture cues. Experiments are conducted on the challenging scenes and 10 class texture datasets. Our experiments clearly suggest that in all cases color names provide the best performance. Late fusion is the best strategy to combine color and texture. By selecting the best color descriptor with optimal fusion strategy provides a gain of 5% to 8% compared to texture alone on scenes and texture datasets.

  • 137.
    Khan, Fahad
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
    Van, De Weijer J.
    Computer Vision Center, CS Department, Universitat Autonoma de Barcelona, Spain.
    Bagdanov, A.D.
    Computer Vision Center, CS Department, Universitat Autonoma de Barcelona, Spain.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Scale coding bag-of-words for action recognition2014Ingår i: Pattern Recognition (ICPR), 2014 22nd International Conference on, Institute of Electrical and Electronics Engineers Inc. , 2014, nr 6976979, s. 1514-1519Konferensbidrag (Refereegranskat)
    Abstract [en]

    Recognizing human actions in still images is a challenging problem in computer vision due to significant amount of scale, illumination and pose variation. Given the bounding box of a person both at training and test time, the task is to classify the action associated with each bounding box in an image. Most state-of-the-art methods use the bag-of-words paradigm for action recognition. The bag-of-words framework employing a dense multi-scale grid sampling strategy is the de facto standard for feature detection. This results in a scale invariant image representation where all the features at multiple-scales are binned in a single histogram. We argue that such a scale invariant strategy is sub-optimal since it ignores the multi-scale information available with each bounding box of a person. This paper investigates alternative approaches to scale coding for action recognition in still images. We encode multi-scale information explicitly in three different histograms for small, medium and large scale visual-words. Our first approach exploits multi-scale information with respect to the image size. In our second approach, we encode multi-scale information relative to the size of the bounding box of a person instance. In each approach, the multi-scale histograms are then concatenated into a single representation for action classification. We validate our approaches on the Willow dataset which contains seven action categories: interacting with computer, photography, playing music, riding bike, riding horse, running and walking. Our results clearly suggest that the proposed scale coding approaches outperform the conventional scale invariant technique. Moreover, we show that our approach obtains promising results compared to more complex state-of-the-art methods.

  • 138.
    Khan, Fahad
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    van de Weijer, Joost
    University of Autonoma Barcelona, Spain.
    Muhammad Anwer, Rao
    Aalto University, Finland.
    Bagdanov, Andrew D.
    University of Florence, Italy.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Laaksonen, Jorma
    Aalto University, Finland.
    Scale coding bag of deep features for human attribute and action recognition2018Ingår i: Machine Vision and Applications, ISSN 0932-8092, E-ISSN 1432-1769, Vol. 29, nr 1, s. 55-71Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Most approaches to human attribute and action recognition in still images are based on image representation in which multi-scale local features are pooled across scale into a single, scale-invariant encoding. Both in bag-of-words and the recently popular representations based on convolutional neural networks, local features are computed at multiple scales. However, these multi-scale convolutional features are pooled into a single scale-invariant representation. We argue that entirely scale-invariant image representations are sub-optimal and investigate approaches to scale coding within a bag of deep features framework. Our approach encodes multi-scale information explicitly during the image encoding stage. We propose two strategies to encode multi-scale information explicitly in the final image representation. We validate our two scale coding techniques on five datasets: Willow, PASCAL VOC 2010, PASCAL VOC 2012, Stanford-40 and Human Attributes (HAT-27). On all datasets, the proposed scale coding approaches outperform both the scale-invariant method and the standard deep features of the same network. Further, combining our scale coding approaches with standard deep features leads to consistent improvement over the state of the art.

  • 139.
    Khan, Fahad
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
    van de Weijer, Joost
    Comp Vis Centre, Spain .
    Muhammad Anwer, Rao
    Aalto University, Finland .
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
    Gatta, Carlo
    Comp Vis Centre, Spain .
    Semantic Pyramids for Gender and Action Recognition2014Ingår i: IEEE Transactions on Image Processing, ISSN 1057-7149, E-ISSN 1941-0042, Vol. 23, nr 8, s. 3633-3645Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Person description is a challenging problem in computer vision. We investigated two major aspects of person description: 1) gender and 2) action recognition in still images. Most state-of-the-art approaches for gender and action recognition rely on the description of a single body part, such as face or full-body. However, relying on a single body part is suboptimal due to significant variations in scale, viewpoint, and pose in real-world images. This paper proposes a semantic pyramid approach for pose normalization. Our approach is fully automatic and based on combining information from full-body, upper-body, and face regions for gender and action recognition in still images. The proposed approach does not require any annotations for upper-body and face of a person. Instead, we rely on pretrained state-of-the-art upper-body and face detectors to automatically extract semantic information of a person. Given multiple bounding boxes from each body part detector, we then propose a simple method to select the best candidate bounding box, which is used for feature extraction. Finally, the extracted features from the full-body, upper-body, and face regions are combined into a single representation for classification. To validate the proposed approach for gender recognition, experiments are performed on three large data sets namely: 1) human attribute; 2) head-shoulder; and 3) proxemics. For action recognition, we perform experiments on four data sets most used for benchmarking action recognition in still images: 1) Sports; 2) Willow; 3) PASCAL VOC 2010; and 4) Stanford-40. Our experiments clearly demonstrate that the proposed approach, despite its simplicity, outperforms state-of-the-art methods for gender and action recognition.

  • 140.
    Koschorrek, Philipp
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
    Piccini, Tommaso
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
    Öberg, Per
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Institutionen för systemteknik, Fordonssystem. Linköpings universitet, Tekniska högskolan.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
    Nielsen, Lars
    Linköpings universitet, Institutionen för systemteknik, Fordonssystem. Linköpings universitet, Tekniska högskolan.
    Mester, Rudolf
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan. University of Frankfurt, Germany.
    A multi-sensor traffic scene dataset with omnidirectional video2013Ingår i: 2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), IEEE conference proceedings, 2013, s. 727-734Konferensbidrag (Refereegranskat)
    Abstract [en]

    The development of vehicles that perceive their environment, in particular those using computer vision, indispensably requires large databases of sensor recordings obtained from real cars driven in realistic traffic situations. These datasets should be time shaped for enabling synchronization of sensor data from different sources. Furthermore, full surround environment perception requires high frame rates of synchronized omnidirectional video data to prevent information loss at any speeds.

    This paper describes an experimental setup and software environment for recording such synchronized multi-sensor data streams and storing them in a new open source format. The dataset consists of sequences recorded in various environments from a car equipped with an omnidirectional multi-camera, height sensors, an IMU, a velocity sensor, and a GPS. The software environment for reading these data sets will be provided to the public, together with a collection of long multi-sensor and multi-camera data streams stored in the developed format.

  • 141.
    Krebs, Andreas
    et al.
    Dept. Aerodynamics/Fluid Mech., BTU Cottbus, Germany.
    Wiklund, Johan
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska högskolan.
    Optimization of Quadrature Filters Based on the Numerical Integration of Improper Integrals2011Ingår i: Pattern Recognition: 33rd annual DAGM conference, Frankfurt, Germany / [ed] Rudolf Mester and Michael Felsberg, Springer Berlin/Heidelberg, 2011, Vol. 6835, s. 91-100Konferensbidrag (Refereegranskat)
    Abstract [en]

    Convolution kernels are a commonly used tool in computer vision. These kernels are often specified by an ideal frequency response and the actual filter coefficients are obtained by minimizing some weighted distance with respect to the ideal filter. State-of-the-art approaches usually replace the continuous frequency response by a discrete Fourier spectrum with a multitude of samples compared to the kernel size, depending on the smoothness of the ideal filter and the weight function. The number of samples in the Fourier domain grows exponentially with the dimensionality and becomes a bottleneck concerning memory requirements.

    In this paper we propose a method that avoids the discretization of the frequency space and makes filter optimization feasible in higher dimensions than the standard approach. The result is no longer depending on the choice of the sampling grid and it remains exact even if the weighting function is singular in the origin. The resulting improper integrals are efficiently computed using Gauss-Jacobi quadrature.

  • 142.
    Kristan, Matej
    et al.
    University of Ljubljana, Slovenia.
    Leonardis, Ales
    University of Birmingham, England.
    Matas, Jiri
    Czech Technical University, Czech Republic.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Pflugfelder, Roman
    Austrian Institute Technology, Austria.
    Cehovin, Luka
    University of Ljubljana, Slovenia.
    Vojir, Tomas
    Czech Technical University, Czech Republic.
    Häger, Gustav
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Lukezic, Alan
    University of Ljubljana, Slovenia.
    Fernandez, Gustavo
    Austrian Institute Technology, Austria.
    Gupta, Abhinav
    Carnegie Mellon University, PA 15213 USA.
    Petrosino, Alfredo
    Parthenope University of Naples, Italy.
    Memarmoghadam, Alireza
    University of Isfahan, Iran.
    Garcia-Martin, Alvaro
    University of Autonoma Madrid, Spain.
    Solis Montero, Andres
    University of Ottawa, Canada.
    Vedaldi, Andrea
    University of Oxford, England.
    Robinson, Andreas
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Ma, Andy J.
    Hong Kong Baptist University, Peoples R China.
    Varfolomieiev, Anton
    Kyiv Polytech Institute, Ukraine.
    Alatan, Aydin
    Middle East Technical University, Çankaya, Turkey.
    Erdem, Aykut
    Hacettepe University, Turkey.
    Ghanem, Bernard
    KAUST, Saudi Arabia.
    Liu, Bin
    Moshanghua Technology Co, Peoples R China.
    Han, Bohyung
    POSTECH, South Korea.
    Martinez, Brais
    University of Nottingham, England.
    Chang, Chang-Ming
    University of Albany, GA USA.
    Xu, Changsheng
    Chinese Academic Science, Peoples R China.
    Sun, Chong
    Dalian University of Technology, Peoples R China.
    Kim, Daijin
    POSTECH, South Korea.
    Chen, Dapeng
    Xi An Jiao Tong University, Peoples R China.
    Du, Dawei
    University of Chinese Academic Science, Peoples R China.
    Mishra, Deepak
    Indian Institute Space Science and Technology, India.
    Yeung, Dit-Yan
    Hong Kong University of Science and Technology, Peoples R China.
    Gundogdu, Erhan
    Aselsan Research Centre, Turkey.
    Erdem, Erkut
    Hacettepe University, Turkey.
    Khan, Fahad
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Porikli, Fatih
    ARC Centre Excellence Robot Vis, Australia; Australian National University, Australia; CSIRO, Australia.
    Zhao, Fei
    Chinese Academic Science, Peoples R China.
    Bunyak, Filiz
    University of Missouri, MO 65211 USA.
    Battistone, Francesco
    Parthenope University of Naples, Italy.
    Zhu, Gao
    Australian National University, Australia.
    Roffo, Giorgio
    University of Verona, Italy.
    Sai Subrahmanyam, Gorthi R. K.
    Indian Institute Space Science and Technology, India.
    Bastos, Guilherme
    University of Federal Itajuba, Brazil.
    Seetharaman, Guna
    US Navy, DC 20375 USA.
    Medeiros, Henry
    Marquette University, WI 53233 USA.
    Li, Hongdong
    ARC Centre Excellence Robot Vis, Australia; Australian National University, Australia.
    Qi, Honggang
    University of Chinese Academic Science, Peoples R China.
    Bischof, Horst
    Graz University of Technology, Austria.
    Possegger, Horst
    Graz University of Technology, Austria.
    Lu, Huchuan
    Dalian University of Technology, Peoples R China.
    Lee, Hyemin
    POSTECH, South Korea.
    Nam, Hyeonseob
    NAVER Corp, South Korea.
    Jin Chang, Hyung
    Imperial Coll London, England.
    Drummond, Isabela
    University of Federal Itajuba, Brazil.
    Valmadre, Jack
    University of Oxford, England.
    Jeong, Jae-chan
    ASRI, South Korea; Elect and Telecommun Research Institute, South Korea.
    Cho, Jae-il
    Elect and Telecommun Research Institute, South Korea.
    Lee, Jae-Yeong
    Elect and Telecommun Research Institute, South Korea.
    Zhu, Jianke
    Zhejiang University, Peoples R China.
    Feng, Jiayi
    Chinese Academic Science, Peoples R China.
    Gao, Jin
    Chinese Academic Science, Peoples R China.
    Young Choi, Jin
    ASRI, South Korea.
    Xiao, Jingjing
    University of Birmingham, England.
    Kim, Ji-Wan
    Elect and Telecommun Research Institute, South Korea.
    Jeong, Jiyeoup
    ASRI, South Korea; Elect and Telecommun Research Institute, South Korea.
    Henriques, Joao F.
    University of Oxford, England.
    Lang, Jochen
    University of Ottawa, Canada.
    Choi, Jongwon
    ASRI, South Korea.
    Martinez, Jose M.
    University of Autonoma Madrid, Spain.
    Xing, Junliang
    Chinese Academic Science, Peoples R China.
    Gao, Junyu
    Chinese Academic Science, Peoples R China.
    Palaniappan, Kannappan
    University of Missouri, MO 65211 USA.
    Lebeda, Karel
    University of Surrey, England.
    Gao, Ke
    University of Missouri, MO 65211 USA.
    Mikolajczyk, Krystian
    Imperial Coll London, England.
    Qin, Lei
    Chinese Academic Science, Peoples R China.
    Wang, Lijun
    Dalian University of Technology, Peoples R China.
    Wen, Longyin
    University of Albany, GA USA.
    Bertinetto, Luca
    University of Oxford, England.
    Kumar Rapuru, Madan
    Indian Institute Space Science and Technology, India.
    Poostchi, Mahdieh
    University of Missouri, MO 65211 USA.
    Maresca, Mario
    Parthenope University of Naples, Italy.
    Danelljan, Martin
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Mueller, Matthias
    KAUST, Saudi Arabia.
    Zhang, Mengdan
    Chinese Academic Science, Peoples R China.
    Arens, Michael
    Fraunhofer IOSB, Germany.
    Valstar, Michel
    University of Nottingham, England.
    Tang, Ming
    Chinese Academic Science, Peoples R China.
    Baek, Mooyeol
    POSTECH, South Korea.
    Haris Khan, Muhammad
    University of Nottingham, England.
    Wang, Naiyan
    Hong Kong University of Science and Technology, Peoples R China.
    Fan, Nana
    Harbin Institute Technology, Peoples R China.
    Al-Shakarji, Noor
    University of Missouri, MO 65211 USA.
    Miksik, Ondrej
    University of Oxford, England.
    Akin, Osman
    Hacettepe University, Turkey.
    Moallem, Payman
    University of Isfahan, Iran.
    Senna, Pedro
    University of Federal Itajuba, Brazil.
    Torr, Philip H. S.
    University of Oxford, England.
    Yuen, Pong C.
    Hong Kong Baptist University, Peoples R China.
    Huang, Qingming
    Harbin Institute Technology, Peoples R China; University of Chinese Academic Science, Peoples R China.
    Martin-Nieto, Rafael
    University of Autonoma Madrid, Spain.
    Pelapur, Rengarajan
    University of Missouri, MO 65211 USA.
    Bowden, Richard
    University of Surrey, England.
    Laganiere, Robert
    University of Ottawa, Canada.
    Stolkin, Rustam
    University of Birmingham, England.
    Walsh, Ryan
    Marquette University, WI 53233 USA.
    Krah, Sebastian B.
    Fraunhofer IOSB, Germany.
    Li, Shengkun
    Hong Kong University of Science and Technology, Peoples R China; University of Albany, GA USA.
    Zhang, Shengping
    Harbin Institute Technology, Peoples R China.
    Yao, Shizeng
    University of Missouri, MO 65211 USA.
    Hadfield, Simon
    University of Surrey, England.
    Melzi, Simone
    University of Verona, Italy.
    Lyu, Siwei
    University of Albany, GA USA.
    Li, Siyi
    Hong Kong University of Science and Technology, Peoples R China; University of Albany, GA USA.
    Becker, Stefan
    Fraunhofer IOSB, Germany.
    Golodetz, Stuart
    University of Oxford, England.
    Kakanuru, Sumithra
    Indian Institute Space Science and Technology, India.
    Choi, Sunglok
    Elect and Telecommun Research Institute, South Korea.
    Hu, Tao
    University of Chinese Academic Science, Peoples R China.
    Mauthner, Thomas
    Graz University of Technology, Austria.
    Zhang, Tianzhu
    Chinese Academic Science, Peoples R China.
    Pridmore, Tony
    University of Nottingham, England.
    Santopietro, Vincenzo
    Parthenope University of Naples, Italy.
    Hu, Weiming
    Chinese Academic Science, Peoples R China.
    Li, Wenbo
    Lehigh University, PA 18015 USA.
    Huebner, Wolfgang
    Fraunhofer IOSB, Germany.
    Lan, Xiangyuan
    Hong Kong Baptist University, Peoples R China.
    Wang, Xiaomeng
    University of Nottingham, England.
    Li, Xin
    Harbin Institute Technology, Peoples R China.
    Li, Yang
    Zhejiang University, Peoples R China.
    Demiris, Yiannis
    Imperial Coll London, England.
    Wang, Yifan
    Dalian University of Technology, Peoples R China.
    Qi, Yuankai
    Harbin Institute Technology, Peoples R China.
    Yuan, Zejian
    Xi An Jiao Tong University, Peoples R China.
    Cai, Zexiong
    Hong Kong Baptist University, Peoples R China.
    Xu, Zhan
    Zhejiang University, Peoples R China.
    He, Zhenyu
    Harbin Institute Technology, Peoples R China.
    Chi, Zhizhen
    Dalian University of Technology, Peoples R China.
    The Visual Object Tracking VOT2016 Challenge Results2016Ingår i: COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, SPRINGER INT PUBLISHING AG , 2016, Vol. 9914, s. 777-823Konferensbidrag (Refereegranskat)
    Abstract [en]

    The Visual Object Tracking challenge VOT2016 aims at comparing short-term single-object visual trackers that do not apply pre-learned models of object appearance. Results of 70 trackers are presented, with a large number of trackers being published at major computer vision conferences and journals in the recent years. The number of tested state-of-the-art trackers makes the VOT 2016 the largest and most challenging benchmark on short-term tracking to date. For each participating tracker, a short description is provided in the Appendix. The VOT2016 goes beyond its predecessors by (i) introducing a new semi-automatic ground truth bounding box annotation methodology and (ii) extending the evaluation system with the no-reset experiment.

  • 143.
    Kristan, Matej
    et al.
    Univ Ljubljana, Slovenia.
    Leonardis, Ales
    Univ Birmingham, England.
    Matas, Jiri
    Czech Tech Univ, Czech Republic.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Pflugfelder, Roman
    Austrian Inst Technol, Austria.
    Zajc, Luka Cehovin
    Univ Ljubljana, Slovenia.
    Vojir, Tomas
    Czech Tech Univ, Czech Republic.
    Häger, Gustav
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Lukezic, Alan
    Univ Ljubljana, Slovenia.
    Eldesokey, Abdelrahman
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Fernandez, Gustavo
    Austrian Inst Technol, Austria.
    Garcia-Martin, Alvaro
    Univ Autonoma Madrid, Spain.
    Muhic, A.
    Univ Ljubljana, Slovenia.
    Petrosino, Alfredo
    Univ Parthenope Naples, Italy.
    Memarmoghadam, Alireza
    Univ Isfahan, Iran.
    Vedaldi, Andrea
    Univ Oxford, England.
    Manzanera, Antoine
    Univ Paris Saclay, France.
    Tran, Antoine
    Univ Paris Saclay, France.
    Alatan, Aydin
    Middle East Tech Univ, Turkey.
    Mocanu, Bogdan
    Univ Politehn Bucuresti, Romania.
    Chen, Boyu
    Dalian Univ Technol, Peoples R China.
    Huang, Chang
    Horizon Robot Inc, Peoples R China.
    Xu, Changsheng
    Chinese Acad Sci, Peoples R China.
    Sun, Chong
    Dalian Univ Technol, Peoples R China.
    Du, Dalong
    Horizon Robot Inc, Peoples R China; Univ Chinese Acad Sci, Peoples R China.
    Zhang, David
    Hong Kong Polytech Univ, Peoples R China.
    Du, Dawei
    Horizon Robot Inc, Peoples R China; Univ Chinese Acad Sci, Peoples R China.
    Mishra, Deepak
    Indian Inst Space Sci and Technol Trivandrum, India.
    Gundogdu, Erhan
    Aselsan Res Ctr, Turkey; Middle East Tech Univ, Turkey.
    Velasco-Salido, Erik
    Univ Autonoma Madrid, Spain.
    Khan, Fahad
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Battistone, Francesco
    Univ Parthenope Naples, Italy.
    Subrahmanyam, Gorthi R. K. Sai
    Indian Inst Space Sci and Technol Trivandrum, India.
    Bhat, Goutam
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Huang, Guan
    Horizon Robot Inc, Peoples R China.
    Bastos, Guilherme
    Univ Fed Itajuba, Brazil.
    Seetharaman, Guna
    Naval Res Lab, DC 20375 USA.
    Zhang, Hongliang
    Natl Univ Def Technol, Peoples R China.
    Li, Houqiang
    Univ Sci and Technol China, Peoples R China.
    Lu, Huchuan
    Dalian Univ Technol, Peoples R China.
    Drummond, Isabela
    Univ Fed Itajuba, Brazil.
    Valmadre, Jack
    Univ Oxford, England.
    Jeong, Jae-Chan
    ETRI, South Korea.
    Cho, Jae-Il
    ETRI, South Korea.
    Lee, Jae-Yeong
    ETRI, South Korea.
    Noskova, Jana
    Czech Tech Univ, Czech Republic.
    Zhu, Jianke
    Zhejiang Univ, Peoples R China.
    Gao, Jin
    Chinese Acad Sci, Peoples R China.
    Liu, Jingyu
    Chinese Acad Sci, Peoples R China.
    Kim, Ji-Wan
    ETRI, South Korea.
    Henriques, Joao F.
    Univ Oxford, England.
    Martinez, Jose M.
    Univ Autonoma Madrid, Spain.
    Zhuang, Junfei
    Beijing Univ Posts and Telecommun, Peoples R China.
    Xing, Junliang
    Chinese Acad Sci, Peoples R China.
    Gao, Junyu
    Chinese Acad Sci, Peoples R China.
    Chen, Kai
    Huazhong Univ Sci and Technol, Peoples R China.
    Palaniappan, Kannappan
    Univ Missouri Columbia, MO USA.
    Lebeda, Karel
    The Foundry, England.
    Gao, Ke
    Univ Missouri Columbia, MO USA.
    Kitani, Kris M.
    Carnegie Mellon Univ, PA 15213 USA.
    Zhang, Lei
    Hong Kong Polytech Univ, Peoples R China.
    Wang, Lijun
    Dalian Univ Technol, Peoples R China.
    Yang, Lingxiao
    Hong Kong Polytech Univ, Peoples R China.
    Wen, Longyin
    GE Global Res, NY USA.
    Bertinetto, Luca
    Univ Oxford, England.
    Poostchi, Mahdieh
    Univ Missouri Columbia, MO USA.
    Danelljan, Martin
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Mueller, Matthias
    KAUST, Saudi Arabia.
    Zhang, Mengdan
    Chinese Acad Sci, Peoples R China.
    Yang, Ming-Hsuan
    Univ Calif Merced, CA USA.
    Xie, Nianhao
    Natl Univ Def Technol, Peoples R China.
    Wang, Ning
    Univ Sci and Technol China, Peoples R China.
    Miksik, Ondrej
    Univ Oxford, England.
    Moallem, P.
    Univ Isfahan, Iran.
    Venugopal, Pallavi M.
    Indian Inst Space Sci and Technol Trivandrum, India.
    Senna, Pedro
    Univ Fed Itajuba, Brazil.
    Torr, Philip H. S.
    Univ Oxford, England.
    Wang, Qiang
    Chinese Acad Sci, Peoples R China.
    Yu, Qifeng
    Natl Univ Def Technol, Peoples R China.
    Huang, Qingming
    Univ Chinese Acad Sci, Peoples R China.
    Martin-Nieto, Rafael
    Univ Autonoma Madrid, Spain.
    Bowden, Richard
    Univ Surrey, England.
    Liu, Risheng
    Dalian Univ Technol, Peoples R China.
    Tapu, Ruxandra
    Univ Politehn Bucuresti, Romania.
    Hadfield, Simon
    Univ Surrey, England.
    Lyu, Siwei
    SUNY Albany, NY 12222 USA.
    Golodetz, Stuart
    Univ Oxford, England.
    Choi, Sunglok
    ETRI, South Korea.
    Zhang, Tianzhu
    Chinese Acad Sci, Peoples R China.
    Zaharia, Titus
    Inst. Mines-Telecom/ TelecomSudParis, France.
    Santopietro, Vincenzo
    Univ Parthenope Naples, Italy.
    Zou, Wei
    Chinese Acad Sci, Peoples R China.
    Hu, Weiming
    Chinese Acad Sci, Peoples R China.
    Tao, Wenbing
    Huazhong Univ Sci and Technol, Peoples R China.
    Li, Wenbo
    SUNY Albany, NY 12222 USA.
    Zhou, Wengang
    Univ Sci and Technol China, Peoples R China.
    Yu, Xianguo
    Natl Univ Def Technol, Peoples R China.
    Bian, Xiao
    GE Global Res, NY USA.
    Li, Yang
    Zhejiang Univ, Peoples R China.
    Xing, Yifan
    Carnegie Mellon Univ, PA 15213 USA.
    Fan, Yingruo
    Beijing Univ Posts and Telecommun, Peoples R China.
    Zhu, Zheng
    Chinese Acad Sci, Peoples R China; Univ Chinese Acad Sci, Peoples R China.
    Zhang, Zhipeng
    Chinese Acad Sci, Peoples R China.
    He, Zhiqun
    Beijing Univ Posts and Telecommun, Peoples R China.
    The Visual Object Tracking VOT2017 challenge results2017Ingår i: 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), IEEE , 2017, s. 1949-1972Konferensbidrag (Refereegranskat)
    Abstract [en]

    The Visual Object Tracking challenge VOT2017 is the fifth annual tracker benchmarking activity organized by the VOT initiative. Results of 51 trackers are presented; many are state-of-the-art published at major computer vision conferences or journals in recent years. The evaluation included the standard VOT and other popular methodologies and a new "real-time" experiment simulating a situation where a tracker processes images as if provided by a continuously running sensor. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The VOT2017 goes beyond its predecessors by (i) improving the VOT public dataset and introducing a separate VOT2017 sequestered dataset, (ii) introducing a realtime tracking experiment and (iii) releasing a redesigned toolkit that supports complex experiments. The dataset, the evaluation kit and the results are publicly available at the challenge website(1).

  • 144.
    Kristan, Matej
    et al.
    University of Ljubljana, Slovenia.
    Leonardis, Aleš
    University of Birmingham, United Kingdom.
    Matas, Jirí
    Czech Technical University, Czech Republic.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Pflugfelder, Roman
    Austrian Institute of Technology, Austria / TU Wien, Austria.
    Zajc, Luka Cehovin
    University of Ljubljana, Slovenia.
    Vojírì, Tomáš
    Czech Technical University, Czech Republic.
    Bhat, Goutam
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Lukezič, Alan
    University of Ljubljana, Slovenia.
    Eldesokey, Abdelrahman
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Fernández, Gustavo
    García-Martín, Álvaro
    Iglesias-Arias, Álvaro
    Alatan, A. Aydin
    González-García, Abel
    Petrosino, Alfredo
    Memarmoghadam, Alireza
    Vedaldi, Andrea
    Muhič, Andrej
    He, Anfeng
    Smeulders, Arnold
    Perera, Asanka G.
    Li, Bo
    Chen, Boyu
    Kim, Changick
    Xu, Changsheng
    Xiong, Changzhen
    Tian, Cheng
    Luo, Chong
    Sun, Chong
    Hao, Cong
    Kim, Daijin
    Mishra, Deepak
    Chen, Deming
    Wang, Dong
    Wee, Dongyoon
    Gavves, Efstratios
    Gundogdu, Erhan
    Velasco-Salido, Erik
    Khan, Fahad Shahbaz
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Yang, Fan
    Zhao, Fei
    Li, Feng
    Battistone, Francesco
    De Ath, George
    Subrahmanyam, Gorthi R. K. S.
    Bastos, Guilherme
    Ling, Haibin
    Galoogahi, Hamed Kiani
    Lee, Hankyeol
    Li, Haojie
    Zhao, Haojie
    Fan, Heng
    Zhang, Honggang
    Possegger, Horst
    Li, Houqiang
    Lu, Huchuan
    Zhi, Hui
    Li, Huiyun
    Lee, Hyemin
    Chang, Hyung Jin
    Drummond, Isabela
    Valmadre, Jack
    Martin, Jaime Spencer
    Chahl, Javaan
    Choi, Jin Young
    Li, Jing
    Wang, Jinqiao
    Qi, Jinqing
    Sung, Jinyoung
    Johnander, Joakim
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Henriques, Joao
    Choi, Jongwon
    van de Weijer, Joost
    Herranz, Jorge Rodríguez
    Martínez, José M.
    Kittler, Josef
    Zhuang, Junfei
    Gao, Junyu
    Grm, Klemen
    Zhang, Lichao
    Wang, Lijun
    Yang, Lingxiao
    Rout, Litu
    Si, Liu
    Bertinetto, Luca
    Chu, Lutao
    Che, Manqiang
    Maresca, Mario Edoardo
    Danelljan, Martin
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Yang, Ming-Hsuan
    Abdelpakey, Mohamed
    Shehata, Mohamed
    Kang, Myunggu
    Lee, Namhoon
    Wang, Ning
    Miksik, Ondrej
    Moallem, P.
    Vicente-Moñivar, Pablo
    Senna, Pedro
    Li, Peixia
    Torr, Philip
    Raju, Priya Mariam
    Ruihe, Qian
    Wang, Qiang
    Zhou, Qin
    Guo, Qing
    Martín-Nieto, Rafael
    Gorthi, Rama Krishna
    Tao, Ran
    Bowden, Richard
    Everson, Richard
    Wang, Runling
    Yun, Sangdoo
    Choi, Seokeon
    Vivas, Sergio
    Bai, Shuai
    Huang, Shuangping
    Wu, Sihang
    Hadfield, Simon
    Wang, Siwen
    Golodetz, Stuart
    Ming, Tang
    Xu, Tianyang
    Zhang, Tianzhu
    Fischer, Tobias
    Santopietro, Vincenzo
    Štruc, Vitomir
    Wei, Wang
    Zuo, Wangmeng
    Feng, Wei
    Wu, Wei
    Zou, Wei
    Hu, Weiming
    Zhou, Wengang
    Zeng, Wenjun
    Zhang, Xiaofan
    Wu, Xiaohe
    Wu, Xiao-Jun
    Tian, Xinmei
    Li, Yan
    Lu, Yan
    Law, Yee Wei
    Wu, Yi
    Demiris, Yiannis
    Yang, Yicai
    Jiao, Yifan
    Li, Yuhong
    Zhang, Yunhua
    Sun, Yuxuan
    Zhang, Zheng
    Zhu, Zheng
    Feng, Zhen-Hua
    Wang, Zhihui
    He, Zhiqun
    The Sixth Visual Object Tracking VOT2018 Challenge Results2019Ingår i: Computer Vision – ECCV 2018 Workshops: Munich, Germany, September 8–14, 2018 Proceedings, Part I / [ed] Laura Leal-Taixé and Stefan Roth, Cham: Springer Publishing Company, 2019, s. 3-53Konferensbidrag (Refereegranskat)
    Abstract [en]

    The Visual Object Tracking challenge VOT2018 is the sixth annual tracker benchmarking activity organized by the VOT initiative. Results of over eighty trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis and a “real-time” experiment simulating a situation where a tracker processes images as if provided by a continuously running sensor. A long-term tracking subchallenge has been introduced to the set of standard VOT sub-challenges. The new subchallenge focuses on long-term tracking properties, namely coping with target disappearance and reappearance. A new dataset has been compiled and a performance evaluation methodology that focuses on long-term tracking capabilities has been adopted. The VOT toolkit has been updated to support both standard short-term and the new long-term tracking subchallenges. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website (http://votchallenge.net).

  • 145.
    Kristan, Matej
    et al.
    University of Ljubljana, Slovenia.
    Matas, Jiri
    Czech Technical University, Czech Republic.
    Leonardis, Ales
    University of Birmingham, England.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Cehovin, Luka
    University of Ljubljana, Slovenia.
    Fernandez, Gustavo
    Austrian Institute Technology, Austria.
    Vojir, Tomas
    Czech Technical University, Czech Republic.
    Häger, Gustav
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Nebehay, Georg
    Austrian Institute Technology, Austria.
    Pflugfelder, Roman
    Austrian Institute Technology, Austria.
    Gupta, Abhinav
    Carnegie Mellon University, PA 15213 USA.
    Bibi, Adel
    King Abdullah University of Science and Technology, Saudi Arabia.
    Lukezic, Alan
    University of Ljubljana, Slovenia.
    Garcia-Martins, Alvaro
    University of Autonoma Madrid, Spain.
    Saffari, Amir
    Affectv, England.
    Petrosino, Alfredo
    Parthenope University of Naples, Italy.
    Solis Montero, Andres
    University of Ottawa, Canada.
    Varfolomieiev, Anton
    National Technical University of Ukraine, Ukraine.
    Baskurt, Atilla
    University of Lyon, France.
    Zhao, Baojun
    Beijing Institute Technology, Peoples R China.
    Ghanem, Bernard
    King Abdullah University of Science and Technology, Saudi Arabia.
    Martinez, Brais
    University of Nottingham, England.
    Lee, ByeongJu
    Seoul National University, South Korea.
    Han, Bohyung
    POSTECH, South Korea.
    Wang, Chaohui
    University of Paris Est, France.
    Garcia, Christophe
    LIRIS, France.
    Zhang, Chunyuan
    National University of Def Technology, Peoples R China; National Key Lab Parallel and Distributed Proc, Peoples R China.
    Schmid, Cordelia
    INRIA Grenoble Rhone Alpes, France.
    Tao, Dacheng
    University of Technology Sydney, Australia.
    Kim, Daijin
    POSTECH, South Korea.
    Huang, Dafei
    National University of Def Technology, Peoples R China; National Key Lab Parallel and Distributed Proc, Peoples R China.
    Prokhorov, Danil
    Toyota Research Institute, Japan.
    Du, Dawei
    SUNY Albany, NY USA; Chinese Academic Science, Peoples R China.
    Yeung, Dit-Yan
    Hong Kong University of Science and Technology, Peoples R China.
    Ribeiro, Eraldo
    Florida Institute Technology, FL USA.
    Khan, Fahad
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Porikli, Fatih
    Australian National University, Australia; NICTA, Australia.
    Bunyak, Filiz
    University of Missouri, MO 65211 USA.
    Zhu, Gao
    Australian National University, Australia.
    Seetharaman, Guna
    Naval Research Lab, DC 20375 USA.
    Kieritz, Hilke
    Fraunhofer IOSB, Germany.
    Tuen Yau, Hing
    Chinese University of Hong Kong, Peoples R China.
    Li, Hongdong
    Australian National University, Australia; ARC Centre Excellence Robot Vis, Australia.
    Qi, Honggang
    SUNY Albany, NY USA; Chinese Academic Science, Peoples R China.
    Bischof, Horst
    Graz University of Technology, Austria.
    Possegger, Horst
    Graz University of Technology, Austria.
    Lee, Hyemin
    POSTECH, South Korea.
    Nam, Hyeonseob
    POSTECH, South Korea.
    Bogun, Ivan
    Florida Institute Technology, FL USA.
    Jeong, Jae-chan
    Elect and Telecommun Research Institute, South Korea.
    Cho, Jae-il
    Elect and Telecommun Research Institute, South Korea.
    Lee, Jae-Young
    Elect and Telecommun Research Institute, South Korea.
    Zhu, Jianke
    Zhejiang University, Peoples R China.
    Shi, Jianping
    CUHK, Peoples R China.
    Li, Jiatong
    Beijing Institute Technology, Peoples R China; University of Technology Sydney, Australia.
    Jia, Jiaya
    CUHK, Peoples R China.
    Feng, Jiayi
    Chinese Academic Science, Peoples R China.
    Gao, Jin
    Chinese Academic Science, Peoples R China.
    Young Choi, Jin
    Seoul National University, South Korea.
    Kim, Ji-Wan
    Elect and Telecommun Research Institute, South Korea.
    Lang, Jochen
    University of Ottawa, Canada.
    Martinez, Jose M.
    University of Autonoma Madrid, Spain.
    Choi, Jongwon
    Seoul National University, South Korea.
    Xing, Junliang
    Chinese Academic Science, Peoples R China.
    Xue, Kai
    Harbin Engn University, Peoples R China.
    Palaniappan, Kannappan
    University of Missouri, MO 65211 USA.
    Lebeda, Karel
    University of Surrey, England.
    Alahari, Karteek
    INRIA Grenoble Rhone Alpes, France.
    Gao, Ke
    University of Missouri, MO 65211 USA.
    Yun, Kimin
    Seoul National University, South Korea.
    Hong Wong, Kin
    Chinese University of Hong Kong, Peoples R China.
    Luo, Lei
    National University of Def Technology, Peoples R China.
    Ma, Liang
    Harbin Engn University, Peoples R China.
    Ke, Lipeng
    SUNY Albany, NY USA; Chinese Academic Science, Peoples R China.
    Wen, Longyin
    SUNY Albany, NY USA.
    Bertinetto, Luca
    University of Oxford, England.
    Pootschi, Mandieh
    University of Missouri, MO 65211 USA.
    Maresca, Mario
    Parthenope University of Naples, Italy.
    Danelljan, Martin
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Wen, Mei
    National University of Def Technology, Peoples R China; National Key Lab Parallel and Distributed Proc, Peoples R China.
    Zhang, Mengdan
    Chinese Academic Science, Peoples R China.
    Arens, Michael
    Fraunhofer IOSB, Germany.
    Valstar, Michel
    University of Nottingham, England.
    Tang, Ming
    Chinese Academic Science, Peoples R China.
    Chang, Ming-Ching
    SUNY Albany, NY USA.
    Haris Khan, Muhammad
    University of Nottingham, England.
    Fan, Nana
    Harbin Institute Technology, Peoples R China.
    Wang, Naiyan
    TuSimple LLC, CA USA; Hong Kong University of Science and Technology, Peoples R China.
    Miksik, Ondrej
    University of Oxford, England.
    Torr, Philip H. S.
    University of Oxford, England.
    Wang, Qiang
    Chinese Academic Science, Peoples R China.
    Martin-Nieto, Rafael
    University of Autonoma Madrid, Spain.
    Pelapur, Rengarajan
    University of Missouri, MO 65211 USA.
    Bowden, Richard
    University of Surrey, England.
    Laganiere, Robert
    University of Ottawa, Canada.
    Moujtahid, Salma
    University of Lyon, France.
    Hare, Sam
    Obvious Engn, England.
    Hadfield, Simon
    University of Surrey, England.
    Lyu, Siwei
    SUNY Albany, NY USA.
    Li, Siyi
    Hong Kong University of Science and Technology, Peoples R China.
    Zhu, Song-Chun
    University of California, USA.
    Becker, Stefan
    Fraunhofer IOSB, Germany.
    Duffner, Stefan
    University of Lyon, France; LIRIS, France.
    Hicks, Stephen L.
    University of Oxford, England.
    Golodetz, Stuart
    University of Oxford, England.
    Choi, Sunglok
    Elect and Telecommun Research Institute, South Korea.
    Wu, Tianfu
    University of California, USA.
    Mauthner, Thomas
    Graz University of Technology, Austria.
    Pridmore, Tony
    University of Nottingham, England.
    Hu, Weiming
    Chinese Academic Science, Peoples R China.
    Hubner, Wolfgang
    Fraunhofer IOSB, Germany.
    Wang, Xiaomeng
    University of Nottingham, England.
    Li, Xin
    Harbin Institute Technology, Peoples R China.
    Shi, Xinchu
    Chinese Academic Science, Peoples R China.
    Zhao, Xu
    Chinese Academic Science, Peoples R China.
    Mei, Xue
    Toyota Research Institute, Japan.
    Shizeng, Yao
    University of Missouri, USA.
    Hua, Yang
    INRIA Grenoble Rhône-Alpes, France.
    Li, Yang
    Zhejiang University, Peoples R China.
    Lu, Yang
    University of California, USA.
    Li, Yuezun
    SUNY Albany, NY USA.
    Chen, Zhaoyun
    National University of Def Technology, Peoples R China; National Key Lab Parallel and Distributed Proc, Peoples R China.
    Huang, Zehua
    Carnegie Mellon University, PA 15213 USA.
    Chen, Zhe
    University of Technology Sydney, Australia.
    Zhang, Zhe
    Baidu Corp, Peoples R China.
    He, Zhenyu
    Harbin Institute Technology, Peoples R China.
    Hong, Zhibin
    University of Technology Sydney, Australia.
    The Visual Object Tracking VOT2015 challenge results2015Ingår i: Proceedings 2015 IEEE International Conference on Computer Vision Workshops ICCVW 2015, IEEE , 2015, s. 564-586Konferensbidrag (Refereegranskat)
    Abstract [en]

    The Visual Object Tracking challenge 2015, VOT2015, aims at comparing short-term single-object visual trackers that do not apply pre-learned models of object appearance. Results of 62 trackers are presented. The number of tested trackers makes VOT 2015 the largest benchmark on short-term tracking to date. For each participating tracker, a short description is provided in the appendix. Features of the VOT2015 challenge that go beyond its VOT2014 predecessor are: (i) a new VOT2015 dataset twice as large as in VOT2014 with full annotation of targets by rotated bounding boxes and per-frame attribute, (ii) extensions of the VOT2014 evaluation methodology by introduction of a new performance measure. The dataset, the evaluation kit as well as the results are publicly available at the challenge website(1).

  • 146.
    Kristan, Matej
    et al.
    University of Ljubljana, Slovenia.
    Pflugfelder, Roman
    Austrian Institute Technology, Austria.
    Leonardis, Ales
    University of Birmingham, England.
    Matas, Jiri
    Czech Technical University, Czech Republic.
    Porikli, Fatih
    Australian National University, Australia.
    Cehovin, Luka
    University of Ljubljana, Slovenia.
    Nebehay, Georg
    Austrian Institute Technology, Austria.
    Fernandez, Gustavo
    Austrian Institute Technology, Austria.
    Vojir, Tomas
    Czech Technical University, Czech Republic.
    Gatt, Adam
    DSTO, Australia.
    Khajenezhad, Ahmad
    Sharif University of Technology, Iran.
    Salahledin, Ahmed
    Nile University, Egypt.
    Soltani-Farani, Ali
    Sharif University of Technology, Iran.
    Zarezade, Ali
    Sharif University of Technology, Iran.
    Petrosino, Alfredo
    Parthenope University of Naples, Italy.
    Milton, Anthony
    University of S Australia, Australia.
    Bozorgtabar, Behzad
    University of Canberra, Australia.
    Li, Bo
    Panason RandD Centre, Singapore.
    Seng Chan, Chee
    University of Malaya, Malaysia.
    Heng, CherKeng
    Panason RandD Centre, Singapore.
    Ward, Dale
    University of S Australia, Australia.
    Kearney, David
    University of S Australia, Australia.
    Monekosso, Dorothy
    University of W England, England.
    Can Karaimer, Hakki
    Izmir Institute Technology, Turkey.
    Rabiee, Hamid R.
    Sharif University of Technology, Iran.
    Zhu, Jianke
    Zhejiang University, Peoples R China.
    Gao, Jin
    Chinese Academic Science, Peoples R China.
    Xiao, Jingjing
    University of Birmingham, England.
    Zhang, Junge
    Chinese Academic Science, Peoples R China.
    Xing, Junliang
    Chinese Academic Science, Peoples R China.
    Huang, Kaiqi
    Chinese Academic Science, Peoples R China.
    Lebeda, Karel
    University of Surrey, England.
    Cao, Lijun
    Chinese Academic Science, Peoples R China.
    Edoardo Maresca, Mario
    Parthenope University of Naples, Italy.
    Kuan Lim, Mei
    University of Malaya, Malaysia.
    ELHelw, Mohamed
    Nile University, Egypt.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Remagnino, Paolo
    University of Kingston, Canada.
    Bowden, Richard
    University of Surrey, England.
    Goecke, Roland
    Australian National University, Australia.
    Stolkin, Rustam
    University of Birmingham, England.
    YueYing Lim, Samantha
    Panason RandD Centre, Singapore.
    Maher, Sara
    Nile University, Egypt.
    Poullot, Sebastien
    JFLI, Japan.
    Wong, Sebastien
    DSTO, Edinburgh, SA, Australia.
    Satoh, Shinichi
    NII, Japan.
    Chen, Weihua
    Chinese Academic Science, Peoples R China.
    Hu, Weiming
    Chinese Academic Science, Peoples R China.
    Zhang, Xiaoqin
    Chinese Academic Science, Peoples R China.
    Li, Yang
    Zhejiang University, China.
    Niu, ZhiHeng
    Panason RandD Centre, Singapore.
    The Visual Object Tracking VOT2013 challenge results2013Ingår i: 2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), IEEE , 2013, s. 98-111Konferensbidrag (Refereegranskat)
    Abstract [en]

    Visual tracking has attracted a significant attention in the last few decades. The recent surge in the number of publications on tracking-related problems have made it almost impossible to follow the developments in the field. One of the reasons is that there is a lack of commonly accepted annotated data-sets and standardized evaluation protocols that would allow objective comparison of different tracking methods. To address this issue, the Visual Object Tracking (VOT) workshop was organized in conjunction with ICCV2013. Researchers from academia as well as industry were invited to participate in the first VOT2013 challenge which aimed at single-object visual trackers that do not apply pre-learned models of object appearance (model-free). Presented here is the VOT2013 benchmark dataset for evaluation of single-object visual trackers as well as the results obtained by the trackers competing in the challenge. In contrast to related attempts in tracker benchmarking, the dataset is labeled per-frame by visual attributes that indicate occlusion, illumination change, motion change, size change and camera motion, offering a more systematic comparison of the trackers. Furthermore, we have designed an automated system for performing and evaluating the experiments. We present the evaluation protocol of the VOT2013 challenge and the results of a comparison of 27 trackers on the benchmark dataset. The dataset, the evaluation tools and the tracker rankings are publicly available from the challenge website(1).

  • 147.
    Kristan, Matej
    et al.
    University of Ljubljana, Ljubljana, Slovenia.
    Pflugfelder, Roman P.
    Austrian Institute of Technology, Vienna, Austria.
    Leonardis, Ales
    University of Birmingham, Birmingham, UK.
    Matas, Jiri
    Czech Technical University, Prague, Czech Republic.
    Cehovin, Luka
    University of Ljubljana, Ljubljana, Slovenia.
    Nebehay, Georg
    Austrian Institute of Technology, Vienna, Austria.
    Vojir, Tomas
    Czech Technical University, Prague, Czech Republic.
    Fernandez, Gustavo
    Austrian Institute of Technology, Vienna, Austria.
    Lukezi, Alan
    University of Ljubljana, Ljubljana, Slovenia.
    Dimitriev, Aleksandar
    University of Ljubljana, Ljubljana, Slovenia.
    Petrosino, Alfredo
    Parthenope University of Naples, Naples, Italy.
    Saffari, Amir
    Affectv Limited, London, UK.
    Li, Bo
    Panasonic R&D Center, Singapore, Singapore.
    Han, Bohyung
    POSTECH, Pohang, Korea.
    Heng, CherKeng
    Panasonic R&D Center, Singapore, Singapore.
    Garcia, Christophe
    LIRIS, Lyon, France.
    Pangersic, Dominik
    University of Ljubljana, Ljubljana, Slovenia.
    Häger, Gustav
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Khan, Fahad Shahbaz
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Oven, Franci
    University of Ljubljana, Ljubljana, Slovenia.
    Possegger, Horst
    Graz University of Technology, Graz, Austria.
    Bischof, Horst
    Graz University of Technology, Graz, Austria.
    Nam, Hyeonseob
    POSTECH, Pohang, Korea.
    Zhu, Jianke
    Zhejiang University, Hangzhou, China.
    Li, JiJia
    Shanghai Jiao Tong University, Shanghai, China.
    Choi, Jin Young
    ASRI Seoul National University, Gwanak, Korea.
    Choi, Jin-Woo
    Electronics and Telecommunications Research Institute, Daejeon, Korea.
    Henriques, Joao F.
    University of Coimbra, Coimbra, Portugal.
    van de Weijer, Joost
    Universitat Autonoma de Barcelona, Barcelona, Spain.
    Batista, Jorge
    University of Coimbra, Coimbra, Portugal.
    Lebeda, Karel
    University of Surrey, Surrey, UK.
    Ofjall, Kristoffer
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Yi, Kwang Moo
    EPFL CVLab, Lausanne, Switzerland.
    Qin, Lei
    ICT CAS, Beijing, China.
    Wen, Longyin
    Chinese Academy of Sciences, Beijing, China.
    Maresca, Mario Edoardo
    Parthenope University of Naples, Naples, Italy.
    Danelljan, Martin
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
    Cheng, Ming-Ming
    University of Oxford, Oxford, UK.
    Torr, Philip
    University of Oxford, Oxford, UK.
    Huang, Qingming
    Harbin Institute of Technology, Harbin, China.
    Bowden, Richard
    University of Surrey, Surrey, UK.
    Hare, Sam
    Obvious Engineering Limited, London, UK.
    YueYing Lim, Samantha
    Panasonic R&D Center, Singapore, Singapore.
    Hong, Seunghoon
    POSTECH, Pohang, Korea.
    Liao, Shengcai
    Chinese Academy of Sciences, Beijing, China.
    Hadfield, Simon
    University of Surrey, Surrey, UK.
    Li, Stan Z.
    Chinese Academy of Sciences, Beijing, China.
    Duffner, Stefan
    LIRIS, Lyon, France.
    Golodetz, Stuart
    University of Oxford, Oxford, UK.
    Mauthner, Thomas
    Graz University of Technology, Graz, Austria.
    Vineet, Vibhav
    University of Oxford, Oxford, UK.
    Lin, Weiyao
    Shanghai Jiao Tong University, Shanghai, China.
    Li, Yang
    Zhejiang University, Hangzhou, China.
    Qi, Yuankai
    Harbin Institute of Technology, Harbin, China.
    Lei, Zhen
    Chinese Academy of Sciences, Beijing, China.
    Niu, ZhiHeng
    Panasonic R&D Center, Singapore, Singapore.
    The Visual Object Tracking VOT2014 Challenge Results2015Ingår i: COMPUTER VISION - ECCV 2014 WORKSHOPS, PT II, Springer, 2015, Vol. 8926, s. 191-217Konferensbidrag (Refereegranskat)
    Abstract [en]

    The Visual Object Tracking challenge 2014, VOT2014, aims at comparing short-term single-object visual trackers that do not apply pre-learned models of object appearance. Results of 38 trackers are presented. The number of tested trackers makes VOT 2014 the largest benchmark on short-term tracking to date. For each participating tracker, a short description is provided in the appendix. Features of the VOT2014 challenge that go beyond its VOT2013 predecessor are introduced: (i) a new VOT2014 dataset with full annotation of targets by rotated bounding boxes and per-frame attribute, (ii) extensions of the VOT2013 evaluation methodology, (iii) a new unit for tracking speed assessment less dependent on the hardware and (iv) the VOT2014 evaluation toolkit that significantly speeds up execution of experiments. The dataset, the evaluation kit as well as the results are publicly available at the challenge website (http://​votchallenge.​net).

  • 148.
    Kruger, N.
    et al.
    Krüger, N., Dept of Computer Science/Engineering, Aalborg University, Niels Bour Vej 8, Esbjerg 6700, Denmark.
    Felsberg, Michael
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för systemteknik, Bildbehandling.
    An explicit and compact coding of geometric and structural image information applied to stereo processing2004Ingår i: Pattern Recognition Letters, ISSN 0167-8655, E-ISSN 1872-7344, Vol. 25, nr 8, s. 849-863Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We introduce a compact coding of image information in terms of local multi-modal image descriptors. This coding allows for an explicit separation of the local image information into different visual sub-modalities: geometric information (orientation) and structural image information (contrast transition and colour). Based on this image representation, we derive a similarity function that compares visual information in each of these sub-modalities. This allows for an investigation of the importance of the different factors for stereo matching on a large data set. From this investigation we conclude that it is the combination of visual modalities that gives the best results. Concrete weights for their relative importance are measured. In addition to these quantitative results, we can demonstrate by our simulations that although our image representation reduces image information by 97% we achieve a matching performance which is comparable to block matching techniques. This shows that our very condensed representation preserves the relevant visual information. © 2004 Elsevier B.V. All rights reserved.

  • 149.
    Kruger, Norbert
    et al.
    n/a.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Bildbehandling. Linköpings universitet, Tekniska högskolan.
    A continuous Formulation of intrinsic Dimension2003Ingår i: British Machine Vision Conference, 2003Konferensbidrag (Refereegranskat)
  • 150.
    Kruger, Norbert
    et al.
    n/a.
    Felsberg, Michael
    Linköpings universitet, Institutionen för systemteknik, Bildbehandling. Linköpings universitet, Tekniska högskolan.
    Gebken, Christian
    n/a.
    Pörksen, Martin
    n/a.
    An Explicit and Compact Coding of Geometric and Structural Information Applied to Stereo Processing2002Ingår i: Vision, Modeling, and Visualization: Erlangen, 2002Konferensbidrag (Refereegranskat)
    Abstract [en]

    We introduce a compact coding of image information which explicitely separates geometric information (orientation) and structural information (phase and color). We investigate the importance of these factors for stereo matching on a large data set. From these investigation we can conclude that it is their combination that gives the best results. Concrete weights for their relative importance are measured.

1234 101 - 150 av 195
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf