liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
1234567 151 - 200 av 313
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 151.
    Jakobsson, Fredrik L. E.
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Filamentary switching of Rose Bengal devicesManuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    Switch devices with a structure of metal / orgamc layer / metal were fabricated, with the organic layer being Rose Bengal sodium salt, Rose Bengal bis(tricthylammonium) salt, Rose Bengal lactone and Fluorescein. All devices showed reversible switch behavior, ruling out electro reduction or conformational switching. Furthermore, only devices with ITO as substrate and Al or Ag as top electrode showed reversible switch behavior. Electrical characterization of the ITO substrate indicated that the switching is due to the reversible formation of conducting filaments, initiated from the ITO.

  • 152.
    Jakobsson, Fredrik L. E.
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Prediction of the current versus voltage behavior of devices based on organic semiconductor host-guest systems2009Ingår i: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 10, nr 1, s. 95-106Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Organic semiconductor blends are commonly used in organic based (opto-)electronic devices. They are composed of two types of (macro-) molecules, referredto as the guest and host. To achieve optimum device operation, the chemicalnature, electronic structure, molecular order and the relative concentration of theguests and host are crucial. Here, we present simulation results of the currentdensity versus the voltage (J-V) behavior of a two-terminal device based on avariable-range hopping model in which the electronic states of the guest and hostare represented by two Gaussian distributions. The J-V behavior is investigatedfor various energetic mismatches between guest and host states, widths of thedistribution as well as the guest concentration. Finally, a simple tool enablingeasy prediction of the J-V behavior of organic host-guest diodes is derived.

  • 153.
    Jakobsson, Fredrik L. E.
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Lindell, Linda
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Kanciurzewska, Anna
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Salaneck, William R.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Towards all-plastic flexible light emitting diodes2006Ingår i: Chemical Physics Letters, ISSN 0009-2614, E-ISSN 1873-4448, Vol. 433, nr 1-3, s. 110-114Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    All-plastic light emitting diodes require the design and fabrication of low work function plastic electrodes. Here, we show that the work function of poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT-PSS) can be decreased from 4.8 eV to 3.9 eV by surface reaction with the strong electron-donor tetrakis(dimethylamino)ethylene (TDAE). The surface modification was characterized by photoelectron spectroscopy and optical spectroscopy. The low work function plastic electrode was used in a first prototype for all-plastic light emitting diodes.

  • 154.
    Jakobsson, Fredrik L. E.
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Marsal, Philippe
    Laboratory for Chemistry of Novel Materials, University of Mons-Hainaut, Place du Parc 20, B-7000 Mons, Belgium.
    Braun, Slawomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Cornil, Jérôme
    Laboratory for Chemistry of Novel Materials, University of Mons-Hainaut, Place du Parc 20, B-7000 Mons, Belgium.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Tuning the energy levels of photochromic diarylethene compounds for optoelectronic switch devicesManuskript (Övrigt vetenskapligt)
    Abstract [en]

    Photochromic diarylethene molecules (PC) is investigated for use in opticalwrite/electrical read memory applications. The frontier energy levels and dipolemoment is calculated using density functional theory. Good agreement is foundbetween calculated electronic structure and measured ultraviolet photoelectronspectra. The changes in frontier energy levels and dipole moment are scrutinizedupon two different approaches for chemical modification: (i) adding substituentsto the ethylene bridge; or (ii) changing the chemical nature of the aryl rings.Through the chemical modification the frontier energy levels can be tuned bymore than 2 eV. The calculated molecular properties are used in charge transportmodels to predict the behavior of devices based on these molecules. By using thePC in combination with an organic semiconductor (in bilayer or blend) goodswitching behavior can be achieved in a device. The switch effect is predicted tobe mainly due to switch in frontier energy levels rather than switch of dipolemoment. This is concluded since the dipole moment is either too small (< 5 D) orthe switch effect to small (less than a factor of two).

  • 155.
    Jakobsson, Fredrik
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Marsal, Philippe
    University Mons Hainaut.
    Braun, Slawomir
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Cornil, Jerome
    University Mons Hainaut.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Tuning the Energy Levels of Photochromic Diarylethene Compounds for Opto-electronic Switch Devices2009Ingår i: JOURNAL OF PHYSICAL CHEMISTRY C, ISSN 1932-7447, Vol. 113, nr 42, s. 18396-18405Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Diarylethene molecules are photochromics (PCs) currently investigated for use in optical write/electrical read memory applications. The impact of the photoisomerization of PCs on the device behavior is analyzed with charge transport models. These results indicate that good electrical current switching can be achieved in a device when the PCs are combined with an organic semiconductor (in multilayered structures or blends). The frontier energy levels and dipole moment of a series of diarylethene compounds have been calculated using density functional theory. A good agreement is found between the calculated electronic structure and the measured ultraviolet photoelectron spectra. Shirts in the frontier energy levels and dipole moment are generated through two different approaches for chemical modification: (i) by changing the chemical nature of the aryl rings or (ii) by adding substituents on the ethylene, bridge. The frontier energy levels can be tuned by more than 2 eV via such chemical modifications. We find that, for this family of photochromic compounds, the photoinduced current switch effect in diodes is mainly due to the modulation in the frontier energy levels rather than the changes in the amplitude of the dipole moment.

  • 156.
    James, David Ian
    et al.
    Chalmers, Sweden.
    Wang, Suhao
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ma, Wei
    Xi An Jiao Tong University, Peoples R China.
    Hedstrom, Svante
    Lund University, Sweden.
    Meng, Xiangyi
    Xi An Jiao Tong University, Peoples R China.
    Persson, Petter
    Lund University, Sweden.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Andersson, Mats R.
    Chalmers, Sweden; University of S Australia, Australia.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Wang, Ergang
    Chalmers, Sweden.
    High-Performance Hole Transport and Quasi-Balanced Ambipolar OFETs Based on D-A-A Thieno-benzo-isoindigo Polymers2016Ingår i: ADVANCED ELECTRONIC MATERIALS, ISSN 2199-160X, Vol. 2, nr 4, s. 1500313-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Two new conjugated polymers are synthesized based on a novel donor-acceptor-acceptor (D-A-A) design strategy with the intention of attaining lower lowest unoccupied molecular obital levels compared to the normally used D-A strategy. By coupling two thieno-benzo-isoindigo units together via the phenyl position to give a new symmetric benzene-coupled di-thieno-benzo-isoindigo (BdiTBI) monomer as an A-A acceptor and thiophene (T) or bithiophene (2T) as a donor, two new polymers PT-BdiTBI and P2T-BdiTBI are synthesized via Stille coupling. The two polymers are tested in top gate and top contact field effect transistors, which exhibit balanced ambipolar charge transport properties with poly(methyl methacrylate) as dielectric and a high hole mobility up to 1.1 cm(2) V-1 s(-1) with poly(trifluoroethylene) as dielectric. The polymer films are investigated using atomic force microscopy, which shows fibrous features due to their high crystallinity as indicated by grazing incidence wide-angle X-ray scattering. The theoretical calculations agree well with the experimental data on the energy levels. It is demonstrated that the D-A-A strategy is very effective for designing low band gap polymers for organic electronic applications.

  • 157.
    Janson, Per
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gabrielsson, Erik
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Lee, Keon Jae
    Korea Adv Inst Sci and Technol, South Korea.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    An Ionic Capacitor for Integrated Iontronic Circuits2019Ingår i: ADVANCED MATERIALS TECHNOLOGIES, ISSN 2365-709X, Vol. 4, nr 4, artikel-id 1800494Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Organic electronics, in combination with custom polyelectrolytes, enables solid- and hydrogel-state circuit components using ionic charges in place of the electrons of traditional electronics. This growing field of iontronics leverages anion- and cation-exchange membranes as analogs to n-type and p-type semiconductors, and conjugated polymer electrodes as ion-to-electron converters. To date, the iontronics toolbox includes ionic resistors, ionic diodes, ionic transistors, and analog and digital circuits comprised thereof. Here, an ionic capacitor based on mixed electron-ion conductors is demonstrated. The ionic capacitor resembles the structure of a conventional electrochemical capacitor that is inverted, with an electronically conducting core and two electrolyte ionic conductors. The device is first verified as a capacitor, and then demonstrated as a smoothing element in an iontronic diode bridge circuit driving an organic electronic ion pump (ionic resistor). The ionic capacitor complements the existing iontronics toolbox, enabling more complex and functional ionic circuits, and will thus have implications in a variety of mixed electron-ion conduction technologies.

  • 158.
    Jiao, Fei
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Edberg, Jesper
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zhao, Dan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Puzinas, Skomantas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Khan, Zia
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Mäkie, Peter
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Naderi, Ali
    Innventia AB, Sweden.
    Lindstrom, Tom
    Innventia AB, Sweden.
    Odén, Magnus
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Nanofibrillated Cellulose-Based Electrolyte and Electrode for Paper-Based Supercapacitors2018Ingår i: ADVANCED SUSTAINABLE SYSTEMS, ISSN 2366-7486, Vol. 2, nr 1, artikel-id UNSP 1700121Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Solar photovoltaic technologies could fully deploy and impact the energy conversion systems in our society if mass-produced energy-storage solutions exist. A supercapacitor can regulate the fluctuations on the electrical grid on short time scales. Their mass-implementation requires the use of abundant materials, biological and organic synthetic materials are attractive because of atomic element abundancy and low-temperature synthetic processes. Nanofibrillated cellulose (NFC) coming from the forest industry is exploited as a three-dimensional template to control the transport of ions in an electrolyte-separator, with nanochannels filled of aqueous electrolyte. The nanochannels are defined by voids in the nanocomposite made of NFC and the proton transporting polymer polystyrene sulfonic acid PSSH. The ionic conductivity of NFC-PSSH composites (0.2 S cm(-1) at 100% relative humidity) exceeds sea water in a material that is solid, feel dry to the finger, but filled of nanodomains of water. A paper-based supercapacitor made of NFC-PSSH electrolyte-separator sandwiched between two paper-based electrodes is demonstrated. Although modest specific capacitance (81.3 F g(-1)), power density (2040 W kg(-1)) and energy density (1016 Wh kg(-1)), this is the first conceptual demonstration of a supercapacitor based on cellulose in each part of the device; which motivates the search for using paper manufacturing as mass-production of energy-storage devices.

  • 159.
    Jiao, Fei
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Naderi, Ali
    Innventia AB, Sweden.
    Zhao, Dan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Schlueter, Joshua
    University of Kentucky, KY 40506 USA.
    Shahi, Maryam
    University of Kentucky, KY 40506 USA.
    Sundstrom, Jonas
    Innventia AB, Sweden.
    Granberg, Hjalmar
    Innventia AB, Sweden.
    Edberg, Jesper
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ail, Ujwala
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Brill, Joseph
    University of Kentucky, KY 40506 USA.
    Lindstrom, Tom
    Innventia AB, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Correction: Ionic thermoelectric paper (vol 5, pg 16883, 2017)2017Ingår i: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 5, nr 37, s. 20053-20053Artikel i tidskrift (Övrigt vetenskapligt)
    Abstract [en]

    n/a

  • 160.
    Jiao, Fei
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Naderi, Ali
    Billerudkorsnäs AB, SE-71830 Frövi, Sweden.
    Zhao, Dan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Schlueter, Joshua
    Department of Physics and Astronomy, University of Kentucky, Lexington, KY40506-0055, USA.
    Shahi, Maryam
    Department of Physics and Astronomy, University of Kentucky, Lexington, KY40506-0055, USA.
    Sundström, Jonas
    Innventia AB Box 5604, SE-11486 Stockholm, Sweden.
    Granberg, Hjalmar
    Innventia AB Box 5604, SE-11486 Stockholm, Sweden.
    Edberg, Jesper
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ail, Ujwala
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Brill, Joseph W.
    Department of Physics and Astronomy, University of Kentucky, Lexington, KY40506-0055, USA.
    Lindström, Tom
    Innventia AB Box 5604, SE-11486 Stockholm, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ionic Thermoelectric Paper2017Ingår i: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 5, nr 32, s. 16883-16888Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Ionic thermoelectric materials, such as polyelectrolyte like polystyrene sulfonate sodium (PSSNa), constitute a new class ofmaterial attracting interest due to their large Seebeck coefficient and the possibility to be used in ionic thermoelectricsupercapacitors (ITESCs) and field effect transistors. However pure polyelectrolyte membranes are not robust neitherflexible. In this article, we demonstrate the preparation of ionic thermoelectric paper by a simple, scalable and cost-effectivemethod. After composite with nanofibrillated cellulose (NFC), the resulting NFC-PSSNa paper is flexible and mechanicallyrobust; which is desirable of using roll-to-roll processes. The robust thermoelectric paper NFC-PSSNa combines high ionicconductivity (9 mS/cm), high ionic Seebeck coefficient (8.4 mV/K) and low thermal conductivity (0.75 Wm-1K-1) at 100 RH%,resulting in overall figure-of-merit of 0.025 at room temperature slightly better than the PSSNa. Enabling flexibility androbustness by compositing with cellulose constitutes an advance for scaling up the manufacturing of ionic thermoelectricsupercapacitors; but also enables new applications for conformable thermoelectric devices and flexible electronics

  • 161.
    Jonsson, Amanda
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Arbring Sjöström, Theresia
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Chemical delivery array with millisecond neurotransmitter release2016Ingår i: Science Advances, ISSN 2375-2548, Vol. 2, nr 11, artikel-id e1601340Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Technologies that restore or augment dysfunctional neural signaling represent a promising route to deeper understanding and new therapies for neurological disorders. Because of the chemical specificity and subsecond signaling of the nervous system, these technologies should be able to release specific neurotransmitters at specific locations with millisecond resolution. We have previously demonstrated an organic electronic lateral electrophoresis technology capable of precise delivery of charged compounds, such as neurotransmitters. However, this technology, the organic electronic ion pump, has been limited to a single delivery point, or several simultaneously addressed outlets, with switch-on speeds of seconds. We report on a vertical neurotransmitter delivery device, configured as an array with individually controlled delivery points and a temporal resolution of 50 ms. This is achieved by supplementing lateral electrophoresis with a control electrode and an ion diode at each delivery point to allow addressing and limit leakage. By delivering local pulses of neurotransmitters with spatiotemporal dynamics approaching synaptic function, the high-speed delivery array promises unprecedented access to neural signaling and a path toward biochemically regulated neural prostheses.

  • 162.
    Jonsson, Amanda
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Inal, Sahika
    Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, Gardanne, France .
    Uguz, Ilke
    Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, Gardanne, France .
    Williamson, Adam
    Aix Marseille Université, INS, Marseille, France; Inserm, UMR_S 1106, Marseille, France.
    Kergoat, Loig
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Aix Marseille Université, INS, Marseille, France; Inserm, UMR_S 1106, Marseille, France.
    Rivnay, Jonathan
    Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, Gardanne, France .
    Khodagholy, Dion
    Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, Gardanne, France .
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Bernard, Christophe
    Aix Marseille Université, INS, Marseille, France; Inserm, UMR_S 1106, Marseille, France.
    Malliaras, George G
    Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, Gardanne, France .
    Simon, Daniel T
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Bioelectronic neural pixel: Chemical stimulation and electrical sensing at the same site2016Ingår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 113, nr 34, s. 9440-9445Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Local control of neuronal activity is central to many therapeutic strategies aiming to treat neurological disorders. Arguably, the best solution would make use of endogenous highly localized and specialized regulatory mechanisms of neuronal activity, and an ideal therapeutic technology should sense activity and deliver endogenous molecules at the same site for the most efficient feedback regulation. Here, we address this challenge with an organic electronic multifunctional device that is capable of chemical stimulation and electrical sensing at the same site, at the single-cell scale. Conducting polymer electrodes recorded epileptiform discharges induced in mouse hippocampal preparation. The inhibitory neurotransmitter, γ-aminobutyric acid (GABA), was then actively delivered through the recording electrodes via organic electronic ion pump technology. GABA delivery stopped epileptiform activity, recorded simultaneously and colocally. This multifunctional “neural pixel” creates a range of opportunities, including implantable therapeutic devices with automated feedback, where locally recorded signals regulate local release of specific therapeutic agents.

  • 163.
    Jonsson, Amanda
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Song, Zhiyang
    Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
    Nilsson, David
    Acreo Swedish ICT AB, SE-601 17 Norrköping, Sweden.
    Meyerson, Björn A.
    Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Linderoth, Bengt
    Department of Clinical Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Therapy using implanted organic bioelectronics2015Ingår i: Science Advances, ISSN 2375-2548, Vol. 1, nr 4, artikel-id e1500039Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Many drugs provide their therapeutic action only at specific sites in the body, but are administered in ways that cause the drug’s spread throughout the organism. This can lead to serious side effects. Local delivery from an implanted device may avoid these issues, especially if the delivery rate can be tuned according to the need of the patient. We turned to electronically and ionically conducting polymers to design a device that could be implanted and used for local electrically controlled delivery of therapeutics. The conducting polymers in our device allow electronic pulses to be transduced into biological signals, in the form of ionic and molecular fluxes, which provide a way of interfacing biology with electronics. Devices based on conducting polymers and polyelectrolytes have been demonstrated in controlled substance delivery to neural tissue, biosensing, and neural recording and stimulation. While providing proof of principle of bioelectronic integration, such demonstrations have been performed in vitro or in anesthetized animals. Here, we demonstrate the efficacy of an implantable organic electronic delivery device for the treatment of neuropathic pain in an animal model. Devices were implanted onto the spinal cord of rats, and 2 days after implantation, local delivery of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) was initiated. Highly localized delivery resulted in a significant decrease in pain response with low dosage and no observable side effects. This demonstration of organic bioelectronics-based therapy in awake animals illustrates a viable alternative to existing pain treatments, paving the way for future implantable bioelectronic therapeutics. Keywords

  • 164.
    Jönsson, Stina
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Södergren, H.
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Perzon, E.
    Department of Material and Surface Chemistry, Chalmers University of Technology, Gothenburg, Sweden.
    Chen, Miaoxiang
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Andersson, M. R.
    Department of Material and Surface Chemistry, Chalmers University of Technology, Gothenburg, Sweden.
    Norman, Patrick
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    de Jong, M. P.
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Tengstedt, Carl
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Electronic structure of novel low band gap conjugated polymersManuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    The electronic structures of two novel low band gap conjugated polymers have been studied. Both materials are conjugated alternating copolymers based on fluorene units and low band gap donor-acceptor-donor units. The emphasis in this study has been to study the valence and the conduction bands. In particular the degree of localization or delocalization along the polymers and the symmetry of these states have been studied, since these features can be related to their transport properties. The main experimental part of this work is photoelectron spectroscopy, near-edge X-ray photon absorption and resonant photoemission. These techniques have been used to probe the frontier electronic structure of these systems. The experimental results are interpreted with the help of density functional theory calculations. The valence bands are dispersed originating from orbitals delocalized along the polymer chain shile the conduction bands are more flat, as they are derived from orbitals localized on the acceptor units. This band structure would predict good hole transporting properties but poor electron transport.

  • 165.
    Kawahara, Jun
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Andersson Ersman, Peter
    Acreo AB.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Improving the color switch contrast in PEDOT:PSS-based electrochromic displays2012Ingår i: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 13, nr 3, s. 469-474Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Poly(3,4-ethylenedioxythiophene) chemically doped with poly(styrene sulfonic acid) (PEDOT:PSS) is a material system commonly used as a conductive and transparent coating in several important electronic applications. The material is also electrochemically active and exhibits electrochromic (EC) properties making it suitable as the active element in EC display applications. In this work uniformly coated PEDOT:PSS layers were used both as the pixel electrode and as the counter electrode in EC display components. The pixel and counter electrodes were separated by a whitish opaque and water-based polyelectrolyte and the thicknesses of the two EC layers were varied independently in order to optimize the color contrast of the display element. A color contrast (ΔE, CIE Lab color space) exceeding 40 was obtained with maintained relatively short switching time at an operational voltage less than 2 V.

  • 166.
    Kawahara, Jun
    et al.
    Department of Printed Electronics, Acreo Swedish ICT AB, Norrköping.
    Andersson Ersman, Peter
    Department of Printed Electronics, Acreo Swedish ICT AB, Norrköping.
    Katoh, Kazuya
    R&D Strategy Department, Lintec Corporation, Saitama, Japan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Fast-switching printed organic electrochemical transistors including electronic vias through plastic and paper substrates2013Ingår i: IEEE Transactions on Electron Devices, ISSN 0018-9383, E-ISSN 1557-9646, Vol. 60, nr 6, s. 2052-2056Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A novel vertical architecture for all-printed organic electrochemical transistors, based on poly(3, 4-ethylenedioxythiophene):poly(styrene sulfonate), realized on flexible substrates, is reported. The transistors are manufactured along both faces of plastic or paper substrates and via connections are realized using laser ablation or simple punch through using a pin. Successful modulation of the electric current that flows between the two sides of the substrate is achieved using electrolyte-gating and electrochemical modulation of the electronic charge transport of the bulk of the transistor channel. In addition to this, the transistors are exhibiting fast switching and high ON/OFF current ratios.

  • 167.
    Kawahara, Jun
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan. Acreo AB, Sweden and Lintec Corporation, Japan.
    Andersson Ersman, Peter
    Acreo AB, Sweden.
    Nilsson, David
    Acreo AB, Sweden.
    Katoh, Kazuya
    Lintec Corporation, Japan.
    Nakata, Yasukazu
    Lintec Corporation, Japan.
    Sandberg, Mats
    Acreo AB, Sweden.
    Nilsson, Marie
    Acreo AB, Sweden.
    Gustafsson, Goran
    Acreo AB, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan. null.
    Flexible active matrix addressed displays manufactured by printing and coating techniques2013Ingår i: Journal of Polymer Science Part B: Polymer Physics, ISSN 0887-6266, E-ISSN 1099-0488, Vol. 51, nr 4, s. 265-271Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A flexible electrochromic active matrix addressed display, including 8 × 8 pixels, is demonstrated by using solution processing based on standard printing and coating manufacturing techniques. Each organic electrochromic display (OECD) pixel and its corresponding organic electrochemical transistor (OECT) are located on different sides of the flexible PET substrate. Electronic vias generated through the plastic substrate connects each OECD pixel with one addressing OECT. When comparing this display with actively addressed OECDs with all its components located on the same side, the present approach based on this electronic via substrate provides an enhanced pixel resolution and a relatively more simplified manufacturing process.

  • 168.
    Kawahara, Jun
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan. Acreo Swedish ICT AB, Sweden and Lintec Corporation, Japan.
    Andersson Ersman, Peter
    Acreo Swedish ICT AB, Sweden.
    Wang, Xin
    Acreo Swedish ICT AB, Sweden.
    Gustafsson, Göran
    Acreo Swedish ICT AB, Sweden.
    Granberg, Hjalmar
    Innventia AB, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Reconfigurable sticker label electronics manufactured from nanofibrillated cellulose-based self-adhesive organic electronic materials2013Ingår i: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 14, nr 11, s. 3061-3069Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Low voltage operated electrochemical devices can be produced from electrically conducting polymers and polyelectrolytes. Here, we report how such polymers and polyelectrolytes can be cast together with nanofibrillated cellulose (NFC) derived from wood. The resulting films, which carry ionic or electronic functionalities, are all-organic, disposable, light-weight, flexible, self-adhesive, elastic and self-supporting. The mechanical and self-adhesive properties of the films enable simple and flexible electronic systems by assembling the films into various kinds of components using a "cut and stick" method. Additionally, the self-adhesive surfaces provide a new concept that not only allows for simplified system integration of printed electronic components, but also allows for a unique possibility to detach and reconfigure one or several subcomponents by a "peel and stick" method to create yet another device configuration. This is demonstrated by a stack of two films that first served as the electrolyte layer and the pixel electrode of an electrochromic display, which then was detached from each other and transferred to another configuration, thus becoming the electrolyte and gate electrode of an electrochemical transistor. Further, smart pixels, consisting of the combination of one electrochromic pixel and one electrochemical transistor, have successfully been manufactured with the NFC-hybridized materials. The concept of system reconfiguration was further explored by that a pixel electrode charged to its colored state could be detached and then integrated on top of a transistor channel. This resulted in spontaneous discharging and associated current modulation of the transistor channel without applying any additional gate voltage. Our peel and stick approach promises for novel reconfigurable electronic devices, e. g. in sensor, label and security applications.

  • 169.
    Kergoat, Loig
    et al.
    University of Paris, France.
    Herlogsson, Lars
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Braga, Daniele
    University of Paris, France.
    Piro, Benoit
    University of Paris, France.
    Pham, Minh-Chau
    University of Paris, France.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Horowitz, Gilles
    University of Paris, France.
    A Water-Gate Organic Field-Effect Transistor2010Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 22, nr 23, s. 2565-2569Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    High-dielectric-constant insulators, organic monolayers, and electrolytes have been successfully used to generate organic field-effect transistors operating at low voltages. Here, we report on a device gated with pure water. By replacing the gate dielectric by a simple water droplet, we produce a transistor that entirely operates in the field-effect mode of operation at voltages lower than 1V. This result creates opportunities for sensor applications using water-gated devices as transducing medium.

  • 170.
    Kergoat, Loig
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Herlogsson, Lars
    Thin Film Elect AB, Sweden .
    Piro, Benoit
    University of Paris Diderot Sorbonne Paris Cite, France .
    Chau Pham, Minh
    University of Paris Diderot Sorbonne Paris Cite, France .
    Horowitz, Gilles
    Ecole Polytech, France .
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Tuning the threshold voltage in electrolyte-gated organic field-effect transistors2012Ingår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 109, nr 22, s. 8394-8399Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Low-voltage organic field-effect transistors (OFETs) promise for low power consumption logic circuits. To enhance the efficiency of the logic circuits, the control of the threshold voltage of the transistors are based on is crucial. We report the systematic control of the threshold voltage of electrolyte-gated OFETs by using various gate metals. The influence of the work function of the metal is investigated in metal-electrolyte-organic semiconductor diodes and electrolyte-gated OFETs. A good correlation is found between the flat-band potential and the threshold voltage. The possibility to tune the threshold voltage over half the potential range applied and to obtain depletion-like (positive threshold voltage) and enhancement (negative threshold voltage) transistors is of great interest when integrating these transistors in logic circuits. The combination of a depletion-like and enhancement transistor leads to a clear improvement of the noise margins in depleted-load unipolar inverters.

  • 171.
    Kergoat, Loig
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Piro, Benoit
    University of Paris Diderot, France .
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Minh-Chau Pham; Noel, Vincent
    University of Paris Diderot, France .
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Detection of Glutamate and Acetylcholine with Organic Electrochemical Transistors Based on Conducting Polymer/Platinum Nanoparticle Composites2014Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 26, nr 32, s. 5658-5664Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The aim of the study is to open a new scope for organic electrochemical transistors based on PEDOT:PSS, a material blend known for its stability and reliability. These devices can leverage molecular electrocatalysis by incorporating small amounts of nano-catalyst during the transistor manufacturing (spin coating). This methodology is very simple to implement using the know-how of nanochemistry and results in efficient enzymatic activity transduction, in this case utilizing choline oxidase and glutamate oxidase.

  • 172.
    Kergoat, Loig
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Piro, Benoît
    Université Paris Diderot, France.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Horowitz, Gilles
    Université Paris Diderot, France.
    Pham, Minh-Chau
    Université Paris Diderot, France.
    Advances in organic transistor-based biosensors: from organic electrochemical transistors to electrolyte-gated organic field-effect transistors.2012Ingår i: Analytical and Bioanalytical Chemistry, ISSN 1618-2642, E-ISSN 1618-2650, Vol. 402, nr 5, s. 1813-1826Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Organic electronics have, over the past two decades, developed into an exciting area of research and technology to replace classic inorganic semiconductors. Organic photovoltaics, light-emitting diodes, and thin-film transistors are already well developed and are currently being commercialized for a variety of applications. More recently, organic transistors have found new applications in the field of biosensors. The progress made in this direction is the topic of this review. Various configurations are presented, with their detection principle, and illustrated by examples from the literature.

  • 173.
    Kergoat, Loig
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Piro, Benoît
    Université Paris Diderot, France.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Pham, Minh-Chau
    Université Paris Diderot, France.
    Yassar, Abderrahim
    Ecole Polytechnique, Palaiseau, France.
    Horowitz, Gilles
    Université Paris Diderot, France.
    DNA detection with a water-gated organic field-effect transistor2012Ingår i: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 13, nr 1, s. 1-6Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A DNA sensor based on a water-gated organic field-effect transistor is described. The semiconductor is poly [3-(5-carboxypentyl)thiophene-2,5-diyl] onto which DNA probes are covalently grafted via NHS/EDC chemistry. Clear changes in the output characteristic of the device are observed upon DNA immobilization and after DNA hybridization. Experimental data point out the importance of the electrolyte Debye length that can screen negative DNA charges and impede transduction. For this reason, deionized water was used in order to increase the Debye length up to several hundreds of nanometers. In this case, a decrease in the off current was observed upon hybridization, whereas no significant change occurred when using saline solutions.

  • 174.
    Khan, Zia Ullah
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Edberg, Jesper
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Hamedi, Mahiar
    Department of Chemistry and Chemical Biology, Harvard University, Cambridge, USA.
    Gabrielsson, Roger
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Granberg, Hjalmar
    Innventia AB, Stockholm, Sweden.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Nanofibrillated cellulose aerogels functionalized with conducting polymers for thermoelectric and dual-sensing applications2015Manuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    Large amount of heat is wasted in industries, power generation plants and ordinary household appliances. This waste heat, can be a useful input to a thermoelectric generator (TEG) that can convert it to electricity. Conducting polymers (CPs) have been proved as best suited thermoelectric (TE) materials for lower temperatures, being not toxic, abundant in nature and solution processible. So far, CPs have been characterized as thin films, but it needs the third dimension to realize vertical TEGs which is possible by coating it on low thermal conductivity 3D skeletons. In this work, porous bulk cellulose structures have been used as a supporting material and were coated with CPs in various ways. The blend of cellulose and polymer were also freeze-dried, resulting in conducting and soft composites. Those flexible aerogels were utilized as a dual parameter sensor to sense pressure and temperature, based on the concept of thermoelectricity. It opens another application area of sensing, utilizing the thermoelectric phenomenon beyond the prevailing power generation concept. The sensitivity of such materials can be enhanced to make them useful as electronic skin in healthcare and robotics.

  • 175.
    Kim, Nara
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Petsagkourakis, Ioannis
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Chen, Shangzhi
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Electric Transport Properties in PEDOT Thin Films2019Ingår i: Conjugated Polymers: Properties, Processing, and Applications / [ed] John R. Reynolds; Barry C. Thompson; Terje A. Skotheim, Boca Raton: CRC Press, 2019, s. 45-128Kapitel i bok, del av antologi (Refereegranskat)
    Abstract [en]

    In this chapter, the authors summarize their understanding of Poly(3,4-ethylenedioxythiophene) (PEDOT), with respect to its chemical and physical fundamentals. They focus upon the structure of several PEDOT systems, from the angstrom level and up, and the impact on both electronic and ionic transport. The authors discuss the structural properties of PEDOT:X and PEDOT:poly(styrenesulfonate) based on experimental data probed at the scale ranging from angstrom to submicrometer. The morphology of PEDOT is influenced by the nature of counter-ions, especially at high oxidation levels. The doping anions intercalate between PEDOT chains to form a “sandwich” structure to screen the positive charges in PEDOT chains. The authors provide the main transport coefficients such as electrical conductivity s, Seebeck coefficient S, and Peltier coefficient σ, starting from a general thermodynamic consideration. The optical conductivity of PEDOT has also been examined based on the effective medium approximation, which is normally used to describe microscopic permittivity properties of composites made from several different constituents.

  • 176.
    Laiho, Ari
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Herlogsson, Lars
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Forchheimer, Robert
    Linköpings universitet, Institutionen för systemteknik. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Controlling the dimensionality of charge transport in organic thin-film transistors2011Ingår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 108, nr 37, s. 15069-15073Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electrolyte-gated organic thin-film transistors (OTFTs) can offer a feasible platform for future flexible, large-area and low-cost electronic applications. These transistors can be divided into two groups on the basis of their operation mechanism: (i) field-effect transistors that switch fast but carry much less current than (ii) the electrochemical transistors which, on the contrary, switch slowly. An attractive approach would be to combine the benefits of the field-effect and the electrochemical transistors into one transistor that would both switch fast and carry high current densities. Here we report the development of a polyelectrolyte-gated OTFT based on conjugated polyelectrolytes, and we demonstrate that the OTFTs can be controllably operated either in the field-effect or the electrochemical regime. Moreover, we show that the extent of electrochemical doping can be restricted to a few monolayers of the conjugated polyelectrolyte film, which allows both high current densities and fast switching speeds at the same time. We propose an operation mechanism based on self-doping of the conjugated polyelectrolyte backbone by its ionic side groups.

  • 177.
    Laiho, Ari
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Tran Nguyen, Ha
    University of Mons, Belgium.
    Sinno, Hiam
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Dubois, Philippe
    University of Mons, Belgium.
    Coulembier, Olivier
    University of Mons, Belgium.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Amphiphilic Poly(3-hexylthiophene)-Based Semiconducting Copolymers for Printing of Polyelectrolyte-Gated Organic Field-Effect Transistors2013Ingår i: Macromolecules, ISSN 0024-9297, E-ISSN 1520-5835, Vol. 46, nr 11, s. 4548-4557Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Polyelectrolytes are promising electronically insulating layers for low-voltage organic field effect transistors. However, the polyelectrolyte–semiconductor interface is difficult to manufacture due to challenges in wettability. We introduce an amphiphilic semiconducting copolymer which, when spread as a thin film, can change its surface from hydrophobic to hydrophilic upon exposure to water. This peculiar wettability is exploited in the fabrication of polyelectrolyte-gated field-effect transistors operating below 0.5 V. The prepared amphiphilic semiconducting copolymer is based on a hydrophobic regioregular poly(3-hexylthiophene) (P3HT) covalently linked to a hydrophilic poly(sulfonated)-based random block. Such a copolymer is obtained in a three-step strategy combining Grignard metathesis (GRIM), atom transfer radical polymerization (ATRP) processes, and a postmodification method. The structure of the diblock copolymer was characterized using FT-IR, 1H NMR spectroscopy, and gel permeation chromatography (GPC).

  • 178.
    Larsson, Oscar
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Laiho, Ari
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Unifying electrochemical and field-effect mechanisms in electrolyte-gated organic field-effect transistorsManuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    The combination of electrolytes and organic semiconductors has opened up new opportunities in photonics1, electronics2 and in energy storage3. In most of these devices, the key mechanisms involve the transport of charge carriers (electrons or ions) across the organic semiconductor-electrolyte interface. The formation of an electric double layer (EDL) at this polarized interface is fuzzier than at a metal-electrolyte interface since weak intermolecular interactions in the organic solid favour the penetration of ions4. An EDL established at the organic semiconductor-electrolyte interface, defined by a sheet of electronic charge carriers and a sheet of ions, has been proposed recently as the basic mechanism for electrolyte-gated organic field-effect transistors (EGOFETs)5, 6. Here, organic thin film transistors are used as a probe to investigate the organic semiconductor-electrolyte interface. We demonstrate that the capacitance value of the gate counter electrode dictates the degree of advancement7 of the electrochemical halfreaction (the extent of the reaction) at this interface. This finding unifies the mechanisms proposed for EGOFETs and organic electrochemical transistors (OECTs); and sets the ground description for an electrochemical half-reaction induced entirely by capacitive coupling.

  • 179.
    Larsson, Oscar
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Laiho, Ari
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Schmickler, Wolfgang
    University of Ulm.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Controlling the Dimensionality of Charge Transport in an Organic Electrochemical Transistor by Capacitive Coupling2011Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 23, nr 41, s. 4764-+Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The dimensionality of charge transport in an organic electrochemical transistor depends on the degree of advancement of the electrochemical half-reaction at the organic semiconductor/electrolyte interface. A carbon nanotube (CNT) nanoporous gate electrode leads to bulk transport in the semiconductor, while a flat Au gate electrode allows for localizing of the electrochemical oxidation of the semiconducting polymer at the organic semiconductor/electrolyte interface.

  • 180.
    Larsson, Oscar
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Said, Elias
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan. null.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan. null.
    Insulator Polarization Mechanisms in Polyelectrolyte-Gated Organic Field-Effect Transistors2009Ingår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 19, nr 20, s. 3334-3341Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electrolyte-gated organic field-effect transistors (OFETs) hold promise for robust printed electronics operating at low voltages. The polarization mechanism of thin solid electrolyte films, the gate insulator in such OFETs, is still unclear and appears to limit the transient current characteristics of the transistors. Here, the polarization response of a thin proton membrane, a poly(styrenesulfonic acid) film, is controlled by varying the relative humidity. The formation of the conducting transistor channel follows the polarization of the polyelectrolyte, such that the drain transient current characteristics versus the time are rationalized by three different polarization mechanisms: the dipolar relaxation at high frequencies, the ionic relaxation (migration) at intermediate frequencies, and the electric double-layer formation at the polyelectrolyte interfaces at low frequencies. The electric double layers of polyelectrolyte capacitors are formed in 1 µs at humid conditions and an effective capacitance per area of 10 µF cm-2 is obtained at 1 MHz, thus suggesting that this class of OFETs might operate at up to 1 MHz at 1 V.

  • 181.
    Larsson, Oscar
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Wang, Xiaodong
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan. null.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan. null.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan. null.
    Proton motion in a polyelectrolyte: A probe for wireless humidity sensors2010Ingår i: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 143, nr 2, s. 482-486Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Low-cost passive wireless electronic sensor labels glued onto packages are highly desirable since they enable monitoring of the status of the packages for instance along the logistic chain or while stored at a shelf. Such additional sensing feature would be of great value for many producers and vendors, active in e.g. the food or construction industries. Here, we explore a novel concept for wireless sensing and readout, in which the humidity sensitive ionic motion in a polyelectrolyte membrane is directly translated into a shift of the resonance frequency of a resonance circuit. Thanks to its simplicity, the wireless sensor device itself can be manufactured entirely using common printing techniques and can be integrated into a low-cost passive electronic sensor label.

  • 182.
    Leger, Janelle
    et al.
    Dept of Physics and Astronomy, Dept of Chemistry and Advanced Materials Science and Engineering Center, Western Washington University, USA.
    Berggren, MagnusLinköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.Carter, SueUniversity of California, USA.
    Iontronics: Ionic Carriers in Organic Electronic Materials and Devices2010Samlingsverk (redaktörskap) (Övrigt vetenskapligt)
    Abstract [en]

    The field of organic electronics promises exciting new technologies based on inexpensive and mechanically flexible electronic devices, and is now seeing the beginning of commercial success. On the sidelines of this increasingly well-established field are several emerging technologies with innovative mechanisms and functions that utilize the mixed ionic/electronic conducting character of conjugated organic materials. Iontronics: Ionic Carriers in Organic Electronic Materials and Devices explores the potential of these materials, which can endow electronic devices with unique functionalities.

    Fundamental science and applications

    With contributions from a community of experts, the book focuses on the use of ionic functions to define the principle of operation in polymer devices. It begins by reviewing the scientific understanding and important scientific discoveries in the electrochemistry of conjugated polymers. It examines the known effects of ion incorporation, including the theory and modulation of electrochemistry in polymer films, and it explores the coupling of electronic and ionic transport in polymer films. The authors also describe applications that use this technology, including polymer electrochromic devices, artificial muscles, light-emitting electrochemical cells, and biosensors, and they discuss the fundamental technological hurdles in these areas.

    The changes in materials properties and device characteristics due to ionic conductivity and electrochemical doping in electrically conductive organic materials, as well as the importance of these processes in a number of different and exciting technologies, point to a large untapped potential in the development of new applications and novel device architecture. This volume captures the state of the science in this burgeoning field.

    Table of Contents

    Electrochemistry of Conjugated Polymers. From Metal to Semiconductor and Back—Thirty Years of Conjugated Polymer Electrochemistry. Development and Applications of Ion-Functionalized Conjugated Polymers. Electrochemical Biosensors Based on Conducting Polymers. The Light-Emitting Electrochemical Cell. Fixed Junction Light-Emitting Electrochemical Cells. Electrochromic Displays. Conjugated Polymers as Actuators for Medical Devices and Microsystems. Organic Electrochemical Transistors for Sensor Applications. Polyelectrolyte-Gated Organic Field-Effect Transistors.

  • 183.
    Li, Wei
    et al.
    Chalmers, Sweden; S China University of Technology, Peoples R China.
    Wang, Daojuan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Wang, Suhao
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ma, Wei
    Xi An Jiao Tong University, Peoples R China.
    Hedstrom, Svante
    Lund University, Sweden.
    Ian James, David
    Chalmers, Sweden.
    Xu, Xiaofeng
    Chalmers, Sweden.
    Persson, Petter
    Lund University, Sweden.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Inganäs, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Huang, Fei
    S China University of Technology, Peoples R China.
    Wang, Ergang
    Chalmers, Sweden.
    One-Step Synthesis of Precursor Oligomers for Organic Photovoltaics: A Comparative Study between Polymers and Small Molecules2015Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 7, nr 49, s. 27106-27114Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Two series of oligomers TQ and rhodanine end-capped TQ-DR were synthesized using a facile one-step method. Their optical, electrical, and thermal properties and photovoltaic performances were systematically investigated and compared. The TQ series of oligomers were found to be amorphous, whereas the TQ-DR series are semicrystalline. For the TQ oligomers, the results obtained in solar cells show that as the chain length of the oligomers increases, an increase in power conversion efficiency (PCE) is obtained. However, when introducing 3-ethylrhodanine into the TQ oligomers as end groups, the PCE of the TQ-DR series of oligomers decreases as the chain length increases. Moreover, the TQ-DR series of oligomers give much higher performances compared to the original amorphous TQ series of oligomers owing to the improved extinction coefficient (epsilon) and crystallinity afforded by the rhodanine. In particular, the highly crystalline oligomer TQ5-DR, which has the shortest conjugation length shows a high hole mobility of 0.034 cm(2) V-1 s(-1) and a high PCE of 3.14%, which is the highest efficiency out of all of the six oligomers. The structure-property correlations for all of the oligomers and the TQ1 polymer demonstrate that structural control of enhanced intermolecular interactions and crystallinity is a key for small molecules/oligomers to achieve high mobilities, which is an essential requirement for use in OPVs.

  • 184.
    Lindell, Linda
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Burquel, A.
    Service de Chimie des Matériaux Nouveaux, Université de Mons-Hainaut, Place du Parc 20, 5-7000 Mons, Belgium.
    Jakobsson, Fredrik
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Lemaur, V.
    Service de Chimie des Matériaux Nouveaux, Université de Mons-Hainaut, Place du Parc 20, 5-7000 Mons, Belgium.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Lazzaroni, R.
    Service de Chimie des Matériaux Nouveaux, Université de Mons-Hainaut, Place du Parc 20, 5-7000 Mons, Belgium.
    Cornil, J.
    Service de Chimie des Matériaux Nouveaux, Université de Mons-Hainaut, Place du Parc 20, 5-7000 Mons, Belgium.
    Salaneck, William R
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Transparent, plastic, low-work-function poly(3,4-ethylenedioxythiophene) electrodes2006Ingår i: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 18, nr 18, s. 4246-4252Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Novel applications for flexible electronics, e.g., displays and solar cells, require fully flexible, transparent, stable, and low-work-function electrodes that can be manufactured via a low-cost process. Here, we demonstrate that surface chemistry constitutes a route to producing transparent low-work-function plastic electrodes. The work function of the conducting polymer poly(3,4-ethylenedioxythiophene)-tosylate, or PEDOT-Tos, is decreased by submonolayer surface redox reaction with a strong electron donor, tetrakis-(dimethylamino)ethylene (TDAE), allowing it to reach a work function of 3.8 eV. The interface formed between TDAE and PEDOT is investigated in a joint experimental and theoretical study using photoelectron spectroscopy and quantum chemical calculations. © 2006 American Chemical Society.

  • 185.
    Lindell, Linda
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi.
    de Jong, Michel P
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi.
    Osikowicz, Wojciech
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi.
    Lazzaroni, R
    Berggren, Magnus
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Salaneck, William R
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi.
    Crispin, Xavier
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Characterization of the interface dipole at the paraphenylenediamine-nickel interface: A joint theoretical and experimental study2005Ingår i: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 122, nr 8, s. 84712-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In organic-based (opto)electronic devices, charge injection into conjugated materials is governed to a large extent by the metal-organic interface dipole. Controlling the injection of charges requires a better understanding of the fundamental origin of the interface dipole. In this context, photoelectron spectroscopies and density functional theory calculations are used to investigate the interaction between para-phenylenediamine (PPDA), an electron donor, and a polycrystalline nickel surface. The interface dipole formed upon chemisorption of one PPDA monolayer strongly modifies the work function of the nickel surface from 5.10 to 3.55 eV. The work function decrease of 1.55 eV is explained by the electron-donor character of PPDA and the modification of the electronic density at the metal surface. PPDA monolayers are composed of tilted molecules interacting via the nitrogen lone-pair and PPDA molecules chemisorbed parallel to the surface via their π-electron density. Annealing the monolayer leads to dehydrogenation of PPDA activated by the nickel surface, as found for other amines.

  • 186.
    Lindell, Linda
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi.
    Jakobsson, Fredrik
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Osikowicz, Wojciech
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi.
    Andersson, Peter
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Salaneck, William R
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi.
    Berggren, Magnus
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Cornil, Jerome
    Crispin, Xavier
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Towards Transparent Inorganic and Plastic Low-Workfunction Electrodes2005Ingår i: MRS Fall Meeting,2005, 2005Konferensbidrag (Refereegranskat)
  • 187.
    Liu, Jiang
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan. null.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan. null.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan. null.
    Double-Gate Light-Emitting Electrochemical Transistor: Confining the Organic p-n Junction2013Ingår i: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 135, nr 33, s. 12224-12227Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In conventional light-emitting electrochemical cells (LECs), an off-centered p-n junction is one of the major drawbacks, as it leads to exciton quenching at one of the charge-injecting electrodes and results in performance instability. To combat this problem, we have developed a new device configuration, the double-gate light-emitting electrochemical transistor (DG-LECT), in which the location of the light-emitting p-n junction can be precisely defined via the position of the two gate terminals. Based on a planar LEC structure, two gate electrodes made from an electrochemically active conducting polymer are employed to predefine the p- and n-doped area of the light-emitting polymer. Thus, a p-n junction is formed in between the p-doped and n-doped regions. We demonstrate a homogeneous and centered p-n junction as well as other predefined junction patterns in these DG-LECT devices. Additionally, we report an electrical model that explains the operation of the DG-LECTs. The DG-LECT device provides a new tool to study the fundamental physics of LECs, as it dissects the key working process of LEC into decoupled p-doping, n-doping, and electroluminescence.

  • 188.
    Liu, Jiang
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Half‐Gate Light‐Emitting Electrochemical Transistor to Achieve Centered Emissive Organic p‐n Junction2015Ingår i: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 18, s. 32-36Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Conventional organic light-emitting electrochemical cells show promise for lighting applications but in many cases suffer from unbalanced electrochemical doping. A predominant p-doping over n-doping causes an off-centered emissive p-n junction, which leads to poor power-conversion efficiency. Here, we report a half-gate lightemitting electrochemical transistor (HGLECT), in which a ion-conductive gate made from poly(3,4-ethylenedioxythiophene)-poly-(styrenesulfonate) is employed to combat this problem. The gate material, covering half the channel, is used to enhance the ndoping in this part by employing an appropriate operation protocol. We demonstrate a centered light emission zone, closely following the geometry of the gate material. The HGLECT with centered emission profile is shown to be more efficient than the corresponding LEC without gate electrode, and its n-doping level is measured to be 15%.

  • 189.
    Liu, Jiang
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Organic Reprogrammable Circuits Based on Electrochemically-Formed Diodes2014Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 6, nr 15, s. 13266-13270Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    To simplify the integration of organic electronics, we demonstrate a method for constructing reprogrammable circuits based on organic diodes. The organic p‐n junction diodes consisting of an organic polymers poly[2‐methoxy‐5‐(2‐ethylhexyloxy)‐1,4‐phenylenevinylene and an electrolyte were formed by electrochemical doping at 70 °C, and stabilized at ‐30 °C. The reversible electrochemical reaction allows for the in‐situ change of the polarity of the organic p‐n junction. By forming diodes with different polarity at different locations, several circuits can be created, such as, logic gates, voltage limiter and AC/DC converter. The as‐made circuitry can be erased and turned into circuitry with other functionality. For example, the diodes of an AND gate can be re‐programmed to form an OR gate. The reprogrammable circuits contain merely two core layers, electrodes and active material, which is promising for large‐area and fully‐printed reconfigurable circuits with facile fabrication.

  • 190.
    Liu, Jiang
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Spatial Control of p-n Junction in an Organic Light-Emitting Electrochemical Transistor2012Ingår i: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 134, nr 2, s. 901-904Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Low-voltage-operating organic electrochemical light-emitting cells (LECs) and transistors (OECTs) can be realized in robust device architectures, thus enabling easy manufacturing of light sources using printing tools. In an LEC, the p-n junction, located within the organic semiconductor channel, constitutes the active light-emitting element. It is established and fixated through electrochemical p- and n-doping, which are governed by charge injection from the anode and cathode, respectively. In an OECT, the electrochemical doping level along the organic semiconducting channel is controlled via the gate electrode. Here we report the merger of these two devices: the light-emitting electrochemical transistor, in which the location of the emitting p-n junction and the current level between the anode and cathode are modulated via a gate electrode. Light emission occurs at 4 V, and the emission zone can be repeatedly moved back and forth within an interelectrode gap of 500 mu m by application of a 4 V gate bias. In transistor operation, the estimated on/off ratio ranges from 10 to 100 with a gate threshold voltage of -2.3 V and transconductance value between 1.4 and 3 mu S. This device structure opens for new experiments tunable light sources and LECs with added electronic functionality.

  • 191.
    Liu, Jiang
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Herlogsson, Lars
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Sawadtee, A
    Acreo AB.
    Favia, P
    IMEC.
    Sandberg, M
    Acreo AB.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Vertical polyelectrolyte-gated organic field-effect transistors2010Ingår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 97, s. 103303-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Short-channel, vertically structured organic transistors with a polyelectrolyte as gate insulator are demonstrated. The devices are fabricated using low-resolution, self-aligned, and mask-free photolithography. Owing to the use of a polyelectrolyte, our vertical electrolyte-gated organic field-effect transistors (VEGOFETs), with channel lengths of 2.2 and 0.7 μm, operate at voltages below one volt. The VEGOFETs show clear saturation and switch on and off in 200 μs. A vertical geometry to achieve short-transistor channels and the use of an electrolyte makes these transistors promising candidates for printed logics and drivers with low operating voltage.

  • 192.
    Lundin, Vanessa
    et al.
    Karolinska Institute.
    Herland, Anna
    Karolinska Institute.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Jager, Edwin
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Teixeira, Ana I
    Karolinska Institute.
    Control of Neural Stem Cell Survival by Electroactive Polymer Substrates2011Ingår i: PLOS ONE, ISSN 1932-6203, Vol. 6, nr 4, s. 0018624-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Stem cell function is regulated by intrinsic as well as microenvironmental factors, including chemical and mechanical signals. Conducting polymer-based cell culture substrates provide a powerful tool to control both chemical and physical stimuli sensed by stem cells. Here we show that polypyrrole (PPy), a commonly used conducting polymer, can be tailored to modulate survival and maintenance of rat fetal neural stem cells (NSCs). NSCs cultured on PPy substrates containing different counter ions, dodecylbenzenesulfonate (DBS), tosylate (TsO), perchlorate (ClO4) and chloride (Cl), showed a distinct correlation between PPy counter ion and cell viability. Specifically, NSC viability was high on PPy(DBS) but low on PPy containing TsO, ClO4 and Cl. On PPy(DBS), NSC proliferation and differentiation was comparable to standard NSC culture on tissue culture polystyrene. Electrical reduction of PPy(DBS) created a switch for neural stem cell viability, with widespread cell death upon polymer reduction. Coating the PPy(DBS) films with a gel layer composed of a basement membrane matrix efficiently prevented loss of cell viability upon polymer reduction. Here we have defined conditions for the biocompatibility of PPy substrates with NSC culture, critical for the development of devices based on conducting polymers interfacing with NSCs.

  • 193.
    Malti, Abdellah
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik.
    Low-voltage ambipolar polyelectrolyte-gated organic thin film transistors2012Ingår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 100, nr 18, s. 183302-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Organic transistors that use polyelectrolytes as gate insulators can be driven at very low voltages (andlt;1 V). The low operating voltage is possible thanks to the formation of electric double layers upon polarization, which generates large electric fields at the critical interfaces in the device structure. In this work, we use a semiconducting blend (of a high electron affinity polymer and a low ionization potential one) in conjunction with a solid polyelectrolyte insulator to fabricate low-voltage ambipolar organic transistors. For both n- and p-channel operation, we use a polycation with readily mobile-yet large enough to limit bulk doping of the semiconductor-counterions.

  • 194.
    Malti, Abdellah
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Brooke, Robert
    University of S Australia, Australia.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Zhao, Dan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Andersson Ersman, Peter
    AcreoSwedish ICT, Sweden.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    A substrate-free electrochromic device2015Manuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    Electrochromic displays based on conducting polymers offer higher contrast, are cheaper, faster, more durable, and easier to synthesize as well as to process than their non-polymeric counterparts. The field of organic electrochromics has made considerable strides in the last decade with the development of new materials and methods. Here, we present a cellulose composite combining PEDOT:PSS and TiO2 that is a free-standing electrochromic material. Owing to the excellent refractive properties of TiO2, this nanocomposite is white in the neutral state and, when reduced, turns blue resulting in a color contrast exceeding 30. The composite has a granular morphology and, as shown by AFM, an intermingling of TiO2 and PEDOT:PSS at the surface. Variation of TiO2 within the material led to a trade-off in optical and electrical properties. A proof of concept free-standing electrochromic device was fabricated by casting several layers, which was found to be stable over 100 cycles.

  • 195.
    Malti, Abdellah
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Brooke, Robert
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Zhao, Dan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Andersson Ersman, Peter
    Acreo Swedish ICT, Sweden.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Freestanding electrochromic paper2016Ingår i: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 4, nr 41, s. 9680-9686Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electrochromic displays based on conducting polymers exhibit higher contrasts and are cheaper, faster, more durable, and easier to synthesize as well as to process than their non-polymeric counterparts. However, current devices are typically based on thin electrochromic layers on top of a reflecting surface, which limits the thickness of the polymer layer to a few hundred nanometers. Here, we embed a light-scattering material within the electrochromic material to achieve a freestanding electrochromic paper-like electrode (50 to 500 mm). The device is based on a cellulose composite combining PEDOT:PSS as the electrochromic material and TiO2 nanoparticles as the reflecting material. Owing to the excellent refractive properties of TiO2, this nanocomposite is white in the neutral state and, when reduced, turns blue resulting in a color contrast around 30. The composite has a granular morphology and, as shown by AFM, an intermingling of TiO2 and PEDOT: PSS at the surface. Variation of the amount of TiO2 within the composite material is shown to result in a trade-off in optical and electrical properties. A proof-of-concept freestanding electrochromic device was fabricated by casting all layers successively to maximize the interlayer conformation. This freestanding device was found to be stable for over 100 cycles when ramped between 3 and -3 V.

  • 196.
    Malti, Abdellah
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Edberg, Jesper
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Granberg, Hjalmar
    Innventia AB, Stockholm, Sweden.
    Khan, Zia Ullah
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Andreasen, Jens W.
    Technical University of Denmark, Department of Energy Conversion and Storage, Roskilde, Denmark.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Zhao, Dan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Hao
    Department of Physics and Astronomy, University of Kentucky, Lexington, USA.
    Yao, Ylong
    Department of Physics and Astronomy, University of Kentucky, Lexington, USA.
    Brill, Joseph W.
    Department of Physics and Astronomy, University of Kentucky, Lexington, USA.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Wåberg, Lars
    KTH Royal Institute of Technology, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, and Wallenberg Wood Science Center, Stockholm, Sweden.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Enabling organic power electronics with a cellulose nano-scaffold2015Manuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    Exploiting the nanoscale properties of certain materials enables the creation of new materials with a unique set of properties. Here, we report on an electronic (and ionic) conducting paper based on cellulose nanofibrils (CNF) composited with poly(3,4-ethylene-dioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS), which may be facilely processed into large three-dimensional geometries, while keeping unprecedented electronic and ionic conductivities of 140 S/cm and 20 mS/cm, respectively. This is achieved by cladding the CNF with PEDOT:PSS, and trapping an ion-transporting phase in the interstices between these nanofibrils. The unique properties of the resulting nanopaper composite have been used to demonstrate (electrochemical) transistors, supercapacitors and conductors resulting in exceptionally high device parameters, such as an associated transconductance, charge storage capacity and current level beyond 1 S, 1 F and 1 A, respectively.

  • 197.
    Malti, Abdellah
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Edberg, Jesper
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Granberg, Hjalmar
    Innventia AB, Stockholm.
    Ullah Khan, Zia
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Andreasen, Jens W
    Technical University of Denmark, Roskilde.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Zhao, Dan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Hao
    University of Kentucky, Lexington.
    Yao, Yulong
    University of Kentucky, Lexington.
    Brill, Joseph W
    University of Kentucky, Lexington.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Wågberg, Lars
    KTH Royal Institute of Technology, Stockholm.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    An Organic Mixed Ion–Electron Conductor for Power Electronics2016Ingår i: Advanced Science, ISSN 2198-3844, artikel-id 1500305Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A mixed ionic–electronic conductor based on nanofibrillated cellulose composited with poly(3,4-ethylene-dioxythio­phene):­poly(styrene-sulfonate) along with high boiling point solvents is demonstrated in bulky electrochemical devices. The high electronic and ionic conductivities of the resulting nanopaper are exploited in devices which exhibit record values for the charge storage capacitance (1F) in supercapacitors and transconductance (1S) in electrochemical transistors.

  • 198.
    Malti, Abdellah
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Gabrielsson, Erik
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Ultra-low voltage air-stable polyelectrolyte gated n-type organic thin film transistors2011Ingår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 99, nr 6, s. 063305-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Complementary circuits, processing digital signals, are a cornerstone of modern electronics. Such circuits require both p-and n-type transistors. Polyelectrolytes are used as gate insulators in organic thin film transistors (OTFTs) to establish an electric double layer capacitor upon gate bias that allows low operational voltages (andlt;1 V). However, stable and low-voltage operating n-channel organic transistors have proven difficult to construct. Here, we report ultra-low voltage n-channel organic polymer-based transistors that are stable in ambient atmosphere. Our n-type OTFTs exhibit on/off ratios around 10(3) for an applied drain potential as low as 0.1 V. Since small ions are known to promote electrochemical reactions within the semiconductors channel bulk and typically slow down the transistor, we use a solid polycationic gate insulator that suppresses penetration of anions into the n-channel semiconductor. As a result, our n-channel OTFTs switch on in under 5 ms and off in less than 1 ms.

  • 199.
    Malti, Abdellah
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Gabrielsson, Erik
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    An Electrochromic Bipolar Membrane Diode2015Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 27, nr 26, s. 3909-+Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Conducting polymers with bipolar membranes (a complementary stack of selective membranes) may be used to rectify current. Integrating a bipolar membrane into a polymer electrochromic display obviates the need for an addressing backplane while increasing the devices bistability. Such devices can be made from solution-processable materials.

1234567 151 - 200 av 313
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf