liu.seSearch for publications in DiVA
Change search
Refine search result
1234567 151 - 200 of 325
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 151.
    Lindström, Jan
    et al.
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Sandborg, Michael
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Experimental verification of a model for estimating the particle size dependence of extrinsic efficiency of radioluminescent layersManuscript (preprint) (Other academic)
    Abstract [en]

    The extrinsic (absolute) efficiency of a phosphor is expressed as the ratio of light energy emitted per unit area at the phosphor surface to incident x-ray energy fluence. Several studies on polycrystalline phosphor materials show that the optical parameters of a specific phosphor may vary within a wide range of values. The aim of this work was to verify a previously published model where all optical parameters were replaced with a single parameter, the light extinction factor ξ. The varying extrinsic efficiency for an extended range of particle sizes and layer thicknesses are calculated from the input parameters: the intrinsic efficiency η, the mean particle size of the phosphor, the thickness of the layer, the light extinction factor and the calculated energy imparted to the layer. The X-ray spectrum was simulated utilising the SpekCalc software (Poludniowski et al 2009). In this work, calculations of the energy imparted to in-house manufactured Gd2O2S:Tb screens, were also compared to calculations improved making use of Monte Carlo simulations (software PENELOPE (Baro et al 1995)). KAP (kerma area product) -rate-values were noted and the corresponding luminance measured and compared to calculated values. The deviations were ±14 % within the studied range.

  • 152.
    Linge, Jennifer
    et al.
    Advanced MR Analytics AB, Linköping, Sweden.
    Whithcher, Brandon
    Advanced MR Analytics AB, Linköping, Sweden.
    Dimitriu, Alexandra
    Pfizer inc., Cambrige, MA, USA.
    Borga, Magnus
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics.
    Associating Body Composition Profiling to Propensity for Diabetes – Enhancing the Description of the Overweight and Obese Subjects2017Conference paper (Other academic)
  • 153.
    Lofthag-Hansen, S
    et al.
    Public Dental Health, Göteborg.
    Thilander-Klang, A
    Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Göteborg, Sweden.
    Ekestubbe, A
    Department of Oral and Maxillofacial Radiology The Sahlgrenska Academy at Göteborg University, Sweden.
    Helmrot, Ebba
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Gröndahl, K
    Department of Oral and Maxillofacial Radiology, The Sahlgrenska Academy at Göteborg University, Sweden.
    Calculating effective dose on a cone beam computed tomographydevice: 3D Accuitomo and 3D Accuitomo FPD2008In: Dento-Maxillo-Facial Radiology, ISSN 0250-832X, E-ISSN 1476-542X, Vol. 37, no 2, p. 72-79Article in journal (Refereed)
    Abstract [en]

    Objectives: This study evaluates two methods for calculating effective dose, CT dose index (CTDI) and dose–area product (DAP) for a cone beam CT (CBCT) device: 3D Accuitomo at field size 30x40 mm and 3D Accuitomo FPD at field sizes 40x40 mm and 60x60 mm. Furthermore, the effective dose of three commonly used examinations in dental radiology was determined.

    Methods: CTDI100 measurements were performed in a CT head dose phantom with a pencil ionization chamber connected to an electrometer. The rotation centre was placed in the centre of the phantom and also, to simulate a patient examination, in the upper left cuspid region. The DAP value was determined with a plane-parallel transmission ionization chamber connected to an electrometer. A conversion factor of 0.08 mSv per Gy cm2 was used to determine the effective dose from DAP values. Based on data from 90 patient examinations, DAP and effective dose were determined.

    Results: CTDI100 measurements showed an asymmetric dose distribution in the phantom when simulating a patient examination. Hence a correct value of CTDIw could not be calculated. The DAP value increased with higher tube current and tube voltage values. The DAP value was also proportional to the field size. The effective dose was found to be 11–77 microSv for the specific examinations.

    Conclusions: DAP measurement was found to be the best method for determining effective dose for the Accuitomo. Determination of specific conversion factors in dental radiology must, however, be further developed

  • 154.
    Lund, Anders
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Chemical Physics .
    Gustafsson, Håkan
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences, Radiation Physics .
    Maruani, J.
    Laboratoire de Chimie Physique, UPMC and CNRS, 75005 Paris, France.
    Shiotani, M.
    Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.
    Automatic fitting to 'powder' EPR spectra of coupled paramagnetic species employing Feynman's theorem2006In: Spectrochimica Acta Part A - Molecular and Biomolecular Spectroscopy, ISSN 1386-1425, E-ISSN 1873-3557, Vol. 63, no 4, p. 830-835Article in journal (Refereed)
    Abstract [en]

    A previous automatic fitting procedure of EPR spectra has been extended with the purpose to characterise coupled paramagnetic complexes in powders and frozen solutions. The theoretical EPR spectra were obtained by matrix diagonalization of a general spin Hamiltonian. A least-squares fitting procedure using analytical derivatives of the calculated spectrum with respect to the spectroscopic, fine structure, nuclear quadrupole, electron-electron, and hyperfine coupling tensors was used to refine those parameters. The powder spectra of matrix isolated CF3 and RCF2CF2 radicals, previously measured at low temperature, were reanalysed with this method. A theoretically modeled complex consisting of a Cu2+ ion, featuring an axially symmetric g-tensor and 63Cu hyperfine structure anisotropy, and a free radical located at different orientations, with respect to the symmetry axis of the Cu2+ ion, was examined in order to investigate the possibility to recover the magnetic parameters of the separate units and the magnetic couplings between them. © 2005 Elsevier B.V. All right reserved.

  • 155.
    Lund, Eva
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Department of Medicine and Care, Radiation Physics.
    Gustafsson, Håkan
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Department of Medicine and Care, Radiation Physics.
    Danilczuk, M
    Sastry, MD
    Lund, Anders
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Chemical Physics .
    Compounds of Li-6 and natural Li for EPR dosimetry in photon/neutron mixed radiation fields2004In: Spectrochimica Acta Part A - Molecular and Biomolecular Spectroscopy, ISSN 1386-1425, E-ISSN 1873-3557, Vol. 60, no 6, p. 1319-1326Article in journal (Refereed)
    Abstract [en]

    Formates and dithionates of Li-6, enriched and Li-7 in natural composition of Li offer a possibility to measure the absorbed dose from photons and thermal neutrons in a mixed radiation field for instance at a boron neutron capture therapy (BNCT) facility. Tests with formates and dithionates of enriched 6Li and lithium compounds with natural composition have been performed at the BNCT facility at Studsvik, Sweden. Irradiations have been performed at 3 cm depth in a Perspex phantom in a fluence rate of thermal neutrons 1.8 x 10(9) n cm(-2) s(-1). The compounds were also irradiated in a pure X-ray field from a 4 MV linear accelerator at 5 cm depth in a phantom with accurately determined absorbed doses. The signal intensity and shape was investigated within 3 h after the irradiation. A single line spectrum attributed to the CO2- radical was observed after irradiation of lithium formate. An increase in line width occurring after neutron irradiation in comparison with photon irradiation of the Li-6 sample was attributed to dipolar broadening between CO2- radicals trapped in the tracks of the alpha particles. A spectrum due to the SO3- radical anion was observed after irradiation of lithium dithionate. The signal amplitude increased using the Li-6 in place of the Li with natural composition of isotopes, in studies with low energy X-ray irradiation. Due to the decreased line width, caused by the difference in g(N) and I between the isotopes, the sensitivity with Li-6 dithionate may be enhanced by an order of magnitude compared to alanine dosimetry. After comprehensive examination of the different combinations of compounds with different amounts of Li-6 and Li-7 regarding dosimetry, radiation chemistry and EPR properties these dosimeter material might be used for dose determinations at BNCT treatments and for biomedical experiments. Interesting properties of the radical formation might be visible due to the large difference in ionization density of neutrons compared to photons. (C) 2003 Elsevier B.V. All rights reserved.

  • 156.
    Lund, Eva
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences, Radiation Physics .
    Gustafsson, Håkan
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences, Radiation Physics .
    Danilczuk, M
    Sastry, MD
    Lund, Anders
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Chemical Physics .
    Vestad, TA
    Malinen, E
    Hole, EO
    Sagstuen, E
    Formates and dithionates: sensitive EPR-dosimeter materials for radiation therapy2005In: Applied Radiation and Isotopes, ISSN 0969-8043, E-ISSN 1872-9800, Vol. 62, no 2, p. 317-324Article in journal (Refereed)
    Abstract [en]

    Polycrystalline, formates and dithionates are promising materials for EPR dosimetry, as large yields of radiation induced stable radicals are formed with a linear dose response. Rapid spin relaxation rates were detected in many of the substances, indicating that a high microwave power can be applied during EPR acquisition in order to improve sensitivity. Different techniques used to further improve the sensitivity, such as the replacement of Li-7 with Li-6 or exchange of protons with deuterons in the corresponding crystalline matrices and metal ion doping are discussed. It is concluded that formates and dithionates may be up to 10 times as sensitive as L-alpha-alanine. (C) 2004 Elsevier Ltd. All rights reserved.

  • 157.
    Lundberg, Peter
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Lundquist, PO
    Primary metabolism in N-2-fixing Alnus incana-Frankia symbiotic root nodules studied with N-15 and P-31 nuclear magnetic resonance spectroscopy2004In: Planta, ISSN 0032-0935, E-ISSN 1432-2048, Vol. 219, no 4, p. 661-672Article in journal (Refereed)
    Abstract [en]

    The primary nitrogen metabolism of the N-2-fixing root nodule symbiosis Alnus incana (L.)-Frankia was investigated by P-31 and N-15 nuclear magnetic resonance (NMR) spectroscopy. Perfusion of root nodules in a pulse-chase approach with N-15- or N-14-labeled NH4+ revealed the presence of the amino acids alanine (Ala), gamma-amino butyric acid, glutamine (Gln), glutamic acid (Glu), citrulline (Cit) and arginine (Arg). Labeling kinetics of the Gln amide-N and alpha-amino acids suggested that the glutamine synthetase (GS, EC 6.3.1.2)-glutamate synthase (GOGAT, EC 1.4.1.13) pathway was active. Inhibition of the GS-catalyzed reaction by methionine sulphoximine abolished incorporation of N-15. Cit was labeled in all three N positions but most rapidly in the omega position, consistent with carbamoyl phosphate as the precursor to which Gln could be the amino donor catalyzed by carbamoyl phosphate synthase (CPS, EC 6.3.5.5). Ala biosynthesis occurred consistent with a flux of N in the sequence Gln-Glu-Ala. P-31 NMR spectroscopy in vivo and of extracts revealed several metabolites and was used in connection with the N-15 pulse-chase experiment to assess general metabolic status. Stable concentrations of ATP and UDP-glucose during extended perfusions showed that the overall root nodule metabolism appeared undisturbed throughout the experiments. The metabolic pathways suggested by the NMR results were confirmed by high activities of the enzymes GS, NADH-GOGAT and ornithine carbamoyltransferase (OCT, EC 2.1.3.3). We conclude that the primary pathway of NH4+ assimilation in A. incana root nodules occurs through the GS-GOGAT pathway. Biosynthesis of Cit through GS-CPS-OCT is important and is a link between the first amino acid Gln and this final transport and storage form of nitrogen.

  • 158.
    Lundberg, Peter
    et al.
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    Vogel, T.
    Malusek, Alexandr
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Lundquist, P-O
    Cohen, L
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    MDL– the magnetic resonance metabolomics database2005Conference paper (Other academic)
  • 159. Lundin, F
    et al.
    Tisell, Anders
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Linköping University, Faculty of Health Sciences.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Tullberg, M
    Wikkelsö, C
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Department of Medicine and Health Sciences, Radiology. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    Leijon, G
    Magnetic Resonance Spectroscopy of INPH -metabolism in the frontal deep white matter and in thalamus2009Conference paper (Other academic)
  • 160. Lundin, F
    et al.
    Tisell, Anders
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Linköping University, Faculty of Health Sciences.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Tullberg, M
    Wikkelsö, C
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    Leijon, G
    Magnetic Resonance Spectroscopy of INPH -metabolism in the frontal deep white matter and in thalamus2008Conference paper (Other academic)
  • 161.
    Lundin, Fredrik
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    Tisell, Anders
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Linköping University, Faculty of Health Sciences.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Davidsson, Leif
    Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping.
    Grönkvist, Anders
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences. Linköping University, Faculty of Health Sciences.
    Wikkelsö, C
    University of Gothenburg.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping.
    Leijon, Göran
    Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    Idiopathic Normal Pressure Hydrocephalus Pre -Postoperative 1H -MRS  changes in Frontal Deep White Matter and the Thalamus2011Conference paper (Refereed)
  • 162.
    Lundin, Fredrik
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    Tisell, Anders
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Tullberg, M.
    University of Gothenburg.
    Wikkelso, C.
    University of Gothenburg.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Leijon, Göran
    Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    Reduced thalamic N-acetylaspartate in idiopathic normal pressure hydrocephalus: a controlled (1)H-magnetic resonance spectroscopy study of frontal deep white matter and the thalamus using absolute quantification2011In: Journal of Neurology, Neurosurgery and Psychiatry, ISSN 0022-3050, E-ISSN 1468-330X, Vol. 82, no 7, p. 772-778Article in journal (Refereed)
    Abstract [en]

    Introduction Patients with idiopathic normal pressure hydrocephalus (INPH) frequently have a reduction in cerebral blood flow in the subcortical frontal lobe/basal ganglia/thalamic areas. With magnetic resonance spectroscopy, the metabolism in the brain can be examined. The aim of this study was to investigate if there was a compromised metabolism in the thalamus and in the subcortical frontal areas in INPH patients. This was done by measuring total creatine, myo-inositol, total choline, N-acetylaspartate (NAA), total N-acetylaspartate (tNA), glutamate and lactate levels. A comparison was made with healthy individuals (HI). Subjects and methods 16 patients (nine males, seven females, mean age 74 years, range 49-83) diagnosed as INPH and 15 HI (nine males, six females, mean age 74 years, range 62-89) were examined. 1 H magnetic resonance spectroscopy (1.5 T, point-resolved spectroscopy, echo time/relaxation time 30/3000 ms, volume of interest 2.5-3 ml) was performed in frontal deep white matter and in the thalamus. Absolute quantification with internal water as a reference was used. Results INPH patients had lower NAA (p = 0.02) and lower tNA (p = 0.05) concentrations in the thalamus compared with HI. NAA and tNA in the frontal deep white matter did not differ between patients and HI. The absolute metabolic concentrations of total creatine, myoinositol total choline, tNA, lactate and Cr ratios in frontal deep white matter and in the thalamus were similar in INPH patients and HI. Conclusion Reduced thalamic NAA and tNA in INPH patients suggest a compromised metabolic neuronal function in these regions. Thus, the thalamus might have an important role in the pathogenesis of INPH.

  • 163.
    Lundin, Fredrik
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    Tisell, Anders
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    Leijon, Göran
    Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    Dahlqvist Leinhard, Olof
    Linköping University, Department of Medical and Health Sciences. Linköping University, Faculty of Health Sciences.
    Davidsson, L.
    Linköping University, Department of Medical and Health Sciences. Linköping University, Faculty of Health Sciences.
    Grönqvist, A.
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    Wikkelsø, C.
    Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    Pre-Postoperative 1H-MRS-Changes in Frontal Deep White Matter and the Thalamus in Idiopathic Normal Pressure HydrocephalusManuscript (preprint) (Other academic)
    Abstract [en]

    In a previous study we found a significantly decreased N-acetylaspartate (NAA) and total N-acetyl groups (tNA) in the thalamus in patients with idiopathic normal pressure hydrocephalus (iNPH) compared with healthy individuals (HI). No significant difference between the groups could be found in the frontal deep white matter (FDWM). The primary aim of this study was to investigate if these metabolites in the thalamus were normalised after shunt surgery. The secondary aim was to investigate postoperative metabolic changes in FDWM.

    Subjects and Methods: Fourteen iNPH-patients, mean age 74 years, and 15 HI, also mean age 74 years, were examined. Assessment of motor scores was performed before and after shunt surgery. Absolute quantitative 1H-MRS (1.5 T, VOI 2.5-3 mL) was performed on the patients in the FDWM and in the thalamus, before and three months after shunt surgery, and also once on the HI. The following metabolites were analysed: tNA, NAA, total creatine (tCr), total choline (tCho), myo-inositol (mIns), glutamate (Glu), and lactate (Lac) concentrations. MRI volumetric calculations of the lateral ventricles were also performed.

    Results: At three months postoperatively, we found no significant changes of tNA or NAA in the thalamus. In contrast, in FDWM, there was a significant increase of tCho (p=0.01) and a borderline significant decrease of mIns (p=0.06). 12/14 patients were shunt responders (motor function). Median reduction of the lateral ventricle was 16%. A weak correlation between motor score (MOS) and ventricular reduction was observed.

    Conclusion: Normalisation of thalamic tNA and NAA could not be detected postoperatively. The increased tCho and decreased mIns in the FDWM postoperatively might relate to clinical improvement.

  • 164.
    Lundin, Fredrik
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    Tisell, Anders
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Leijon, Göran
    Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Davidsson, Leif
    Linköping University, Department of Medical and Health Sciences. Linköping University, Faculty of Health Sciences.
    Grönqvist, Anders
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Medical radiation physics.
    Wikkelso, Carsten
    University of Gothenburg, Sweden .
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Preoperative and postoperative H-1-MR spectroscopy changes in frontal deep white matter and the thalamus in idiopathic normal pressure hydrocephalus2013In: Journal of Neurology, Neurosurgery and Psychiatry, ISSN 0022-3050, E-ISSN 1468-330X, Vol. 84, no 2, p. 188-193Article in journal (Refereed)
    Abstract [en]

    Background In a previous study we found significantly decreased N-acetyl aspartate (NAA) and total N-acetyl (tNA) groups in the thalamus of patients with idiopathic normal pressure hydrocephalus (iNPH) compared with healthy individuals (HI). No significant difference between the groups could be found in the frontal deep white matter (FDWM). less thanbrgreater than less thanbrgreater thanObjective The primary aim of this study was to investigate if these metabolites in the thalamus were normalised after shunt surgery. The secondary aim was to investigate postoperative metabolic changes in FDWM. less thanbrgreater than less thanbrgreater thanSubjects and methods Fourteen patients with iNPH, mean age 74 years, and 15 HI, also mean age 74 years, were examined. Assessment of a motor score (MOSs) was performed before and after shunt surgery. Absolute quantitative H-1-MR spectroscopy (1.5 T, volumes of interest 2.5-3 ml) was performed on the patients in the FDWM and in the thalamus, before and 3 months after shunt surgery, and also once on the HI. The following metabolites were analysed: tNA, NAA, total creatine, total choline (tCho), myo-inositol (mIns), glutamate and lactate concentrations. MRI volumetric calculations of the lateral ventricles were also performed. less thanbrgreater than less thanbrgreater thanResults At 3 months postoperatively, we found no significant changes of tNA or NAA in the thalamus. In contrast, in the FDWM, there was a significant increase of tCho (p=0.01) and a borderline significant decrease of mIns (p=0.06). 12/14 patients were shunt responders (motor function). Median reduction of the lateral ventricle was 16%. A weak correlation between MOS and ventricular reduction was seen. less thanbrgreater than less thanbrgreater thanConclusions Normalisation of thalamic tNA and NAA could not be detected postoperatively. The increased tCho and decreased mIns in the FDWM postoperatively might relate to clinical improvement.

  • 165.
    Lundqvist, Helen
    et al.
    Department of Molecular and Clinical Medicine Linköping University.
    Dånmark, Staffan
    Department of Neuroscience and Locomotion Linköping University.
    Johansson, Uno
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology .
    Gustafsson, Håkan
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences, Radiation Physics .
    Öllinger, Karin
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology . Östergötlands Läns Landsting, Centre for Laboratory Medicine, Department of Clinical Pathology and Clinical Genetics.
    Evaluation of electron spin resonance for studies of superoxide anion production by human neutrophils interacting with Staphylococcus aureus and Staphylococcus epidermidis.2008In: Journal of Biochemical and Biophysical Methods, ISSN 0165-022X, E-ISSN 1872-857X, Vol. 70, no 6, p. 1059-1065Article in journal (Refereed)
    Abstract [en]

    The present study evaluates electron spin resonance (ESR) and the spin trapper 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) for analysis of superoxide radical production by human neutrophils interacting with viable Staphylococcus aureus and Staphylococcus epidermidis bacteria. To avoid auto-activation due to interaction with glass surfaces, neutrophils were preincubated in plastic tubes until the peak response was reached, and then transferred to a quartz flat cell to record the ESR spectra. The time point for peak response was identified by parallel analysis of the bacteria-neutrophil interaction using luminol amplified chemiluminescence. We found detectable ESR spectra from neutrophils interacting with as few as five bacteria of the weak activating S. epidermidis per neutrophil. Addition of the NADPH oxidase inhibitor diphenylene iodonium totally abolished spectra. Catalase, DMSO or an iron chelator had no impact on the produced spectra and ionomycin, a selective activator of intracellular NADPH oxidase, gave significant ESR spectra. Taken together, our results indicate that DEPMPO is cell permeable and detects NADPH oxidase derived superoxide anions formed in phagosomes or released by human neutrophils phagocytosing viable S. aureus and S. epidermidis. The technique may be used as a sensitive tool to evaluate superoxide anion production in human neutrophils.

  • 166.
    Magnusson, Maria
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Brynolfsson, Patrik
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping.
    Improved temporal resolution in radial k-space sampling using an hourglass filter2009In: ISMRM 17th Scientific Meeting & Exhibition, Honolulu, Hawaii, USA, 2009Conference paper (Refereed)
    Abstract [en]

    Radial sampling of k-space is known to simultaneously provide both high spatial and high temporal resolution. Recently, an optimal radial profile time order based on the Golden Ratio was presented in [1]. We have adopted and modified the idea, with a focus onhigher temporal resolution without sacrificing any image quality.

    [1] Winkelmann et. al.: An optimal radial profile order based on the golden ratio for time-resolved MRI, IEEE Trans. Med. Im, Vol.26, No.1,2007.

  • 167.
    Magnusson, Maria
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Brynolfsson, Patrik
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping.
    Radial k-space sampling: step response using different filtering techniques2009In: ISMRM Workshop on Data sampling and Image Reconstruction, The Enchantment Resort, Sedona, Arizona, USA, 2009Conference paper (Refereed)
    Abstract [en]

    Radial sampling of k-space is known to simultaneously provide both high spatial and high temporal resolution. Recently, an optimalradial profile time order based on the Golden Ratio was presented in [1]. We have adopted and modified the idea, with a focus onhigher temporal resolution without sacrificing any image quality.

    [1] Winkelmann et. al.: An optimal radial profileorder based on the golden ratio for time-resolved MRI, IEEE Trans. Med. Im, Vol.26, No.1, 2007.

  • 168.
    Magnusson, Maria
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Dahlqvist Leinhard, Olof
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Brynolfsson, Patrik
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Thyr, Per
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    3D Magnetic Resonance Imaging of the Human Brain - Novel Radial Sampling, Filtering and Reconstruction2010In: Proc of the 12th IASTED International Conference on Signal and Image Processing (SIP 2010), August 23 - 25, 2010, Lahaina, Maui, USA / [ed] B. Flinchbaugh, Calgary, AB, Canada: ACTA Press, 2010, p. Track: 710-042-(8 pages)Conference paper (Refereed)
    Abstract [en]

    We have suggested a novel method PRESTO-CAN including radial sampling, filtering and reconstruction of k-space data for 3D-plus-time resolved MRI. The angular increment of the profiles was based on the golden ratio, but the number of angular positions N was locked to be a prime number which guaranteed fix angle positions.The time resolution increased dramatically when the pro-files were partly removed from the k-space using the hourglass filter.We aim for utilizing the MRI-data for fMRI, where the echo times are long, TE ≈ 37-40 ms. This will result in field inhomogeneities and phase variations in the reconstructed images. Therefore, a new calibration and correction procedure was developed. We show that we are able to reconstruct images of the human brain with an image quality in line with what can be obtained by conventional Cartesian sampling.The pulse sequence for PRESTO-CAN was implemented by modifying an existing PRESTO sequence for Cartesian sampling. The effort involved was relatively small and a great advantage will be that we are able to use standard procedures for speeding up data acquisition, i.e. parallel imaging with SENSE.

  • 169.
    Magnusson, Maria
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping.
    A 3D-Plus-Time Radial-Cartesian Hybrid Sampling of K-Space With High Temporal Resolution and Maintained Image Quality for MRI and FMRI2011Conference paper (Refereed)
  • 170.
    Magnusson, Maria
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    van Ettinger-Veenstra, Helene
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    FMRI Using 3D PRESTO-CAN - A Novel Method Based on Golden Angle Hybrid Radial-Cartesian Sampling of K-Space2012Conference paper (Other academic)
  • 171.
    Magnusson, Maria
    et al.
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology. Linköping University, Faculty of Health Sciences.
    Malusek, Alexandr
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Muhammad, Arif
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences. Linköping University, Faculty of Health Sciences.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    Determination of  Quantitative Tissue Composition by Iterative Reconstruction on 3D DECT Volumes2011Conference paper (Refereed)
  • 172.
    Magnusson, Maria
    et al.
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Health Sciences. Linköping University, The Institute of Technology.
    Malusek, Alexandr
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Muhammad, Arif
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Iterative Reconstruction for QuantitativeTissue Decomposition in Dual-Energy CT2011In: Proceedings of the 17th Scandinavian Conference, SCIA 2011, Ystad, Sweden, May 2011. / [ed] Anders Heyden,Fredrik Kahl, Springer Berlin/Heidelberg, 2011, p. 479-488Conference paper (Refereed)
    Abstract [en]

    Quantitative tissue classification using dual-energy CT has the potential to improve accuracy in radiation therapy dose planning as it provides more information about material composition of scanned objects than the currently used methods based on single-energy CT. One problem that hinders successful application of both single-and dualenergy CT is the presence of beam hardening and scatter artifacts in reconstructed data. Current pre-and post-correction methods used for image reconstruction often bias CT numbers and thus limit their applicability for quantitative tissue classification. Here we demonstrate simulation studies with a novel iterative algorithm that decomposes every soft tissue voxel into three base materials: water, protein and adipose. The results demonstrate that beam hardening artifacts can effectively be removed and accurate estimation of mass fractions of all base materials can be achieved. In the future, the algorithm may be developed further to include segmentation of soft and bone tissue and subsequent bone decomposition, extension from 2-D to 3-D and scatter correction.

  • 173.
    Malusek, Aleksandr
    et al.
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences.
    Larsson, J. Peter
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences.
    Monte Carlo study of the dependence of the KAP-meter calibration coefficient on beam aperture, X-ray tube voltage, and reference plane2007In: Physics in medicine and biology, ISSN 0031-9155, Vol. 52, no 4, p. 1157-1170Article in journal (Refereed)
    Abstract [en]

    The Monte Carlo method was used to study the dependence of the calibration coefficient on the tube voltage, beam aperture and reference plane in simplified over-couch geometries modelling VacuTec's type 70157 KAP-meter both with and without an additional filter. The MCNP5 code was used to calculate (i) energy imparted to air cavities of the KAP-meter and (ii) spatial distribution of air collision kerma at entrance and exit planes of the KAP-meter and at a plane close to the patient. From these data, the air kerma area product and calibration coefficient were calculated and their dependence on the tube voltage and beam aperture was analysed. It was found that the variation of the calibration coefficient as a function of tube voltage was up to 40% when the additional filter was used. The additional filter placed closely in front of the KAP-meter decreased the calibration coefficient for the patient plane by about 10% compared to the ideal additional filter. The effect of the beam aperture was small at the patient plane and negligible for the exit plane.

  • 174.
    Malusek, Alexandr
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences.
    Calculation of scatter in cone beam CT: Steps towards a virtual tomograph2008Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Scattered photons—shortly scatter—are generated by interaction processes when photon beams interact with matter. In diagnostic radiology, they deteriorate image quality since they add an undesirable signal that lowers the contrast in projection radiography and causes cupping and streak artefacts in computed tomography (CT). Scatter is one of the most detrimental factors in cone beam CT owing to irradiation geometries using wide beams. It cannot be fully eliminated, nevertheless its amount can be lowered via scatter reduction techniques (air gaps, antiscatter grids, collimators) and its effect on medical images can be suppressed via scatter correction algorithms.

    Aim: Develop a tool—a virtual tomograph—that simulates projections and performs image reconstructions similarly to a real CT scanner. Use this tool to evaluate the effect of scatter on projections and reconstructed images in cone beam CT. Propose improvements in CT scanner design and image reconstruction algorithms.

    Methods: A software toolkit (CTmod) based on the application development framework ROOT was written to simulate primary and scatter projections using analytic and Monte Carlo methods, respectively. It was used to calculate the amount of scatter in cone beam CT for anthropomorphic voxel phantoms and water cylinders. Configurations with and without bowtie filters, antiscatter grids, and beam hardening corrections were investigated. Filtered back-projection was used to reconstruct images. Automatic threshold segmentation of volumetric CT data of anthropomorphic phantoms with known tissue compositions was tested to evaluate its usability in an iterative image reconstruction algorithm capable of performing scatter correction.

    Results: It was found that computer speed was the limiting factor for the deployment of this method in clinical CT scanners. It took several hours to calculate a single projection depending on the complexity of the geometry, number of simulated detector elements, and statistical precision. Data calculated using the CTmod code confirmed the already known facts that the amount of scatter is almost linearly proportional to the beam width, the scatter-to-primary ratio (SPR) can be larger than 1 for body-size objects, and bowtie filters can decrease the SPR in certain regions of projections. Ideal antiscatter grids significantly lowered the amount of scatter. The beneficial effect of classical antiscatter grids in cone beam CT with flat panel imagers was not confirmed by other researchers nevertheless new grid designs are still being tested. A simple formula estimating the effect of scatter on the quality of reconstructed images was suggested and tested.

    Conclusions: It was shown that computer simulations could calculate the amount of scatter in diagnostic radiology. The Monte Carlo method was too slow for a routine use in contemporary clinical practice nevertheless it could be used to optimize CT scanner design and, with some enhancements, it could become a part of an image reconstruction algorithm that performs scatter correction.

    List of papers
    1. Simulation of scatter in cone beam CT – effects on projection image quality
    Open this publication in new window or tab >>Simulation of scatter in cone beam CT – effects on projection image quality
    2003 (English)In: Proceedings of SPIE 5030: Medical Imaging 2003: Physics of Medical Imaging, Vol. 5030, p. 740-751Article in journal (Refereed) Published
    Abstract [en]

    Cone-beam computed tomography (CT) projections were calculated by the Monte Carlo method for two cylindrical water phantoms of different sizes and for an antropomorphic voxel phantom with and without the presence of an anti-scatter grid. The scatter-to-primary ratio (SPR) was evaluated for each projection and the dependence of the amount of scattered radiation on the phantom size, cone beam size, photon energy, and antiscatter grid was investigated. It was found that the amount of scattered radiation is a slowly varying function of position in the image plane whose values, depending on configuration parameters, may cover a range of several magnitudes. The SPR reflects changes in the amount of primary photons and may reach values around 5 for large phantoms, wide beams and 120 kV spectrum or even higher values for low energy photons.

    National Category
    Medical and Health Sciences
    Identifiers
    urn:nbn:se:liu:diva-13032 (URN)10.1117/12.479940 (DOI)
    Available from: 2008-03-13 Created: 2008-03-13 Last updated: 2015-03-20
    2. Effect of scatter on reconstructed image quality in cone beam CT: evaluation of a scatterreduction optimization function
    Open this publication in new window or tab >>Effect of scatter on reconstructed image quality in cone beam CT: evaluation of a scatterreduction optimization function
    2005 (English)In: Radiation Protection Dosimetry, ISSN 0144-8420, Vol. 114, no 1-3, p. 337-340Article in journal (Refereed) Published
    Abstract [en]

    The effect of scatter on reconstructed image quality in conebeam computed tomography was investigated and a function whichcan be used in scatter-reduction optimisation tasks was tested.Projections were calculated using the Monte Carlo method inan axially symmetric cone beam geometry consisting of a pointsource, water phantom and a single row of detector elements.Image reconstruction was performed using the filtered backprojectionmethod. Image quality was assessed by the L2-norm-based differencerelative to a reference image derived from (1) weighted linearattenuation coefficients and (2) projections by primary photons.It was found that the former function was strongly affectedby the beam hardening artefact and did not properly reflectthe amount of scatter but the latter function increased withincreasing beam width, was higher for the larger phantom andexhibited properties which made it a good candidate for scatter-reductionoptimisation tasks using polyenergetic beams.

    National Category
    Medical and Health Sciences
    Identifiers
    urn:nbn:se:liu:diva-13033 (URN)10.1093/rpd/nch541 (DOI)
    Available from: 2008-03-13 Created: 2008-03-13 Last updated: 2015-03-20
    3. Monte Carlo study of the dependence of the KAP-meter calibration coefficient on beam aperture, X-ray tube voltage, and reference plane
    Open this publication in new window or tab >>Monte Carlo study of the dependence of the KAP-meter calibration coefficient on beam aperture, X-ray tube voltage, and reference plane
    2007 (English)In: Physics in medicine and biology, ISSN 0031-9155, Vol. 52, no 4, p. 1157-1170Article in journal (Refereed) Published
    Abstract [en]

    The Monte Carlo method was used to study the dependence of the calibration coefficient on the tube voltage, beam aperture and reference plane in simplified over-couch geometries modelling VacuTec's type 70157 KAP-meter both with and without an additional filter. The MCNP5 code was used to calculate (i) energy imparted to air cavities of the KAP-meter and (ii) spatial distribution of air collision kerma at entrance and exit planes of the KAP-meter and at a plane close to the patient. From these data, the air kerma area product and calibration coefficient were calculated and their dependence on the tube voltage and beam aperture was analysed. It was found that the variation of the calibration coefficient as a function of tube voltage was up to 40% when the additional filter was used. The additional filter placed closely in front of the KAP-meter decreased the calibration coefficient for the patient plane by about 10% compared to the ideal additional filter. The effect of the beam aperture was small at the patient plane and negligible for the exit plane.

    National Category
    Medical and Health Sciences
    Identifiers
    urn:nbn:se:liu:diva-13034 (URN)10.1088/0031-9155/52/4/020 (DOI)
    Available from: 2008-03-13 Created: 2008-03-13 Last updated: 2015-03-20
    4. CTmod: a toolkit for Monte Carlo simulation of projections including scatter in computed tomography
    Open this publication in new window or tab >>CTmod: a toolkit for Monte Carlo simulation of projections including scatter in computed tomography
    2008 (English)In: Computer Methods and Programs in Biomedicine, ISSN 0169-2607, E-ISSN 1872-7565, Vol. 90, no 2, p. 167-178Article in journal (Refereed) Published
    Abstract [en]

    The CTmod toolkit is a set of C++ class libraries based on the CERN’s application development framework ROOT. It uses the Monte Carlo method to simulate energy imparted to a CT-scanner detector array. Photons with a given angle–energy distribution are emitted from the X-ray tube approximated by a point source, transported through a phantom, and their contribution to the energy imparted per unit surface area of each detector element is scored. Alternatively, the scored quantity may be the fluence, energy fluence, plane fluence, plane energy fluence, or kerma to air in the center of each detector element. Phantoms are constructed from homogenous solids or voxel arrays via overlapping. Implemented photon interactions (photoelectric effect, coherent scattering, and incoherent scattering) are restricted to the energy range from 10 to 200 keV. Variance reduction techniques include the collision density estimator and survival biasing combined with the Russian roulette. The toolkit has been used to estimate the amount of scatter in cone beam computed tomography and planar radiography.

    Place, publisher, year, edition, pages
    Elsevier, 2008
    Keywords
    Monte Carlo, Computed tomography, Cone beam, Scatter
    National Category
    Medical and Health Sciences
    Identifiers
    urn:nbn:se:liu:diva-13035 (URN)10.1016/j.cmpb.2007.12.005 (DOI)
    Note
    Original Publication: Alexandr Malusek, Michael Sandborg and Gudrun Alm Carlsson, CTmod: a toolkit for Monte Carlo simulation of projections including scatter in computed tomography, 2008, Computer Methods and Programs in Biomedicine, (90), 2, 167-178. http://dx.doi.org/10.1016/j.cmpb.2007.12.005 Copyright: Elsevier Science B.V., Amsterdam. http://www.elsevier.com/ Available from: 2008-03-13 Created: 2008-03-13 Last updated: 2017-12-13
    5. A Monte Carlo Study of the Effect of a Bowtie Filter on the Amount of Scatter in Computed Tomography
    Open this publication in new window or tab >>A Monte Carlo Study of the Effect of a Bowtie Filter on the Amount of Scatter in Computed Tomography
    Manuscript (Other academic)
    Identifiers
    urn:nbn:se:liu:diva-13036 (URN)
    Available from: 2008-03-13 Created: 2008-03-13 Last updated: 2010-01-13
  • 175.
    Malusek, Alexandr
    et al.
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Analysis of the tandem calibration method for kerma area meters vis Monte Carlo simulations2011In: Standards, Applications and Quality Assurance in Medical Radiation Dosimetry (IDOS).  Proceedings of an International Symposium held in Vienna, Austria 9-12 November 2010 (2 Volumes), IAEA , 2011, p. 129-136Conference paper (Refereed)
    Abstract [en]

    The IAEA recommends that uncertainties of dosimetric measurements in diagnostic radiology for risk assessment and quality assurance should be less than 7% on the confidence level of 95%. This accuracy is difficult to achieve with kerma area product (KAP) meters currently used in clinics. The reasons range from the high energy dependence of KAP meters to the wide variety of configurations in which KAP meters are used and calibrated. The tandem calibration method introduced by Pöyry, Komppa and Kosunen in 2005 has the potential to make the calibration procedure simpler and more accurate compared to the traditional beam-area method. In this method, two positions of the reference KAP meter are of interest: (a) a position close to the field KAP meter and (b) a position 20 cm above the couch. In the close position, the distance between the two KAP meters should be at least 30 cm to reduce the effect of back scatter. For the other position, which is recommended for the beam-area calibration method, the distance of 70 cm between the KAP meters was used in this study. The aim of this work was to complement existing experimental data comparing the two configurations with Monte Carlo (MC) simulations. In a geometry consisting of a simplified model of the VacuTec 70157 type KAP meter, the MCNP code was used to simulate the kerma area product, PKA, for the two (close and distant) reference planes. It was found that PKA values for the tube voltage of 40 kV were about 2.5% lower for the distant plane than for the close one. For higher tube voltages, the difference was smaller. The difference was mainly caused by attenuation of the X ray beam in air. Since the problem with high uncertainties in PKA measurements is also caused by the current design of X ray machines, possible solutions are discussed.

  • 176.
    Malusek, Alexandr
    et al.
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Helmrot, Ebba
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Patient-specific kerma-area product as an exposure estimator in computed tomography: the concept and typical values2011In: IAEA, International Symposium on Standards, Applications and Quality Assurance in Medical Radiation Dosimetry (IDOS). 9-12 november 2010, Vienna, Austria. Book of extended synopses. IAEA-CN-182 / [ed] IAEA, International Atomic Energy Agency, Vienna: IAEA , 2011, p. 83-92Conference paper (Refereed)
    Abstract [en]

    Monitoring of exposure levels in computed tomography is important from the radiation safety point of view. In this article, the concept suggested by Huda X[1]X of using the patient-specific kerma-area product as an exposure estimator is extended by providing both a rigorous definition of this quantity and a method for its evaluation. The method was demonstrated on an axial scan of the standard CT dosimetry head phantom taken with a Siemens Somatom Open CT scanner. The resulting patient-specific kerma-area product was 0.25 Gy cm2 for the x-ray tube voltage of 120 kV, tube current of 100 mA, scanning time of 1 s, and beam width at the iso-center of 1.2 cm.  To implement this method, the CT scanner must be equipped with a KAP meter, and the calculation procedure must be added to the scanner's software. Alternatively, the patient-specific kerma-area product can be calculated by the CT scanner without using a KAP meter. In this case, however, the extra safety feature provided by the direct monitoring of the x-ray beam by the KAP meter is lost.

  • 177.
    Malusek, Alexandr
    et al.
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Karlsson, Mattias
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences.
    Magnusson, Maria
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    The potential of dual-energy computed tomography for quantitative decomposition of soft tissues to water, protein and lipid in brachytherapy2013In: Physics in Medicine and Biology, ISSN 0031-9155, E-ISSN 1361-6560, Vol. 58, no 4, p. 771-785Article in journal (Refereed)
    Abstract [en]

    Dosimetric accuracy of radiation treatment planning in brachytherapy depends on knowledge of tissue composition. It has been speculated that soft tissues can be decomposed to water, lipid and protein. The aim of our work is to evaluate the accuracy of such tissue decomposition. Selected abdominal soft tissues, whose average elemental compositions were taken from literature, were decomposed using dual energy computed tomography to water, lipid and protein via the three-material decomposition method. The quality of the decomposition was assessed using relative differences between (i) mass energy absorption and (ii) mass energy attenuation coefficients of the analyzed and approximated tissues. It was found that the relative differences were less than 2% for photon energies larger than 10 keV. The differences were notably smaller than the ones for water as the transport and dose scoring medium. The choice of the water, protein and lipid triplet resulted in negative elemental mass fractions for some analyzed tissues. As negative elemental mass fractions cannot be used in general purpose particle transport computer codes using the Monte Carlo method, other triplets should be used for the decomposition. These triplets may further improve the accuracy of the approximation as the differences were mainly caused by the lack of high-Z materials in the water, protein and lipid triplet.

  • 178.
    Malusek, Alexandr
    et al.
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Magnusson Seger, Maria
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Sandborg, Michael
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Effect of scatter on reconstructed image quality in cone beam CT: evaluation of a scatterreduction optimization function2005In: Radiation Protection Dosimetry, ISSN 0144-8420, Vol. 114, no 1-3, p. 337-340Article in journal (Refereed)
    Abstract [en]

    The effect of scatter on reconstructed image quality in conebeam computed tomography was investigated and a function whichcan be used in scatter-reduction optimisation tasks was tested.Projections were calculated using the Monte Carlo method inan axially symmetric cone beam geometry consisting of a pointsource, water phantom and a single row of detector elements.Image reconstruction was performed using the filtered backprojectionmethod. Image quality was assessed by the L2-norm-based differencerelative to a reference image derived from (1) weighted linearattenuation coefficients and (2) projections by primary photons.It was found that the former function was strongly affectedby the beam hardening artefact and did not properly reflectthe amount of scatter but the latter function increased withincreasing beam width, was higher for the larger phantom andexhibited properties which made it a good candidate for scatter-reductionoptimisation tasks using polyenergetic beams.

  • 179.
    Malusek, Alexandr
    et al.
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences.
    Sandborg, Michael
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Calculation of the energy absorption efficiency function of selected detector arrays using the MCNP code2007Report (Other academic)
    Abstract [en]

    This report describes a method for the calculation of the energy absorption efficiency function. It gives a theoretical justification of the method and presents results obtained using the MCNP4C code for (i) an infinite slab, (ii) a detector array without a collimator, and (iii) a detector array with a collimator. Moreover, it discusses an alternative method of scoring of the energy imparted per unit surface area in CTmod. This report is a supplement to the article “CTmod—a toolkit for Monte Carlo simulation of projections including scatter in computed tomography” by A. Malusek, M. Sandborg, and G. Alm Carlsson.

  • 180.
    Malusek, Alexandr
    et al.
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Sandborg, Michael
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    CTmod: a toolkit for Monte Carlo simulation of projections including scatter in computed tomography2008In: Computer Methods and Programs in Biomedicine, ISSN 0169-2607, E-ISSN 1872-7565, Vol. 90, no 2, p. 167-178Article in journal (Refereed)
    Abstract [en]

    The CTmod toolkit is a set of C++ class libraries based on the CERN’s application development framework ROOT. It uses the Monte Carlo method to simulate energy imparted to a CT-scanner detector array. Photons with a given angle–energy distribution are emitted from the X-ray tube approximated by a point source, transported through a phantom, and their contribution to the energy imparted per unit surface area of each detector element is scored. Alternatively, the scored quantity may be the fluence, energy fluence, plane fluence, plane energy fluence, or kerma to air in the center of each detector element. Phantoms are constructed from homogenous solids or voxel arrays via overlapping. Implemented photon interactions (photoelectric effect, coherent scattering, and incoherent scattering) are restricted to the energy range from 10 to 200 keV. Variance reduction techniques include the collision density estimator and survival biasing combined with the Russian roulette. The toolkit has been used to estimate the amount of scatter in cone beam computed tomography and planar radiography.

  • 181.
    Malusek, Alexandr
    et al.
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences.
    Sandborg, Michael
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    CTmod: Mathematical Foundations2007Report (Other academic)
    Abstract [en]

    CTmod is a set of C++ class libraries primarily designed for the simulation of energy imparted to a CT-scanner detector array using the Monte Carlo method. This report describes mathematical methods and formulas that are used in the code. It is a supplement to the article “CTmod - a toolkit for Monte Carlo simulation of projections including scatter in computed tomography” by A. Malusek, M. Sandborg, and G. Alm Carlsson.

    In this report, random variables are denoted by a hat. For instance ˆx is a random variable and x is its sample. Points in space are denoted by bold capital letters, e.g. P. Directions are denoted by bold small letters, e.g. u. Inconsistencies in the current notation will be corrected in the next update of this report.

  • 182.
    Malusek, Alexandr
    et al.
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences.
    Sandborg, Michael
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Simulation of scatter in cone beam CT – effects on projection image quality2003In: Proceedings of SPIE 5030: Medical Imaging 2003: Physics of Medical Imaging, Vol. 5030, p. 740-751Article in journal (Refereed)
    Abstract [en]

    Cone-beam computed tomography (CT) projections were calculated by the Monte Carlo method for two cylindrical water phantoms of different sizes and for an antropomorphic voxel phantom with and without the presence of an anti-scatter grid. The scatter-to-primary ratio (SPR) was evaluated for each projection and the dependence of the amount of scattered radiation on the phantom size, cone beam size, photon energy, and antiscatter grid was investigated. It was found that the amount of scattered radiation is a slowly varying function of position in the image plane whose values, depending on configuration parameters, may cover a range of several magnitudes. The SPR reflects changes in the amount of primary photons and may reach values around 5 for large phantoms, wide beams and 120 kV spectrum or even higher values for low energy photons.

  • 183.
    Malusek, Alexandr
    et al.
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences.
    Sandborg, Michael
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Validation of the CTmod toolkit2007Report (Other academic)
    Abstract [en]

    This report is a supplement to the article “CTmod—a toolkit for Monte Carlo simulation of projections including scatter in computed tomography” by A. Malusek, M. Sandborg, and G. Alm Carlsson. It describes methods that were used to validate the CTmod toolkit. Here, we adopt the terminology used in and: Verification is a process of determining whether or not the software is coded correctly and conforms to the specified requirements. Validation is a process of evaluating software to ensure compliance with physical applicability to the process being modelled. Validation of a code would consist of comparing it with known analytical solutions or against an already validated computer code, or could include benchmarking the code against relevant experimental data.

    CTmod is a toolkit implemented as a C++ class libray. A user is supposed to write a main program which uses classes from the toolkit. The main program is then compiled to create an executable. In this report, we tested two executables (ctmod1 and ctmod2) created this way. In chapter 2, scatter-to-primary ratios of air collision kerma calculated using ctmod1 are compared to data published in literature. In chapter 3, primary and scatter projections calculated using ctmod2 are compared to data calculated using the MCNP5 code. Though not related to the validation, we also report speeds of ctmod1 and ctmod2 as these were often requested from us.

  • 184. Mellergård, J
    et al.
    Tisell, Anders
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Dahlqvist Leinhard, Oliof
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Dahle, C
    Landtblom, Anne-Marie
    Linköping University, Department of Clinical and Experimental Medicine, Psychiatry. Linköping University, Faculty of Health Sciences.
    Ernerudh, J
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Department of Medicine and Health Sciences, Radiology. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Linköping University, Faculty of Health Sciences.
    Vrethem, M
     MR spectroscopy and quantitative MRI in multiple sclerosis patients treated with natalizumab: changes in normal appearing white matter are associated to intrathecal inflammation and clinical variables,2010Conference paper (Other academic)
  • 185.
    Mellergård, Johan
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    Tisell, Anders
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Blystad, Ida
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    Landtblom, Anne-Marie
    Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    Blennow, Kaj
    Clinical Neurochemistry Laboratory, Institution of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.
    Olsson, Bob
    Clinical Neurochemistry Laboratory, Institution of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.
    Dahle, Charlotte
    Linköping University, Department of Clinical and Experimental Medicine, Clinical Immunology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Clinical Immunology and Transfusion Medicine.
    Ernerudh, Jan
    Linköping University, Department of Clinical and Experimental Medicine, Clinical Immunology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Clinical Immunology and Transfusion Medicine.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    Vrethem, Magnus
    Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    Association between Change in Normal Appearing White Matter Metabolites and Intrathecal Inflammation in Natalizumab-Treated Multiple Sclerosis2012In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 7, no 9, p. e44739-Article in journal (Refereed)
    Abstract [en]

    Background: Multiple sclerosis (MS) is associated not only with focal inflammatory lesions but also diffuse pathology in the central nervous system (CNS). Since there is no firm association between the amount of focal inflammatory lesions and disease severity, diffuse pathology in normal appearing white matter (NAWM) may be crucial for disease progression. Immunomodulating treatments for MS reduce the number of focal lesions, but possible effects on diffuse white matter pathology are less studied. Furthermore, it is not known whether intrathecal levels of inflammatory or neurodegenerative markers are associated with development of pathology in NAWM.

    Methods: Quantitative proton magnetic resonance spectroscopy (1H-MRS) was used to investigate NAWM in 27 patients with relapsing MS before and after one year of treatment with natalizumab as well as NAWM in 20 healthy controls at baseline. Changes in 1H-MRS metabolite concentrations during treatment were also correlated with a panel of intrathecal markers of inflammation and neurodegeneration in 24 of these 27 patients.

    Results: The group levels of 1H-MRS metabolite concentrations were unchanged pre-to posttreatment, but a pattern of high magnitude correlation coefficients (r = 0.43–0.67, p<0.0005–0.03) were found between changes in individual metabolite concentrations (total creatine and total choline) and levels of pro-inflammatory markers (IL-1β and CXCL8).

    Conclusions: Despite a clinical improvement and a global decrease in levels of inflammatory markers in cerebrospinal fluid during treatment, high levels of pro-inflammatory CXCL8 and IL-1β were associated with an increase in 1H-MRS metabolites indicative of continued gliosis development and membrane turnover in NAWM.

  • 186.
    Mellergård, Johan
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    Tisell, Anders
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Dahle, Charlotte
    Linköping University, Department of Clinical and Experimental Medicine, Clinical Immunology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Clinical Immunology and Transfusion Medicine.
    Landtblom, Anne-Marie
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    Ernerudh, Jan
    Linköping University, Department of Clinical and Experimental Medicine, Clinical Immunology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Clinical Immunology and Transfusion Medicine.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    Vrethem, Magnus
    Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    MR spectroscopy and quantitative MRI in multiple sclerosis patients treated with natalizumab: changes in normal appearing white matter are associated to intrathecal inflammation and clinical variables2010Conference paper (Other academic)
  • 187.
    Mukhopadhyay, Nitai D
    et al.
    Virginia Commonwealth Univ, Richmond, USA.
    Sampson, Andrew J
    Virginia Commonwealth Univ, Richmond, USA.
    Deniz, Daniel
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Williamson, Jeffrey
    Virginia Commonwealth Univ, Richmond, USA.
    Malusek, Alexandr
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Estimating statistical uncertainty of Monte Carlo efficiency-gain in the context of a correlated sampling Monte Carlo code for brachytherapy treatment planning with non-normal dose distribution2012In: Applied Radiation and Isotopes, ISSN 0969-8043, E-ISSN 1872-9800, Vol. 70, no 1, p. 315-323Article in journal (Refereed)
    Abstract [en]

    Correlated sampling Monte Carlo methods can shorten computing times in brachytherapy treatment planning. Monte Carlo efficiency is typically estimated via efficiency gain, defined as the reduction in computing time by correlated sampling relative to conventional Monte Carlo methods when equal statistical uncertainties have been achieved. The determination of the efficiency gain uncertainty arising from random effects, however, is not a straightforward task specially when the error distribution is non-normal. The purpose of this study is to evaluate the applicability of the F distribution and standardized uncertainty propagation methods (widely used in metrology to estimate uncertainty of physical measurements) for predicting confidence intervals about efficiency gain estimates derived from single Monte Carlo runs using fixed-collision correlated sampling in a simplified brachytherapy geometry. A bootstrap based algorithm was used to simulate the probability distribution of the efficiency gain estimates and the shortest 95% confidence interval was estimated from this distribution. It was found that the corresponding relative uncertainty was as large as 37% for this particular problem. The uncertainty propagation framework predicted confidence intervals reasonably well; however its main disadvantage was that uncertainties of input quantities had to be calculated in a separate run via a Monte Carlo method. The F distribution noticeably underestimated the confidence interval. These discrepancies were influenced by several photons with large statistical weights which made extremely large contributions to the scored absorbed dose difference. The mechanism of acquiring high statistical weights in the fixed-collision correlated sampling method was explained and a mitigation strategy was proposed.

  • 188.
    Nilsson, Kerstin A
    et al.
    Östergötlands Läns Landsting, Heart and Medicine Centre, Department of Clinical Physiology UHL.
    Karlsson, Henrik
    Linköping University, Department of Medical and Health Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    Lindblom, Gunnar
    Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping.
    Gustafsson, Agnetha
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    Kartläggning av bildkvalitetsparametrar vid skelettscintigrafi2010Conference paper (Other academic)
  • 189.
    Norberg, Pernilla
    et al.
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics. Linköping University, Faculty of Health Sciences.
    Bake, Björn
    Sahlgrenska universitetssjukhuset, Göteborg.
    Jacobsson, Lars
    Göteborgs universitet, Göteborg.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Gustafsson, Agnetha
    Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics. Linköping University, Faculty of Health Sciences.
    Evaluation of reconstruction techniques for lung single photon emission tomography: A Monte Carlo study2007In: Nuclear medicine communications, ISSN 0143-3636, E-ISSN 1473-5628, Vol. 28, no 12, p. 929-936Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: In studies of the distribution of lung function, the image quality of lung single photon emission computed tomography (SPECT) is important and one factor influencing it is the reconstruction algorithm. AIM: To systematically evaluate ordered subsets expectation maximization (OSEM) and compare it with filtered back-projection (FBP) for lung SPECT with Tc. METHODS: The evaluation of the number of iterations used in OSEM was based on the image quality parameter contrast. The comparison between OSEM and FBP was based on trade-off plots between statistical noise and spatial resolution for different filter parameters, collimators and count-levels. A Monte Carlo technique was used to simulate SPECT studies of a digital thorax phantom containing two sets of activity: one with a homogeneous activity distribution within the lungs and the other with superposed high- and low-activity objects. Statistical noise in the reconstructed images was calculated as the coefficient of variation (CV) and spatial resolution as full width at half-maximum (FWHM). RESULTS: For the configuration studied, the OSEM reconstruction in combination with post-filtering should be used in lung SPECT studies with at least 60 MLEM equivalent iterations. Compared to FBP the spatial resolution was improved by about 1 mm. For a constant level of CV, a four-fold increase in count level resulted in an increased resolution of about 2 mm. Spatial resolution and cut-off frequency depends on what value of noise in the image is acceptable also increased by using a low-energy, high-resolution collimator for CV values above 3%. The choice of noise-reducing filter and cut-off frequency depends on what value of noise in the image is acceptable.

  • 190.
    Norberg, Pernilla
    et al.
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Persson, Hans Lennart
    Linköping University, Department of Medical and Health Sciences, Pulmonary Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Respiratory Medicine.
    Alm Carlsson, Gudrun
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Bake, Björn
    Sahlgrenska Academy at University of Gothenburg.
    Kentson, Magnus
    Ryhov Hospital.
    Sandborg, Michael
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Gustafsson, Agnetha
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Quantitative lung SPECT applied on simulated early COPD and humans with advanced COPD2013In: EJNMMI Research, ISSN 2191-219X, E-ISSN 2191-219X, Vol. 3, no 28Article in journal (Refereed)
    Abstract [en]

    BACKGROUND:Reduced ventilation in lung regions affected by chronic obstructive pulmonary disease (COPD), reflected as inhomogeneities in the single-photon emission computed tomography (SPECT) lung image, is correlated to disease advancement. An analysis method for measuring these inhomogeneities is proposed in this work. The first aim was to develop a quantitative analysis method that could discriminate between Monte Carlo simulated normal and COPD lung SPECT images. A second aim was to evaluate the ability of the present method to discriminate between human subjects with advanced COPD and healthy volunteers.

    METHODS:In the simulated COPD study, different activity distributions in the lungs were created to mimic the healthy lung (normal) and different levels of COPD. Gamma camera projections were Monte Carlo simulated, representing clinically acquired projections of a patient who had inhaled 125 MBq 99mTc-Technegas followed by a 10-min SPECT examination. Reconstructions were made with iterative ordered subset expectation maximisation. The coefficient of variance (CV) was calculated for small overlapping volumes covering the 3D reconstructed activity distribution. A CV threshold value (CVT) was calculated as the modal value of the CV distribution of the simulated normal. The area under the distribution curve (AUC), for CV values greater than CVT, AUC(CVT), was then calculated. Moreover, five patients with advanced emphysema and five healthy volunteers inhaled approximately 75 MBq 99mTc-Technegas immediately before the 20-min SPECT acquisition. In the human study, CVT was based on the mean CV distribution of the five healthy volunteers.

    RESULTS:A significant difference (p < 0.001) was found between the Monte-Carlo simulated normal and COPD lung SPECT examinations. The present method identified a total reduction of ventilation of approximately 5%, not visible to the human eye in the reconstructed image. In humans the same method clearly discriminated between the five healthy volunteers and five patients with advanced COPD (p < 0.05).

    CONCLUSIONS:While our results are promising, the potential of the AUC(CVT) method to detect less advanced COPD in patients needs further clinical studies.

  • 191.
    Norberg, Pernilla
    et al.
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    Persson, Lennart
    Linköping University, Department of Medical and Health Sciences, Pulmonary Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Respiratory Medicine UHL.
    Schmekel, Birgitte
    Linköping University, Department of Medical and Health Sciences, Clinical Physiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Centre, Department of Clinical Physiology UHL.
    Sandborg, Michael
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    Kentson, Magnus
    Lungmedicin, Länsjukhuset Ryhov, Jönköping.
    Gustafsson, Agnetha
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    The potential of quantitative lung SPECT in identifying humans with COPD using the CVT-method: a Pilot Study of advance disease2012Conference paper (Other academic)
  • 192.
    Norberg, Pernilla
    et al.
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Sandborg, Michael
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    Alm Carlsson, Gudrun
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    Gustafsson, Agnetha
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    Persson, Lennart
    Linköping University, Department of Medical and Health Sciences, Pulmonary Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Respiratory Medicine UHL.
    Bake, Björn
    Avdelningen för intermedicin, Institutionen för medicin, Sahlgrenska Akademin vid Göteborgs Universitet, Göteborg.
    Kentson, Magnus
    Avdelningen för Lungmedicin, Länssjukhuset Ryhov, Jönköping .
    Quantitative lung-SPECT applied on simulated early COPD and humans with advanced COPD2012Conference paper (Other academic)
  • 193.
    Norberg, Pernilla
    et al.
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    Sandborg, Michael
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    Bake, Björn
    Sahlgrenska universitetssjukhuset, Göteborg.
    Gustafsson, Agnetha
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    The potential of lung SPECT in identifying humans with early stages of COPD: a Monte Carlo-based analysis2011Conference paper (Other academic)
  • 194.
    Norrman, E.
    et al.
    Department of Natural Sciences, Örebro University, S-70182 Örebro, Sweden.
    Persliden, Jan
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    A factorial experiment on image quality and radiation dose2005In: Radiation Protection Dosimetry, ISSN 0144-8420, E-ISSN 1742-3406, Vol. 114, no 1-3, p. 246-252Article in journal (Refereed)
    Abstract [en]

    To find if factorial experiments can be used in the optimisation of diagnostic imaging, a factorial experiment was performed to investigate some of the factors that influence image quality, kerma area product (KAP) and effective dose (E). In a factorial experiment the factors are varied together instead of one at a time, making it possible to discover interactions between the factors as well as major effects. The factors studied were tube potential, tube loading, focus size and filtration. Each factor was set to two levels (low and high). The influence of the factors on the response variables (image quality, KAP and E) was studied using a direct digital detector. The major effects of each factor on the response variables were estimated as well as the interaction effects between factors. The image quality, KAP and E were mainly influenced by tube loading, tube potential and filtration. There were some active interactions, for example, between tube potential and filtration and between tube loading and filtration. The study shows that factorial experiments can be used to predict the influence of various parameters on image quality and radiation dose. © The Author 2005. Published by Oxford University Press. All rights reserved.

  • 195.
    Norén, Bengt
    et al.
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Forsgren, Mikael
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Dahlström, Nils
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Kihlberg, Johan
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Romu, Thobias
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Kechagias, Stergios
    Linköping University, Department of Medical and Health Sciences, Internal Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Endocrinology and Gastroenterology UHL.
    Almer, Sven
    Linköping University, Department of Clinical and Experimental Medicine, Gastroenterology and Hepatology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Endocrinology and Gastroenterology UHL.
    Smedby, Örjan
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Prospective Evaluation of a Novel Quantification Method for the Discrimination of Mild and Severe Hepatic Fibrosis Using Gd-EOB-DTPA2012Conference paper (Other academic)
  • 196.
    Norén, Bengt
    et al.
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Almer, Sven
    Linköping University, Department of Clinical and Experimental Medicine, Gastroenterology and Hepatology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medicine, Department of Endocrinology and Gastroenterology UHL.
    Kechagias, Stergios
    Linköping University, Department of Medical and Health Sciences, Internal Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medicine, Department of Endocrinology and Gastroenterology UHL.
    Ekstedt, Mattias
    Linköping University, Department of Clinical and Experimental Medicine, Gastroenterology and Hepatology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medicine, Department of Endocrinology and Gastroenterology UHL.
    Franzén, Lennart
    Medilab, Täby, Sweden.
    Wirell, Staffan
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences.
    Smedby, Örjan
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Separation of advanced from mild fibrosis in diffuse liver disease using 31P magnetic resonance spectroscopy2008In: European Journal of Radiology, ISSN 0720-048X, E-ISSN 1872-7727, Vol. 66, no 2, p. 313-320Article in journal (Refereed)
    Abstract [en]

    31P-MRS using DRESS was used to compare absolute liver metabolite concentrations (PME, Pi, PDE, γATP, αATP, βATP) in two distinct groups of patients with chronic diffuse liver disorders, one group with steatosis (NAFLD) and none to moderate inflammation (n = 13), and one group with severe fibrosis or cirrhosis (n = 16). All patients underwent liver biopsy and extensive biochemical evaluation. A control group (n = 13) was also included. Absolute concentrations and the anabolic charge, AC = {PME}/({PME} + {PDE}), were calculated.

    Comparing the control and cirrhosis groups, lower concentrations of PDE (p = 0.025) and a higher AC (p < 0.001) were found in the cirrhosis group. Also compared to the NAFLD group, the cirrhosis group had lower concentrations of PDE (p = 0.01) and a higher AC (p = 0.009). No significant differences were found between the control and NAFLD group. When the MRS findings were related to the fibrosis stage obtained at biopsy, there were significant differences in PDE between stage F0–1 and stage F4 and in AC between stage F0–1 and stage F2–3.

    Using a PDE concentration of 10.5 mM as a cut-off value to discriminate between mild, F0–2, and advanced, F3–4, fibrosis the sensitivity and specificity were 81% and 69%, respectively. An AC cut-off value of 0.27 showed a sensitivity of 93% and a specificity of 54%.

    In conclusion, the results suggest that PDE is a marker of liver fibrosis, and that AC is a potentially clinically useful parameter in discriminating mild fibrosis from advanced.

  • 197.
    Norén, Bengt
    et al.
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Forsgren, Mikael
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Dahlström, Nils
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Kihlberg, Johan
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Romu, Thobias
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Kechagias, Stergios
    Linköping University, Department of Medical and Health Sciences, Internal Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Endocrinology and Gastroenterology UHL.
    Almer, Sven
    Linköping University, Department of Clinical and Experimental Medicine, Gastroenterology and Hepatology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Endocrinology and Gastroenterology UHL.
    Smedby, Örjan
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Separation of advanced from mild hepatic fibrosis by quantification of the hepatobiliary uptake of Gd-EOB-DTPA2012Conference paper (Other academic)
  • 198.
    Norén, Bengt
    et al.
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Forsgren, Mikael
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Dahlström, Nils
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Kihlberg, Johan
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Romu, Thobias
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Kechagias, Stergios
    Linköping University, Department of Medical and Health Sciences, Internal Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Endocrinology and Gastroenterology UHL.
    Smedby, Örjan
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Quantification of the hepatobiliary uptake of Gd-EOB-DTPA can separate advanced from mild fibrosis2012Conference paper (Other academic)
  • 199. Ohlsson, Maria
    et al.
    Grétarsdóttir, Jakobina
    Sahlgrenska Universitetssjukhuset, Göteborg.
    Olsson, Eva
    Linköping University, Department of Medical and Health Sciences, Clinical Physiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Centre, Department of Clinical Physiology UHL.
    Johansson, Lena
    Gustafsson, Agnetha
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    Image quality survey and evaluation of myocardial perfusion SPECT: a national study2007Conference paper (Other academic)
  • 200. Ohlsson, Maria
    et al.
    Grétarsdóttir, Jakobina
    Sahlgrenska Universitetssjukhuset, Göteborg.
    Olsson, Eva
    Linköping University, Department of Medical and Health Sciences, Clinical Physiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Centre, Department of Clinical Physiology UHL.
    Johansson, Lena
    Gustafsson, Agnetha
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    Kartläggning och utvärdering av bildkvalitet vid myokard SPECT - En nationell studie2007Conference paper (Other academic)
1234567 151 - 200 of 325
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf