liu.seSearch for publications in DiVA
Change search
Refine search result
2345678 201 - 250 of 712
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 201.
    Khranovskyy, Volodymyr
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Eriksson, M.O.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Zoltán Radnóczi, György
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Khalid, A.
    University of Dublin Trinity Coll, Ireland University of Dublin Trinity Coll, Ireland .
    Zhang, H.
    University of Dublin Trinity Coll, Ireland University of Dublin Trinity Coll, Ireland .
    Holtz, Per-Olof
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Photoluminescence study of basal plane stacking faults in ZnO nanowires2014In: Physica. B, Condensed matter, ISSN 0921-4526, E-ISSN 1873-2135, Vol. 439, p. 50-53Article in journal (Refereed)
    Abstract [en]

    We have investigated the photoluminescence (PL) of ZnO nanowires (NWs) containing a high density (similar to 1 x 10(6) cm(-1)) of basal plane stacking faults (BSFs). It was observed that the BSFs result in a specific PL peak at similar to 3.329 eV along with a donor bound excitonic emission (D degrees X) peak at 5 K. The observed BSF-related emission is of excitonic type and possesses longer PL lifetime than D degrees X (similar to 360 ps vs. similar to 70 ps). Via comparison of the microstructural and the PL properties of the ZnO NWs, it is shown that the observed BSF-related emission is due to the formation of crystal phase quantum wells (QWs). This is explained by the fact that BSF in wurtzite (WZ) ZnO is the thinnest segment of zinc blende (ZB) phase ZnO inserted in the WZ matrix, resulting in band alignment of type II due to the conduction and valence band offsets of ZB with respect to WZ ZnO. The mechanism of the BSF related PL is suggested to be an indirect exciton transitions clue to the recombination of electrons confined in the ZB QWs to holes in the WZ barriers localized near the BSFs.

  • 202.
    Fager, Hanna
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Eriksson, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Reactive DC magnetron sputtering of amorphous (Ti0.25B0.75)1−xSixNy thin films from TiB2 and Si targets2014Manuscript (preprint) (Other academic)
    Abstract [en]

    (Ti0.25B0.75)1−xSixNy, 0≤x≤0.89, 0.9≤y≤1.25, thin films were reactively grown on Si(001) substrates by dc magnetron sputtering from compound TiB2 and elemental Si targets. The films can be grown in a fully electron-diffraction amorphous state with x>0.46, as evidenced by XRD and HR-TEM investigations. With x=0, BN form onion-like sheets surrounding TiNnanograins. Substrate temperatures, Ts=100-600 ◦C, has a minor effect of the film structure and properties, due to limited surface diffusion.

    Ion-assisted growth with substrate bias voltages, Vb, between -50 V and -200 V, favors densification of amorphous structures over nanocrystalline formation, and improves mechanical properties. A maximum hardness value of 26.8±0.7 GPa is found for an amorphous (Ti0.25B0.75)0.39Si0.61N1.15 film grown with substrate temperature Ts=400 °C and substrate bias voltage Vb=-100 V.

  • 203.
    Högberg, Hans
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Tengdelius, Lina
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Samuelsson, Mattias
    Impact Coatings AB, Linköping, Sweden .
    Eriksson, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Broitman, Esteban
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Arts and Sciences.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Reactive sputtering of delta-ZrH2 thin films by high power impulse magnetron sputtering and direct current magnetron sputtering2014In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 32, no 4, p. 041510-Article in journal (Refereed)
    Abstract [en]

    Reactive sputtering by high power impulse magnetron sputtering (HiPIMS) and direct current magnetron sputtering (DCMS) of a Zr target in Ar/H-2 plasmas was employed to deposit Zr-H films on Si(100) substrates, and with H content up to 61 at.% and O contents typically below 0.2 at.% as determined by elastic recoil detection analysis. X-ray photoelectron spectroscopy reveals a chemical shift of similar to 0.7 eV to higher binding energies for the Zr-H films compared to pure Zr films, consistent with a charge transfer from Zr to H in a zirconium hydride. X-ray diffraction shows that the films are single-phase delta-ZrH2 (CaF2 type structure) at H content greater thansimilar to 55 at.% and pole figure measurements give a 111 preferred orientation for these films. Scanning electron microscopy cross-section images show a glasslike microstructure for the HiPIMS films, while the DCMS films are columnar. Nanoindentation yield hardness values of 5.5-7 GPa for the delta-ZrH2 films that is slightly harder than the similar to 5 GPa determined for Zr films and with coefficients of friction in the range of 0.12-0.18 to compare with the range of 0.4-0.6 obtained for Zr films. Wear resistance testing show that phase-pure delta-ZrH2 films deposited by HiPIMS exhibit up to 50 times lower wear rate compared to those containing a secondary Zr phase. Four-point probe measurements give resistivity values in the range of similar to 100-120 mu Omega cm for the delta-ZrH2 films, which is slightly higher compared to Zr films with values in the range 70-80 mu Omega cm.

  • 204.
    Nedfors, N.
    et al.
    Uppsala University, Sweden .
    Tengstrand, Olof
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Flink, Axel
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. Impact Coatings AB, Linköping, Sweden.
    Andersson, A. M.
    ABB AB Corporate Research, Västerås, Sweden.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Jansson, U.
    Uppsala University, Sweden .
    Reactive sputtering of NbCx-based nanocomposite coatings: An up-scaling study2014In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 253, p. 100-108Article in journal (Refereed)
    Abstract [en]

    Nanocomposite Nb-C coatings, with a C/Nb ratio of 0.93-1.59, have been deposited by reactive sputtering in a commercial sputtering system where the C is supplied from an acetylene gas at deposition rates of up to 200 nm/min. The coatings are compared to non-reactively sputtered Nb-C coatings deposited from Nb and C targets in lab-scale equipment at deposition rates two orders of magnitude lower. X-ray diffraction, X-ray photoelectron spectroscopy, and electron microscopy are used to conclude that all coatings consist of nanoctystalline Nbc(x) grains (nc-NbCx) embedded in a matrix of amorphous C (a-C). The coating performance was evaluated in terms of their mechanical, tribological, and electrical properties. The chemical stability of the coatings was evaluated by exposure to a flowing mixture of corrosive gases. It is found that the coatings have comparable microstructure and performance to the coatings deposited by non-reactive sputtering. The high deposition rate and presence of different C-radicals on the coating surface during film growth for the reactively sputtered coatings are believed to result in a smaller NbCx grain size compared to the non-reactively sputtered coatings (reactive process: 10-3 nm, non-reactive process: similar to 75-3 nm). This difference results in a thinner a-C matrix of about 0.2 nm, which is not varying with C content for the reactively sputtered coatings. The thinner a-C matrix is reflected in coating properties, with a higher conductivity and slightly higher hardness. The coating richest in C content (C/Nb ratio 1.59) shows the lowest friction (0.23), wear rate (0.17 x 10(-6) mm(3)/mN), and contact resistance before (11 m Omega at 10 N) and after (30 m Omega at 10 N) the chemical stability test. These results imply that nc-NbCx/a-C coatings of this composition are a good candidate for electrical contact applications, and that up-scaling of the process is achievable.

  • 205.
    Eriksson, Anders
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Tengstrand, Olof
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Petrov, Ivan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. University of Illinois, IL 61801 USA.
    Greene, Joseph E
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. University of Illinois, IL 61801 USA.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Si incorporation in Ti1-xSixN films grown on TiN(001) and (001)-faceted TiN(111) columns2014In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 257, p. 121-128Article in journal (Refereed)
    Abstract [en]

    Thin films consisting of TiN nanocrystallites encapsulated in a fully percolated SiNy tissue phase are archetypes for hard and superhard nanocomposites. Here, we investigate metastable SiNy solid solubility in TiN and probe the effects of surface segregation during the growth of TiSiN films onto substrates that are either flat TiN(001)/MgO(001) epitaxial buffer layers or TiN(001) facets of length 1-5 nm terminating epitaxial TiN(111) nanocolumns, separated by voids, deposited on epitaxial TiN(111)/MgO(111) buffer layers. Using reactive magnetron sputter deposition, the TiSiN layers were grown at 550 degrees C and the TiN buffer layers at 900 degrees C On TiN(001), the films are NaCl-structure single-phase metastable Ti1-xSixN(001) with N/(Ti + Si) = 1 and 0 less than= x less than= 0.19. These alloys remain single-crystalline to critical thicknesses h(c) ranging from 100 +/- 30 nm with x = 0.13 to 40 +/- 10 nm with x = 0.19. At thicknesses h greater than h(c), the epitaxial growth front breaks down locally to form V-shaped polycrystalline columns with an underdense feather-like nanostructure. In contrast, the voided epitaxial TiN(111) columnar surfaces, as well as the TiN(001) facets, act as sinks for SiNy. For Ti1-xSixN layers with global average composition values less than x greater than = 0.16, the local x value in the middle of Ti1-xSixN columns increases from 0.08 for columns with radius r similar or equal to 2 nm to x = 0.14 with r similar or equal to 4 nm. The average out-of-plane lattice parameter of epitaxial nanocolumns encapsulated in SiNy decreases monotonically with increasing Si fraction less than x greater than, indicating the formation of metastable (Ti,Si)N solid solutions under growth conditions similar to those of superhard nanocomposites for which the faceted surfaces of nanograins also provide sinks for SiNy.

  • 206.
    Greczynski, Grzegorz
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Petrov, Ivan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Greene, Joseph E
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Bolz, S.
    CemeCon AG, Germany .
    Koelker, W.
    CemeCon AG, Germany .
    Schiffers, Ch.
    CemeCon AG, Germany .
    Lemmer, O.
    CemeCon AG, Germany .
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Strain-free, single-phase metastable Ti0.38Al0.62N alloys with high hardness: metal-ion energy vs. momentum effects during film growth by hybrid high-power pulsed/dc magnetron cosputtering2014In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 556, p. 87-98Article in journal (Refereed)
    Abstract [en]

    A hybrid deposition process consisting of reactive high-power pulsed and dc magnetron cosputtering (HIPIMS and DCMS) from Ti and Al targets is used to grow Ti1-xAlxN alloys, with x similar to 0.6, on Si(001) at 500 degrees C. Two series of films are deposited in which the energy and momentum of metal ions incident at the growing film are individually varied. In both sets of experiments, a negative bias V-s ranging from 20 to 280 V is applied to the substrate in synchronous, as determined by in-situ mass spectrometry, with the metal-ion-rich part of the HIPIMS pulse. Ion momentum is varied by switching the HIPIMS and dc power supplies to change the mass m and average charge of the primary metal ion. Al-HIPIMS/Ti-DCMS layers grown under Al+ (m(Al) = 26.98 amu) bombardment with 20 less than= V-s less than= 160 V are single-phase NaCl-structure alloys, while films deposited with V-s greater than 160 V are two-phase, cubic plus wurtzite. The corresponding critical average metal-ion momentum transfer per deposited atom for phase separation is less than p(d)*greater than greater than= 135 [eV-amu](1/2). In distinct contrast, layers deposited in the Ti-HIPIMS/Al-DCMS configuration with Ti+/Ti2+ (m(Ti) = 47.88 amu) ion irradiation are two-phase even with the lowest bias, V-s = 20 V, for which less than p(d)*greater than greater than 135 [eV-amu](1/2). Precipitation of wurtzite-structure AlN is primarily determined by the average metal-ion momentum transfer to the growing film, rather than by the deposited metal-ion energy. Ti-HIPIMS/Al-DCMS layers grown with V-s= 20 V are two-phase with compressive stress sigma= -2 GPa which increases to -6.2 GPa at V-s= 120 V; hardness H values range from 17.5 to 27 GPa and are directly correlated with sigma. However, for Al-HIPIMS/Ti-DCMS, the relatively low mass and single charge of the Al+ ion permits tuning properties of metastable cubic Ti0.38Al0.62 N by adjusting V-s to vary, for example, the hardness from 12 to 31 GPa while maintaining sigma similar to 0.

  • 207.
    Muhammad, Junaid
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Sandström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Palisaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Darakchieva, Vanya
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Hsiao, Ching-Lien
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Persson, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Stress Evolution during Growth of GaN (0001)/Al2O3 (0001) by Reactive DC Magnetron Sputter Epitaxy2014In: Journal of Physics D: Applied Physics, ISSN 0022-3727, E-ISSN 1361-6463, Vol. 47, no 14, p. 145301-Article in journal (Refereed)
    Abstract [en]

    We study the real time stress evolution, by in-situ curvature measurements, during magnetron sputter epitaxy of GaN (0001) epilayers at different growth temperatures, directly on Al2O3 (0001) substrates. The epilayers are grown by sputtering from a liquid Ga target in a mixed N2/Ar discharge. For 600 °C, a tensile biaxial stress evolution is observed, while for 700 °C and 800 °C, compressive stress evolutions are observed. Structural characterization by crosssectional transmission electron microscopy, and atomic force microscopy revealed that films grew at 700 °C and 800 °C in a layer-by-layer mode while a growth temperature of 600 °C led to an island growth mode. High resolution Xray diffraction data showed that edge and screw threading dislocation densities decreased with increasing growth temperature with a total density of 5.5×1010 cm-2. The observed stress evolution and growth modes are explained by a high adatom mobility during magnetron sputter epitaxy at 700 - 800 °C. Also other possible reasons for the different stress evolutions are discussed.

  • 208.
    Mockuté, Aurelija
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Persson, Per O A
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Arts and Sciences.
    Ingason, Arni Sigurdur
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Magnus, F.
    Uppsala University, Sweden .
    Olafsson, S.
    University of Iceland, Iceland .
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Structural and magnetic properties of (Cr1-xMnx)(5)Al-8 solid solution and structural relation to hexagonal nanolaminates2014In: Journal of Materials Science, ISSN 0022-2461, E-ISSN 1573-4803, Vol. 49, no 20, p. 7099-7104Article in journal (Refereed)
    Abstract [en]

    Electron microscopy is used to reveal the competitive epitaxial growth of bcc structure (Cr1-x Mn (x) )(5)Al-8 and (Cr1-y Mn (y) )(2)AlC [M (n+1)AX (n) (MAX)] phase during both magnetron sputtering and arc deposition. X-ray diffraction theta-2 theta measurements display identical peak positions of (000n)-oriented MAX phase and (Cr1-x Mn (x) )(5)Al-8, due to the interplanar spacing of (Cr1-x Mn (x) )(5)Al-8 that matches exactly half a unit cell of (Cr1-y Mn (y) )(2)AlC. Vibrating sample magnetometry shows that a thin film exclusively consisting of (Cr1-x Mn (x) )(5)Al-8 exhibits a magnetic response, implying that the potential presence of this phase needs to be taken into consideration when evaluating the magnetic properties of (Cr, Mn)(2)AlC.

  • 209.
    Olsson, Simon
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Eriksson, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Garbrecht, Magnus
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Structure and Composition of Al(Si)CuFe Approximant Thin Films Formed by Si Substrate Diffusion2014In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 550, no 1, p. 105-109Article in journal (Refereed)
    Abstract [en]

    Multilayered Al/Cu/Fe thin films with composition close to the quasicrystalline phase have been prepared by magnetron sputtering. Annealing at 600 °C yields a homogeneous film of the cubic a-approximant phase by Si substrate diffusion, which prevents the formation of the quasicrystalline phase. After 4 h annealing the film contained 8 at.% Si, which corresponds to the expected value of the a-approximant. The amount of Si in the films was found to slowly increase to ~12 at.% during continued annealing (64 h) while the α-approximant phase was retained. The lattice parameter was found to  continuously decrease as Al became substituted with Si. The film is observed to be polycrystalline with individual grains being strained in varying magnitude, and with no preferential orientation relationship to the substrate or each other.

  • 210.
    Tengstrand, Olof
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Nedfors, Nils
    Uppsala University, Sweden .
    Fast, Lars
    SP Technical Research Institute Sweden, Borås.
    Flink, Axel
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. Impact Coatings AB, Linköping, Sweden .
    Jansson, Ulf
    Uppsala University, Sweden .
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Structure and electrical properties of Nb-Ge-C nanocomposite coatings2014In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 32, no 4, article id 041509Article in journal (Refereed)
    Abstract [en]

    Nb-Ge-C nanocomposite thin films were deposited by dc magnetron sputtering using three elemental targets. The films consist of substoichiometric NbCx in a nanometer-thick matrix of amorphous C and Ge. Films with no Ge contain grains that are elongated in the growth direction with a (111) preferred crystallographic orientation. With the addition of ∼12 at. % Ge, the grains are more equiaxed and exhibit a more random orientation. At even higher Ge contents, the structure also becomes denser. The porous structure of the low Ge content films result in O uptake from the ambient. With higher C content in the films both the amount of amorphous C and C/Nb-ratio increases. The contact resistance was measured by four-point technique as a function of contact force between 0 and 10 N. The lowest contact resistance (1.7 mΩ) is obtained at 10 N. The resistivity varies between 470 and 1700 μΩ·cm depending on porosity and O content.

  • 211.
    Nedfors, Nils
    et al.
    Uppsala University, Sweden.
    Tengstrand, Olof
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Persson, Per O A
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Jansson, Ulf
    Uppsala University, Sweden.
    Superhard NbB2 −x thin films deposited by dc magnetron sputtering2014In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 257, p. 295-300Article in journal (Refereed)
    Abstract [en]

    We have deposited weakly textured substoichiometric NbB2-x thin films by magnetron sputtering from an NbB2 target. The films exhibit superhardness (42 +/- 4 GPa), previously only observed in overstoichiometric TiB2 thin films, and explained by a self-organized nanostructuring, where thin TiB2 columnar grains hinder nucleation and slip of dislocations and a B-rich tissue phase between the grains prevent grain-boundary sliding. The wide homogeneity range for the NbB2 phase allows a similar ultra-thin B-rich tissue phase to form between thin (5-10 nm) columnar NbB2-x grains also for films with a B/Nb atomic ratio of 1.8, as revealed here by analytical aberration-corrected scanning transmission electron microscopy. Furthermore, a coefficient of friction of 0.16 is measured for an NbB2-x film sliding against stainless steel with a wear rate of 5 x 10(-7) mm(3)/Nm. X-ray photoelectron spectroscopy results suggest that the low friction is due to the formation of a lubricating boric acid film.

  • 212.
    Mockuté, Aurelija
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Persson, Per O A.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Magnus, F
    Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden/University of Iceland, Iceland .
    Ingason, Arni Sigurdur
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Olafsson, S.
    University of Iceland, Iceland .
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Synthesis and characterization of arc deposited magnetic (Cr,Mn)2AlC MAX phase films2014In: Physica Status Solidi. Rapid Research Letters, ISSN 1862-6254, E-ISSN 1862-6270, Vol. 8, no 5, p. 420-423Article in journal (Refereed)
    Abstract [en]

    (Cr1-xMnx)2AlC MAX phase thin films were synthesized by cathodic arc deposition. Scanning transmission electron microscopy including local energy dispersive X-ray spectroscopy analysis of the as-deposited films reveals a Mn incorporation of 10 at.% in the structure, corresponding to x = 0.2. Magnetic properties were characterized with vibrating sample magnetometry, revealing a magnetic response up to at least room temperature, thus verifying previous theoretical predictions of an antiferromagnetic or ferromagnetic ground state for Cr2AlC upon alloying with Mn.

  • 213.
    Sadollahkhani, Azar
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology. Shahid Chamran University, Iran.
    Kazeminezhad, Iraj
    Shahid Chamran University, Iran.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Nur, Omer
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Willander, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Synthesis, structural characterization and photocatalytic application of ZnO@ZnS core-shell nanoparticles2014In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 4, no 70, p. 36940-36950Article in journal (Refereed)
    Abstract [en]

    ZnO nanoparticles were synthesized by co-precipitation with no capping agent followed by covering with ZnS using a solution-based chemical method at low temperature. By variation of the solution concentrations it was found that the fully-covering ZnS shell forms by a reaction of Na2S with ZnO NPs followed by the formation of ZnS nano-crystals by the reaction of Na2S with ZnCl2. The mechanism that led to full coverage of the ZnO core is proposed to be the addition of ZnCl2 at a later stage of the growth which guarantees a continuous supply of Zn ions to the core surface. Moreover, the ZnS nanocrystals that uniformly cover the ZnO NPs show no epitaxial relationship between the ZnO core and ZnS shell. The slow atomic mobility at the low reaction temperature is attributed to the non-epitaxial uniform ZnS shell growth. The rough surface of the ZnO grains provides initial nucleation positions for the growth of the ZnS shell nano-crystals. The low growth temperature also inhibits the abnormal growth of ZnS grains and results in the homogeneous coverage of ZnS nano-crystals on the ZnO core surface. The as-synthesized ZnO@ZnS core-shell nanoparticles were used as a photocatalyst to decompose Rose Bengal dye at three different pH values. ZnO@ZnS core-shell nanoparticles perform as a more active photocatalyst at a pH of 4, while pure ZnO nanoparticles are more efficient at a pH of 7.

  • 214.
    Fager, Hanna
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Andersson, J.M.
    Seco Tools AB, SE-737 82 Fagersta, Sweden.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Thermal stability and mechanical properties of amorphous arc evaporated Ti-B-Si-N and Ti-B-Si-Al-N coatings grown by cathodic arc evaporation from TiB2, Ti33Al67, and Ti85Si15 cathodes2014In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 32, no 6, p. 061508-Article in journal (Refereed)
    Abstract [en]

    Ti-B-Al-N, Ti-B-Si-N, and Ti-B-Si-Al-N coatings were grown on cemented carbide substrates in an industrial scale cathodic arc evaporation system using Ti33Al67, Ti85Si15, and TiB2 cathodes in a reactiveN2 atmosphere. The microstructure of the as-deposited coatings changes from nanocrystalline to amorphous with addition of (B+Si+Al), or high amounts of (B+Si) to TiN. In the as-deposited state, the 4 μm-thick amorphous coatings are dense and homogenous, besides slight compositional modulation with Ti-rich layers induced by rotation of the substrate holder fixture during deposition, and have unusually few macroparticles. Annealing at temperatures ranging from 700 °C to 1100 °C results in that the coatings crystallize by clustering of TiN grains. The hardness of as-deposited amorphous coatings is 17-18 GPa, and increases to 21 GPa following annealing at 800 °C. At annealing temperatures of 1000 °C and above the hardness decreases due to inter-diffusion of Co from the substrate to the coating.

  • 215.
    Sangiovanni, Davide
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology.
    Edström, Daniel
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Petrov, Ivan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. University of Illinois, Urbana, USA.
    Greene, Joseph E
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. University of Illinois, Urbana, USA.
    Chirita, Valeriu
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Ti adatom diffusion on TiN(001): Ab initio and classical molecular dynamics simulations2014In: Surface Science, ISSN 0039-6028, E-ISSN 1879-2758, Vol. 627, p. 34-41Article in journal (Refereed)
    Abstract [en]

    Ab initio and classical molecular dynamics (AIMD and CMD) simulations reveal that Ti adatoms on TiN(001) surfaces migrate between neighboring fourfold hollow sites primarily along in-plane less than100greater than channels. less than100greater than and less than110greater than single jumps, as well as less than100greater than double jump rates, obtained directly from MD runs as a function of temperature, are used to determine diffusion activation energies Ea, and attempt frequencies A, for the three preferred Ti adatom migration pathways on TiN(001). From transition rates Aexp[-Ea / (k(B)T)], we determine adatom surface distribution probabilities as a function of time, which are used to calculate adatom diffusion coefficients D(T). AIMD and CMD predictions are consistent and complementary. Using CMD, we investigate the effect on the adatom jump rate of varying the phonon wavelength degrees of freedom by progressively increasing the supercell size. We find that long-wavelength phonons significantly contribute to increasing adatom mobilities at temperatures less than= 600 K, but not at higher temperatures. Finally, by directly tracking the Ti adatom mean-square displacement during CMD runs, we find that Ti adatom jumps are highly correlated on TiN(001), an effect that yields lower D-s values (D-s(corr)) than those estimated from uncorrelated transition probabilities. The temperature-dependent diffusion coefficient is D-s(corr) (T) = (4.5 x 10(-4) Cm-2 s(-1)) exp[-0.55 eV / (k(B)T)].

  • 216.
    Edström, Daniel
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Sangiovanni, Davide
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Chirita, Valeriu
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Petrov, Ivan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. Department of Materials Science and the Fredrick Seitz Materials Research Laboratory, University of Illinois, Urbana, USA.
    Greene, Joseph
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. Department of Materials Science and the Fredrick Seitz Materials Research Laboratory, University of Illinois, Urbana, USA.
    Ti and N adatom descent pathways to the terrace from atop two-dimensional TiN/TiN(001) islands2014In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 558, p. 37-46Article in journal (Refereed)
    Abstract [en]

    We use classical molecular dynamics and the modified embedded atom method to determine residence times and descent pathways of Ti and N adatoms on square, single-atom-high, TiN islands on TiN(001). Simulations are carried out at 1000 K, which is within the optimal range for TiN(001) epitaxial growth. Results show that the frequency of descent events, and overall adatom residence times, depend strongly on both the TiN(001) diffusion barrier for each species as well as the adatom island-edge location immediately prior to descent. Ti adatoms, with a low diffusion barrier, rapidly move toward the island periphery, via funneling, where they diffuse along upper island edges. The primary descent mechanism for Ti adatoms is via push-out/exchange with Ti island-edge atoms, a process in which the adatom replaces an island edge atom by moving down while pushing the edge atom out onto the terrace to occupy an epitaxial position along the island edge. Double push-out events are also observed for Ti adatoms descending at N corner positions. N adatoms, with a considerably higher diffusion barrier on TiN(001), require much longer times to reach island edges and, consequently, have significantly longer residence times. N adatoms are found to descend onto the terrace by direct hopping over island edges and corner atoms, as well as by concerted push-out/exchange with N atoms adjacent to Ti corners. For both adspecies, we also observe several complex adatom/island interactions, before and after descent onto the terrace, including two instances of Ti islandatom ascent onto the island surface.

  • 217.
    Halim, Joseph
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. Univ Penn, PA 19104 USA Drexel Univ, PA 19104 USA.
    Lukatskaya, Maria R.
    University of Penn, PA 19104 USA Drexel University, PA 19104 USA .
    Cook, Kevin M.
    University of Penn, PA 19104 USA Drexel University, PA 19104 USA .
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Smith, Cole R.
    University of Penn, PA 19104 USA .
    Näslund, Lars-Åke
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    May, Steven J.
    University of Penn, PA 19104 USA .
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Gogotsi, Yury
    University of Penn, PA 19104 USA Drexel University, PA 19104 USA .
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Barsoum, Michel
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films2014In: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 26, no 7, p. 2374-2381Article in journal (Refereed)
    Abstract [en]

    Since the discovery of graphene, the quest for two-dimensional (2D) materials has intensified greatly. Recently, a new family of 2D transition metal carbides and carbonitrides (MXenes) was discovered that is both conducting and hydrophilic, an uncommon combination. To date MXenes have been produced as powders, flakes, and colloidal solutions. Herein, we report on the fabrication of similar to 1 x 1 cm(2) Ti3C2 films by selective etching of Al, from sputter-deposited epitaxial Ti3AlC2 films, in aqueous HF or NH4HF2. Films that were about 19 nm thick, etched with NH4HF2, transmit similar to 90% of the light in the visible-to-infrared range and exhibit metallic conductivity down to similar to 100 K. Below 100 K, the films resistivity increases with decreasing temperature and they exhibit negative magnetoresistance-both observations consistent with a weak localization phenomenon characteristic of many 2D defective solids. This advance opens the door for the use of MXenes in electronic, photonic, and sensing applications.

  • 218.
    Kindlund, Hanna
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Broitman, Esteban
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Martínez-de-Olcoz, L.
    Grupo de Capas Finas e Ingeniería de Superficies, Facultad de Física. Universidad de Barcelona. Dep. Física Aplicada y Óptica, Barcelona, Spain.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Petrov, Ivan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. Department of Materials Science and the Fredrick Seitz Materials Research Laboratory, University of Illinois, Urbana, USA.
    Greene, Joseph
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. Department of Materials Science and the Fredrick Seitz Materials Research Laboratory, University of Illinois, Urbana, USA.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    V0.5Mo0.5Nx/MgO(001) layers grown at 100-900 °C: composition, nanostructure, and mechanical properties2014Manuscript (preprint) (Other academic)
    Abstract [en]

    V0.5Mo0.5Nx/MgO(001) alloys with the B1-NaCl structure are grown by ultra-highvacuum reactive magnetron sputter deposition in 5 mTorr mixed Ar/N2 atmospheres at temperatures Ts which are varied from 100 and 900 °C. Alloy films grown at Ts ≤ 500 °C are polycrystalline with a strong 002 texture; layers grown at Ts ≤ 700 °C are epitaxial single-crystals. The N/Me ratio x ranges from 0.64±0.05 with Ts = 900 °C to 0.94±0.05 at 700 °C to 1.02±0.05 with Ts = 500 to 100 °C. The N loss at higher growth temperatures leads to a corresponding decrease in the relaxed lattice parameter ao from 4.212 Å with x = 1.02 to 4.175 Å with x = 0.94 to 4.121 Å with x = 0.64. V0.5Mo0.5Nx nanoindentation hardnesses H and elastic moduli E increase with increasing Ts from 17±3 GPa and 274±31 GPa at 100 °C to 26±1 GPa and 303±10 GPa at 900 °C. Films deposited at higher Ts also exhibit enhanced wear resistance. Scanning electron micrographs of nanoindents performed in single-crystal V0.5Mo0.5Nx films and films deposited at 100 and 300 °C reveal no evidence of cracking; instead they exhibit material pile-up around the indents characteristic of plastic flow in ductile materials. Valence band x-ray photoelectron spectroscopy analyses show an enhanced volume density of the shear sensitive d-t2g – d-t2g metallic states in V0.5Mo0.5Nx compared to VN and the density of these orbitals increases with increasing deposition temperature, i.e., the metallic  states become more populated with the introduction of N vacancies.

  • 219.
    Kindlund, Hanna
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Sangiovanni, Davide
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Arts and Sciences.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Chirita, Valeriu
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Birch, Jens
    Department of Materials Science, Fredrick Seitz Materials Research Laboratory, University of of Illinois, Urbana, USA.
    Petrov, Ivan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. Department of Materials Science and the Fredrick Seitz Materials Research Laboratory, University of Illinois, Urbana, USA.
    Greene, Joseph
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. Department of Materials Science and the Fredrick Seitz Materials Research Laboratory, University of Illinois, Urbana, USA.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Vacancy-induced toughening in hard single-crystal V0.5Mo0.5Nx/MgO(001) thin films2014In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 77, p. 394-400Article in journal (Refereed)
    Abstract [en]

    Using a combination of experiments and density functional theory (DFT), we demonstrate the first example of vacancy-induced  toughening, in this case for epitaxial pseudobinary NaCl-structure substoichiometric V0.5Mo0.5Nx alloys, with N concentrations 0.55 ≤ x ≤ 1.03, grown by reactive magnetron sputter deposition. The nanoindentation hardness H(x) increases with increasing vacancy concentration from 17 GPa with x = 1.03 to 26 GPa with x = 0.55, while the elastic modulus E(x) remains essentially constant at 370 GPa. Scanning electron micrographs of indented regions show ductile plastic flow giving rise to material pile-up, rather than cracks as commonly observed for hard, but brittle, transition-metal nitrides. The increase in alloy hardness with an elastic  modulus which remains constant with decreasing x, combined with the observed material pile-up around nanoindents, DFT-calculated decrease in shear to bulk moduli ratios, and increased Cauchy pressures (C12-C44), reveals a trend toward vacancy-induced toughening. Moreover, DFT crystal orbital overlap population analyses are consistent with the above results.

  • 220.
    Greczynski, Grzegorz
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Greene, Joseph E
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Petrov, Ivan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    X-ray photoelectron spectroscopy analyses of the electronic structure of polycrystalline Ti1-xAlxN thin films with 0 < x < 0.962014In: Surface Science Spectra, ISSN 1055-5269, E-ISSN 1520-8575, Vol. 21, p. 35-49Article in journal (Refereed)
    Abstract [en]

    Metastable Ti1-xAlxN (0 <  x <  0.96) alloy thin films are grown by reactive magnetron sputter deposition using a combination of high-power pulsed magnetron (HIPIMS) and dc magnetron sputtering (DCMS). Layers are deposited from elemental Ti and Al targets onto Si(001) substrates at 500 °C. All Ti1 xAlxN film surfaces are analyzed by x-ray photoelectron spectroscopy (XPS) employing monochromatic Al Ka radiation (hn = 1486.6 eV). Prior to spectra acquisition, TiAlN surfaces are sputter-cleaned in-situ with 4 keV Ar+ ions incident at an angle of 70° with respect to the surface normal. XPS results reveal satellite structures on the high binding energy side of the Ti2p, Ti3s, and Ti3p core-level signals. The intensities of the primary Ti features (Ti2p, Ti3s, and Ti3p) decrease with increasing AlN concentration such that the satellite peaks dominate spectra from films with x < 0.67. The density-of-states at the Fermi level also decrease with increasing x indicating that the satellite peaks are due to screening of core holes created by the photoionization event. Film compositions, obtained using XPS sensitivity factors, agree to within ±3% with values determined by time-of-flight elastic recoil detection analyses.

  • 221.
    Halim, Joseph
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. Department of Materials Science & Engineering and 3A.J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, USA.
    Cook, Kevin M.
    University of Penn, PA 19104 USA Drexel University, PA 19104 USA .
    Näslund, Lars-Åke
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Magnuson, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. University of Penn, PA 19104 USA .
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Gogotsi, Yury
    University of Penn, PA 19104 USA Drexel University, PA 19104 USA .
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Barsoum, Michel W.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. Department of Materials Science & Engineering, Drexel University, Philadelphia, USA.
    X-ray Photoelectron Spectroscopy Characterization of Two-Dimensional Titanium Metal Carbides (MXenes)2014Manuscript (preprint) (Other academic)
    Abstract [en]

    Herein, we report X-ray Photoelectron Spectroscopy (XPS) analysis for cold pressed exfoliated 2D nanocrystals of transition metal carbides, MXenes. MXenes are a recently discovered family of 2D materials produced by selective chemical etching of the A element from MAX phases which are ternary metal carbides and nitrides. The latter has the formula of Mn+1AXn, where M is an early transition metal, A is an A-group element, and X is C and/or N. This study is a comparison between two MXenes, Ti3C2Tx and Ti2CTx, where Tx stands for surface termination groups such as –O, –OH, and –F. Ti3C2Tx and Ti2CTx were prepared by immersion of Ti3AlC2 and Ti2AlC powders in 50% conc. HF. A thorough XPS analysis was performed through peak fitting of high resolution XPS spectra and valence band, VB, spectra analysis. The effect of Ar sputtering as well as the number of layers n was the primarily interest of this study. According to the peak fitting analysis, both phases contain the following species, Ti–C, C–C, Ti–F, Ti–O and Ti–OH resulting in the following chemical formulas: Ti3C2(OH)x(O)y(F)z and Ti2C(OH)x(O)y(F)z. Comparing the VB spectra with the DOS calculations show the valance band spectra is actually a mixture of MXene with various terminations of OH, O and F. Before Ar+ sputtering both phases show a large percentage of fluorinated-TiO2 which is due to MXene surface oxidation as well as CHx, C-O and COO groups arising from either surface contaminations or due to drying the etched powders in ethanol after washing the powder of the HF acid. According to the VB spectra, it is shown that the fluorinated TiO2 is actually a mixture of anatase and rutile. The number of layers, n, also plays a role; the lower n, the more the MXene is prone to oxidation.

  • 222.
    Andersen, Ken
    et al.
    European Spallation Source ESS AB, Lund, Sweden.
    Bigault, Thierry
    Institut Laue Langevin, Grenoble, Cedex 9, France.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Buffet, J. C.
    Institut Laue Langevin, Grenoble, Cedex 9, France.
    Correa, Jonathan
    Institut Laue Langevin, Grenoble, Cedex 9, France.
    Hall-Wilton, Richard
    European Spallation Source ESS AB, Lund, Sweden.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Höglund, Carina
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Guerard, Bruno
    Institut Laue Langevin, Grenoble, Cedex 9, France.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Khaplanov, Anton
    Institut Laue Langevin, Grenoble, Cedex 9, France.
    Kirstein, Oliver
    Linköping University.
    Piscitelli, Fransesco
    Institut Laue Langevin, Grenoble, Cedex 9, France.
    van Esch, P.
    Institut Laue Langevin, Grenoble, Cedex 9, France.
    Vettier, Christian
    European Spallation Source, Lund, Sweden.
    10B multi-grid proportional gas counters for large area thermal neutrondetectors2013In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 720, p. 116-121Article in journal (Refereed)
    Abstract [en]

    3He was a popular material in neutrons detectors until its availability dropped drastically in 2008. The development of techniques based on alternative convertors is now of high priority for neutron research institutes. Thin films of 10B or 10B4C have been used in gas proportional counters to detect neutrons, but until now, only for small or medium sensitive area. We present here the multi-grid design, introduced at the ILL and developed in collaboration with ESS for LAN (large area neutron) detectors. Typically thirty 10B4C films of 1 μm thickness are used to convert neutrons into ionizing particles which are subsequently detected in a proportional gas counter. The principle and the fabrication of the multi-grid are described and some preliminary results obtained with a prototype of 200 cm×8 cm are reported; a detection efficiency of 48% has been measured at 2.5 Å with a monochromatic neutron beam line, showing the good potential of this new technique.

  • 223.
    Stefanescu, I.
    et al.
    Technical University of Munich, Germany .
    Abdullahi, Y.
    Technical University of Munich, Germany .
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Defendi, I.
    Technical University of Munich, Germany .
    Hall-Wilton, R.
    European Spallat Source ESS AB, Sweden .
    Hoglund, C.
    European Spallat Source ESS AB, Sweden .
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Zee, M.
    Technische Universität München, D-85748 Garching, Germany.
    Zeitelhack, K.
    Technical University of Munich, Germany .
    A B-10-based neutron detector with stacked MultiWire Proportional Counters and macrostructured cathodes2013In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 8, no P12003Article in journal (Refereed)
    Abstract [en]

    We present the results of the measurements of the detection efficiency for a 4.7 angstrom neutron beam incident upon a detector incorporating a stack of up to five MultiWire Proportional Counters (MWPC) with Boron-coated cathodes. The cathodes were made of Aluminum and had a surface exhibiting millimeter-deep V-shaped grooves of 45 degrees, upon which the thin Boron film was deposited by DC magnetron sputtering. The incident neutrons interacting with the converter layer deposited on the sidewalls of the grooves have a higher capture probability, owing to the larger effective absorption film thickness. This leads to a higher overall detection efficiency for the grooved cathode when compared to a cathode with a flat surface. Both the experimental results and the predictions of the GEANT4 model suggests that a 5-counter detector stack with coated grooved cathodes has the same efficiency as a 7-counter stack with flat cathodes. The reduction in the number of counters in the stack without altering the detection efficiency will prove highly beneficial for large-area position-sensitive detectors for neutron scattering applications, for which the cost-effective manufacturing of the detector and associated readout electronics is an important objective. The proposed detector concept could be a technological option for one of the new chopper spectrometers and other instruments planned to be built at the future European Spallation Source in Sweden. These results with macrostructured cathodes generally apply not just to MWPCs but to other gaseous detectors as well.

  • 224.
    Broitman, Esteban
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Becker, Richard
    Studsvik Nuclear AB.
    Dozaki, Koji
    The Japan Atomic Power Company.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    A Novel Oxide Characterization Method of Nickel Base Alloy 600 Used in Nuclear Plant Reactors2013In: / [ed] F. Marquis, Hoboken, NJ, USA: John Wiley & Sons, 2013, p. 415-Conference paper (Refereed)
    Abstract [en]

    The Alloy 600 is a polycrystalline nickel base alloy used in pressurized water reactors (PWR) of nuclear power plants. Long term exposure of the alloy to primary water of PWR generates an oxide film that strongly influences the stress corrosion cracking behavior of the alloy. Recently, it has been shown that the oxide film structure, composition and thickness depend on the dissolved hydrogen content in the primary water. In this work we have explored a novel approach which enables a high spatial resolution oxide thickness measurement by nanomechanical testing. Oxide films have been grown on Alloy 600 specimens exposed between 5000 and 35000 hours at 320-330°C with hydrogen levels in the range 5 to 25 mL H2/kg H2O. A Triboindenter TI-950 from Hysitron was used to measure the change of nanomechanical properties in polished cross-sections. The increase of hardness has been correlated to the presence of oxides.

  • 225.
    Tamm, Aile
    et al.
    University of Tartu, Estonia .
    Peikolainen, Anna-Liisa
    University of Tartu, Estonia .
    Kozlova, Jekaterina
    University of Tartu, Estonia .
    Maendar, Hugo
    University of Tartu, Estonia .
    Aidla, Aleks
    University of Tartu, Estonia .
    Rammula, Raul
    University of Tartu, Estonia .
    Aarik, Lauri
    University of Tartu, Estonia .
    Roosalu, Kaspar
    University of Tartu, Estonia .
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Koel, Mihkel
    Tallinn University of Technology, Estonia .
    Kukli, Kaupo
    University of Tartu, Estonia .
    Aarik, Jaan
    University of Tartu, Estonia .
    Atomic layer deposition of high-k dielectrics on carbon nanoparticles2013In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 538, p. 16-20Article in journal (Refereed)
    Abstract [en]

    Carbon nanoparticles were synthesized from 5-methylresorcinol and formaldehyde via base catalysed polycondensation reaction and distributed over silicon oxide wafers and aluminium oxide thin films. These particles essentially possessed monocrystalline graphite structure. The particles were covered by hafnium oxide thin films in metal chloride based atomic layer deposition process carried out at 300 degrees C. Upon deposition of HfO2, thin crystalline metal oxide layer containing mostly cubic phase was formed. At the same time, deposition of the metal oxide caused reduction of the sizes of graphite particles and essential increase in the disorder in carbon.

  • 226.
    Birch, Jens
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Buffet, J. C.
    Institut Laue Langevin, Grenoble, Cedex 9, France.
    Correa, Jonathan
    Institut Laue Langevin, Grenoble, Cedex 9, France.
    van Esch, P.
    Institut Laue Langevin, Grenoble, Cedex 9, France.
    Guerard, Bruno
    Institut Laue Langevin, Grenoble, Cedex 9, France.
    Hall-Wilton, Richard
    European Spallation Source ESS AB, Lund, Sweden.
    Höglund, Carina
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Khaplanov, Anton
    Institut Laue Langevin, Grenoble, Cedex 9, France.
    Piscitelli, Fransesco
    Institut Laue Langevin, Grenoble, Cedex 9, France.
    (B4C)-B-10 Multi-Grid as an Alternative to He-3 for Large Area Neutron Detectors2013In: IEEE Transactions on Nuclear Science, ISSN 0018-9499, E-ISSN 1558-1578, Vol. 60, no 2, p. 871-878Article in journal (Refereed)
    Abstract [en]

    Despite its present shortage, 3He continues to be the most common neutron converter for detectors in neutron scattering science. However, it is obvious that the development of large area neutron detectors based on alternative neutron converters is rapidly becoming a matter of urgency. In the technique presented here, grids each comprising 28 10B4C layers (each 1 μm thick) are used to convert neutrons into ionizing particles which are subsequently detected in proportional gas counters. The total active area of the prototype is 8 cm × 200 cm. To instrument this detector 4.6 m2 of 10B-enriched boron carbide were coated onto aluminium blades using a DC magnetron sputtering machine.

  • 227.
    Ben Sedrine, Nebiha
    et al.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Zukauskaite, Agne
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Darakchieva, Vanya
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Bandgap Engineering and Optical Constants of YxAl1-xN Alloys2013In: Japanese Journal of Applied Physics, ISSN 0021-4922, E-ISSN 1347-4065, Vol. 52, no 8Article in journal (Refereed)
    Abstract [en]

    We study wurtzite Yx Al1-xN (0 andlt;= x andlt;= 0:22) films with (0001) orientation deposited by magnetron sputtering epitaxy on Si(100) substrates and we determine the alloys band gap energies and optical constants. Room temperature spectroscopic ellipsometry (SE) is employed in the energy range from 1 to 6.3 eV, and data modeling based on the standard dielectric function model is used. As a result of the SE data analysis the Yx Al1-xN refractive index and extinction coefficient are determined. The band gap of Yx Al1-xN is found to decrease linearly from 6.2 eV (x=0) down to 4.5 eV (x=0:22). We further observe an increase of the refractive index with increasing Y content; from 1.93 to 2.20 (at 2 eV) for x=0 and 0.22, respectively, reflecting the increase in material density.

  • 228.
    Tengstrand, Olof
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Nedfors, Nils
    Department of Chemistry, The Ångström Laboratory, Uppsala University.
    Andersson, M.
    Department of Chemistry, The Ångström Laboratory, Uppsala University.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Jansson, Ulf
    Department of Chemistry, The Ångström Laboratory, Uppsala University.
    Flink, Axel
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Beam-induced crystallization of amorphous Me-Si-C (Me = Nb or Zr) thin films during transmission electron microscopy2013In: MRS COMMUNICATIONS, Vol. 3, no 3, p. 151-155Article in journal (Refereed)
    Abstract [en]

    We report that an electron beam focused for high-resolution imaging rapidly initiates observable crystallization of amorphous Me-Si-C films. For 200-keV electron irradiation of Nb-Si-C and Zr-Si-C films, crystallization is observed at doses of similar to 2.8 x 10(9) and similar to 4.7 x 10(9) e(-)/nm(2), respectively. The crystallization process is driven by atomic displacement events, rather than heating from the electron beam as in situ annealing (400-600 degrees C) retains the amorphous state. Our findings demand a critical analysis of alleged amorphous and nanocrystalline ceramics including reassessing previous reports on nanocrystalline Me-Si-C films for possible electron-beam-induced crystallization effects.

  • 229.
    Johnson, Lars
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Thuvander, M.
    Chalmers University of Technology, Gothenburg, Sweden.
    Stiller, K.
    Chalmers University of Technology, Gothenburg, Sweden.
    Odén, Magnus
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Blind deconvolution of time-of-flight mass spectra from atom probe tomography2013In: Ultramicroscopy, ISSN 0304-3991, E-ISSN 1879-2723, Vol. 132, p. 60-64Article in journal (Refereed)
    Abstract [en]

    A major source of uncertainty in compositional measurements in atom probe tomography stems from the uncertainties of assigning peaks or parts of peaks in the mass spectrum to their correct identities. In particular, peak overlap is a limiting factor, whereas an ideal mass spectrum would have peaks at their correct positions with zero broadening. Here, we report a method to deconvolute the experimental mass spectrum into such an ideal spectrum and a system function describing the peak broadening introduced by the held evaporation and detection of each ion. By making the assumption of a linear and time-invariant behavior, a system of equations is derived that describes the peak shape and peak intensities. The model is fitted to the observed spectrum by minimizing the squared residuals, regularized by the maximum entropy method. For synthetic data perfectly obeying the assumptions, the method recovered peak intensities to within +/- 0.33 at%. The application of this model to experimental APT data is exemplified with Fe-Cr data. Knowledge of the peak shape opens up several new possibilities, not just for better overall compositional determination, but, e.g., for the estimation of errors of ranging due to peak overlap or peak separation constrained by isotope abundances.

  • 230.
    Nedfors, Nils
    et al.
    Uppsala University, Sweden.
    Tengstrand, Olof
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Flink, Axel
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Jansson, Ulf
    Uppsala University, Sweden.
    Characterization of amorphous and nanocomposite Nb–Si–C thin films deposited by DC magnetron sputtering2013In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 545, p. 272-278Article in journal (Refereed)
    Abstract [en]

    Two series of Nb–Si–C thin films of different composition have been deposited using DC magnetron sputtering. In the first series the carbon content was kept at about 55 at.% while the Si/Nb ratio was varied and in the second series the C/Nb ratio was varied instead while the Si content was kept at about 45 at.%. The microstructure is strongly dependent on Si content and Nb–Si–C films containing more than 25 at.% Si exhibit an amorphous structure as determined by X-ray diffraction. Transmission electron microscopy, however, induces crystallisation during analysis, thus obstructing a more detailed analysis of the amorphous structure. X-ray photo-electron spectroscopy suggests that the amorphous films consist of a mixture of chemical bonds such as Nb–Si, Nb–C, and Si–C. The addition of Si results in a hardness decrease from 22 GPa for the binary Nb–C film to 18 – 19 GPa for the Si-containing films, while film resistivity increases from 211 μΩcm to 3215 μΩcm. Comparison with recently published results on DC magnetron sputtered Zr–Si–C films, deposited in the same system using the same Ar-plasma pressure, bias, and a slightly lower substrate temperature (300 °C instead of 350 °C), shows that hardness is primarily dependent on the amount of Si–C bonds rather than type of transition metal. The reduced elastic modulus on the other hand shows a dependency on the type of transition metal for the films. These trends for the mechanical properties suggest that high wear resistant (high H/E and H3/E2 ratio) Me–Si–C films can be achieved by appropriate choice of film composition and transition metal.

  • 231.
    Eriksson, Anders
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Zhirkov, I.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Dahlqvist, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Rosen, J.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Characterization of plasma chemistry and ion energy in cathodic arc plasma from Ti-Si cathodes of different compositions2013In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 113, no 16Article in journal (Refereed)
    Abstract [en]

    Arc plasma from Ti-Si compound cathodes with up to 25 at. % Si was characterized in a DC arc system with respect to chemistry and charge-state-resolved ion energy. The plasma ion composition showed a lower Si content, diverging up to 12 at. % compared to the cathode composition, yet concurrently deposited films were in accordance with the cathode stoichiometry. Significant contribution to film growth from neutrals is inferred besides ions, since the contribution from macroparticles, estimated by scanning electron microscopy, cannot alone account for the compositional difference between cathode, plasma, and film. The average ion charge states for Ti and Si were higher than reference data for elemental cathodes. This result is likely related to TiSix phases of higher cohesive energies in the compound cathodes and higher effective electron temperature in plasma formation. The ion energy distributions extended up to ∼200 and ∼130 eV for Ti and Si, respectively, with corresponding average energies of ∼60 and ∼30 eV. These averages were, however, not dependent on Si content in the cathode, except for 25 at. % Si where the average energies were increased up to 72 eV for Ti and 47 eV for Si.

  • 232.
    Rech, S
    et al.
    Veneto Nanotech ScpA, Italy.
    Surpi, A
    Veneto Nanotech ScpA, Italy.
    Vezzu, S
    Veneto Nanotech ScpA, Italy.
    Patelli, A
    Veneto Nanotech ScpA, Italy.
    Trentin, A
    Veneto Nanotech ScpA, Italy.
    Glor, J
    Sandvik Mat Technology, Sweden.
    Frodelius, Jenny
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Cold-spray deposition of Ti2AlC coatings2013In: Vacuum, ISSN 0042-207X, E-ISSN 1879-2715, Vol. 94, p. 69-73Article in journal (Refereed)
    Abstract [en]

    Ti2AlC coatings have been fabricated by cold-spray deposition. The microstructure evolution as a function of basic spray parameters temperature and pressure onto AA6060 aluminium alloy and 1.0037 steel substrates has been studied. Adherent and dense 50–80 μm thick Ti2AlC coatings were deposited on soft AA6060 substrates under gas temperature and pressure of 600 °C and 3.4 MPa, respectively, whilst comparable results were obtained on harder 1.0037 steel by using higher temperature (800 °C) and pressure (3.9 MPa).

  • 233.
    Furlan, Andrej
    et al.
    Uppsala University, Sweden.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Jonsson, Ulf
    Uppsala University, Sweden.
    Control of crystallinity in sputtered Cr–Ti–C films2013In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 61, no 17, p. 6352-6361Article in journal (Refereed)
    Abstract [en]

    The influence of Ti content on crystallinity and bonding of Cr–Ti–C thin films deposited by magnetron sputtering have been studied by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and Raman spectroscopy. Our results show that binary Cr–C films without Ti exhibit an amorphous structure with two non-crystalline components; amorphous CrCx and amorphous C (a-C). The addition of 10–20 at.% Ti leads to the crystallization of the amorphous CrCx and the formation of a metastable cubic (Cr1−xTix)Cy phase. The observation was explained based on the tendency of the 3d transition metals to form crystalline carbide films. The mechanical properties of the films determined by nanoindentation and microindentation were found to be strongly dependent on the film composition in terms of hardness, elasticity modulus, hardness/elasticity ratio and crack development.

  • 234.
    Khromov, Sergey
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Monemar, Bo
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Avrutin, V.
    Department of Electrical Engineering and Physics Department, Virginia Commonwealth University, Virginia, USA.
    Morkoc, H.
    Department of Electrical Engineering and Physics Department, Virginia Commonwealth University, Virginia, USA.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Pozina, Galia
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Correlation between Si doping and stacking fault related luminescence in homoepitaxial m-plane GaN2013In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 103, p. 192101-Article in journal (Refereed)
    Abstract [en]

    Si-doped GaN layers grown by metal organic vapor phase epitaxy on m-plane GaN substrates were investigated by low-temperature cathodoluminescence (CL). We have observed stacking fault (SF) related emission in the range of 3.29–3.42 eV for samples with moderate doping, while for the layers with high concentration of dopants, no CL lines related to SFs have been noted. Perturbation of the SF potential profile by neighboring impurity atoms can explain localization of excitons at SFs, while this effect would vanish at high doping levels due to screening.

  • 235.
    Khranovskyy, Volodymyr
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Glushenkov, Alexey M.
    Deakin University, Australia .
    Chen, Y
    Deakin University, Australia .
    Khalid, A
    Trinity Coll Dublin, Ireland .
    Zhang, H
    Trinity Coll Dublin, Ireland .
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Monemar, Bo
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Crystal phase engineered quantum wells in ZnO nanowires2013In: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 24, no 21Article in journal (Refereed)
    Abstract [en]

    We report the fabrication of quantum wells in ZnO nanowires (NWs) by a crystal phase engineering approach. Basal plane stacking faults (BSFs) in the wurtzite structure can be considered as a minimal segment of zinc blende. Due to the existing band offsets at the wurtzite (WZ)/zinc blende (ZB) material interface, incorporation of a high density of BSFs into ZnO NWs results in type II band alignment. Thus, the BSF structure acts as a quantum well for electrons and a potential barrier for holes in the valence band. We have studied the photoluminescence properties of ZnO NWs containing high concentrations of BSFs in comparison to high-quality ZnO NWs of pure wurtzite structure. It is revealed that BSFs form quantum wells in WZ ZnO nanowires, providing an additional luminescence peak at 3.329 eV at 4 K. The luminescence mechanism is explained as an indirect exciton transition due to the recombination of electrons in the QW conduction band with holes localized near the BSF. The binding energy of electrons is found to be around 100 meV, while the excitons are localized with the binding energy of holes of ~5 meV, due to the coupling of BSFs, which form QW-like structures.

  • 236.
    Lu, Jun
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Gao, Xindong
    Uppsala University, Sweden .
    Zhang, Shi-Li
    Uppsala University, Sweden .
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Crystallization of NiSix in a Body-Centered Cubic Structure during Solid-State Reaction between an Ultrathin Ni Film and Si(001) Substrate at 150-350 degrees C2013In: Crystal Growth & Design, ISSN 1528-7483, E-ISSN 1528-7505, Vol. 13, no 5, p. 1801-1806Article in journal (Refereed)
    Abstract [en]

    We investigate ultrathin silicide formation during a solid-state reaction between Ni layers and Si(001) substrates by aberration-corrected electron microscopy. Interdiffusion of two nm thick (equivalent) Ni layers with Si during magnetron-sputter deposition results in an amorphous Ni-Si solid solution. Upon annealing at 150-350 degrees C, a novel body-centered cubic (bcc) NiSix phase is found to grow epitaxially with a crystallographic relationship {100}andlt; 001 andgt; bcc-NiSix//{100}andlt; 001 andgt; Si. bcc-NiSix belongs to the space group I (4) over bar 3m (217) with random Ni and Si distribution. The cell parameter is 0.272 nm, which is approximately half that of NiSi2. Further annealing transforms bcc-NiSi to NiSi2 with an activation energy of 0.6 +/- 0.1 eV.

  • 237.
    Stefanescu, I
    et al.
    Technical University of Munich, Germany .
    Abdullahi, Y
    Technical University of Munich, Germany .
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Defendi, I
    Technical University of Munich, Germany .
    Hall-Wilton, R
    European Spallat Source ESS AB, Sweden .
    Höglund, Carina
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Seiler, D
    Technical University of Munich, Germany .
    Zeitelhack, K
    Technical University of Munich, Germany .
    Development of a novel macrostructured cathode for large-area neutron detectors based on the B-10-containing solid converter2013In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 727, p. 109-125Article in journal (Refereed)
    Abstract [en]

    We present a novel design for a macrostructured cathode that can be coated with a thin layer of the B-10 solid converter and mounted to replace the Boron-lined flat parallel plates of a proportional counter used for slow neutron detection. The proposed design consists of a 3D regular pattern exhibiting millimeter deep grooves with an opening angle of alpha = 45 degrees, which could be created in the substrate material by milling or forming. When a commonly used coating method like magnetron sputtering is employed to deposit the Boron-layer, due to the line-of-sight distribution of the ions, the thickness of the coating on the side of the grooves will be reduced by a factor similar to sin alpha/2 with respect to the thickness of the layer deposited on a flat surface normal to the ion flux. The effective neutron absorption film thickness is in this case similar for the sidewalls of the grooves and a surface at normal incidence, yielding comparable absorption efficiencies. However, the escape efficiency for the reaction products is higher for the sidewalls, owing to the thinner coating. This leads to a higher overall detection efficiency for the grooved cathode when compared to a flat cathode with the same surface area and coated with a Boron layer with roughly the same thickness. In this paper we present and discuss the GEANT4 simulations performed to optimize the geometry of the cathode, the manufacturing and coating by magnetron sputtering, as well as the proof-of-principle measurements carried out in order to assess the performance of the proposed design.

  • 238.
    Khromov, Sergey
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hemmingsson, Carl
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Monemar, Bo
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Pozina, Galia
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Effect of C-doping on near-band gap luminescence in bulk GaN substrates grown by halide vapor phase epitaxy2013Manuscript (preprint) (Other academic)
    Abstract [en]

    Freestanding bulk C-doped GaN substrates grown by halide vapor phase epitaxy were studied by optical spectroscopy and electron microscopy. In cathodoluminescence (CL) the yellow line (YL) was more intense in samples with higher C content and stable in the temperature range 5-300 K. CL mapping in situ a scanning electron microscope revealed pitlike structure of the layers with higher YL intensity in the pits related to higher local oxygen incorporation. Near bandgap (NBG) emission studies of the pits revealed donor-bound excitons (DBE) with broad emission and no significant acceptor bound exciton (ABE) emission. Pit-free areas demonstrate two well-resolved ABEs with DBE quenched. Quenching of the DBE is explained by potential fluctuations in the vicinity of the carbon atoms in the pits-free regions lowering the ionization barrier for DBE.

  • 239.
    Zavaleyev, V.
    et al.
    Koszalin University of Technology, Poland .
    Walkowicz, J.
    Koszalin University of Technology, Poland .
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Effect of substrate temperature on properties of diamond-like films deposited by combined DC impulse vacuum-arc method2013In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 236, p. 444-449Article in journal (Refereed)
    Abstract [en]

    DLC thin films have been deposited using a combined DC and high power impulse vacuum-arc process. Hardness and adhesion of the obtained films deposited at different substrate temperature were studied using nanohardness testing and the scratch tester REVETEST (R). The bonding structure of as-deposited films was analyzed by Raman scattering and X-ray photoelectron spectroscopy. The results show that the substrate temperature is one of the main parameters influencing the sp(3)-to-sp(2) ratio of carbon atom bonds in the coatings, which in turn affects the films mechanical properties. XRD analysis shows that a CrxCy interfacial layer forms at 280 degrees C. which reduces the adhesion properties of the DLC coatings. High quality DLC coatings are obtained by control of the specimen temperature below 280 degrees C using a sensor that is in direct contact with the substrate.

  • 240.
    Mei, A B
    et al.
    University of Illinois, IL 61801 USA .
    Rockett, A
    University of Illinois, IL 61801 USA .
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Petrov, I
    University of Illinois, IL 61801 USA .
    Greene, J E
    University of Illinois, IL 61801 USA .
    Electron/phonon coupling in group-IV transition-metal and rare-earth nitrides2013In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 114, no 19, p. 193708-Article in journal (Refereed)
    Abstract [en]

    Transport electron/phonon coupling parameters and Eliashberg spectral functions alpha F-2(tr)((h) over bar omega) are determined for group-IV transition-metal (TM) nitrides TiN, ZrN, and HfN, and the rare-earth (RE) nitride CeN using an inversion procedure based upon temperature-dependent (4 andlt; T andlt; 300 K) resistivity measurements of high-crystalline-quality stoichiometric epitaxial films grown on MgO(001) by magnetically-unbalanced reactive magnetron sputtering. Transport electron/phonon coupling parameters lambda(tr) vary from 1.11 for ZrN to 0.82 for HfN, 0.73 for TiN, and 0.44 for CeN. The small variation in lambda(tr) among the TM nitrides and the weak coupling in CeN are consistent with measured superconducting transition temperatures 10.4 (ZrN), 9.18 (HfN), 5.35 (TiN), and andlt; 4 K for CeN. The Eliashberg spectral function describes the strength and energy spectrum of electron/phonon coupling in conventional superconductors. Spectral peaks in alpha F-2(andlt;(h)over barandgt;omega), corresponding to regions in energy-space for which electrons couple to acoustic (h) over bar omega(ac) and optical (h) over bar omega(op) phonon modes, are centered at (h) over bar omega(ac) = 33 and (h) over bar omega(op) = 57 meV for TiN, 25 and 60 meV for ZrN, 18 and 64 meV for HfN, and 21 and 39 meV for CeN. The acoustic modes soften with increasing cation mass; optical mode energies remain approximately constant for the TM nitrides, but are significantly lower for the RE nitride due to a lower interatomic force constant. Optical/acoustic peak-intensity ratios are 1.15 +/- 0.1 for all four nitrides, indicating similar electron/phonon coupling strengths alpha(tr)((h) over bar omega) for both modes.

  • 241.
    Kindlund, Hanna
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Petrov, Ivan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Greene, Joseph E.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Epitaxial V0.6W0.4N/MgO(001): Evidence for ordering on the cation sublattice2013In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 31, no 4Article in journal (Refereed)
    Abstract [en]

    V0.6W0.4N alloys are grown on MgO(001) by ultrahigh vacuum reactive magnetron sputtering from V and W targets in 10 mTorr pure-N-2 atmospheres at temperatures T-s ranging from 600 to 900 degrees C. Based on x-ray diffraction and transmission electron microscopy results, all films have the B1-NaCl crystal structure and grow with a cube-on-cube epitaxial relationship to the substrate, (001)(VWN)parallel to(001)(MgO) and [100](VWN parallel to)[100](MgO). Rutherford backscattering spectrometry analyses show that the N content in V0.6W0.4Nx alloys decreases with increasing T-s from overstoichiometric with x = 1.13 at 600 degrees C, to approximately stoichiometric with x = 1.08 at 700 degrees C, to understoichiometric at 800 degrees C (x = 0.80) and 900 degrees C (x = 0.75). High-resolution scanning transmission electron microscopy, Z-contrast, and selected-area electron diffraction investigations of V0.6W0.4N(001) alloys grown at 600 and 700 degrees C reveal the onset of W ordering on adjacent 111 planes of the metal sublattice; no ordering is observed for understoichiometric films grown at higher temperatures.

  • 242.
    Jamshidi, A
    et al.
    Nocilis Mat, Sweden .
    Noroozi, M
    KTH Royal Institute Technology, Sweden .
    Moeen, M
    Nocilis Mat, Sweden .
    Hallen, A
    KTH Royal Institute Technology, Sweden .
    Hamawandi, B
    KTH Royal Institute Technology, Sweden .
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Ostling, M
    KTH Royal Institute Technology, Sweden .
    Radamson, H
    KTH Royal Institute Technology, Sweden .
    Growth of GeSnSiC layers for photonic applications2013In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 230, p. 106-110Article in journal (Refereed)
    Abstract [en]

    This work presents epitaxial growth of intrinsic and doped GeSnSiC layers using Ge2H6, SnCl4, CH3SiH3, B2H6, PH3 and Si2H6 deposited at 290-380 degrees C on strain relaxed Ge buffer layer or Si substrate by using reduced pressure chemical vapor deposition (RPCVD) technique. The GeSnSi layers were compressively strained on Ge buffer layer and strain relaxed on Si substrate. It was demonstrated that the quality of epitaxial layers is dependent on the growth parameters and that the Sn content in epi-layers could be tailored by growth temperature. The Sn segregation caused surface roughness which was decreased by introducing Si and Si-C into Ge layer. less thanbrgreater than less thanbrgreater thanThe Sn content in GeSn was carefully determined from the mismatch, both parallel and perpendicular, to the growth direction when the Poisson ratio was calculated for a certain Ge-Sn composition. The X-ray results were excellently consistent with Rutherford Backscattered Spectroscopy (RBS). Strain relaxed GeSn layers were also used as virtual substrate to grow tensile-strained Ge layers. The Ge cap layer had low defect density and smooth surface which makes it a viable candidate material for future photonic applications.

  • 243.
    Fager, Hanna
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Andersson, J. M.
    Seco Tools AB, SE-737 82 Fagersta, Sweden.
    Johansson, Mats
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Odén, Magnus
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Growth of Hard Amorphous Ti-Al-Si-N Thin Films by Cathodic Arc Evaporation2013In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 235, no 25, p. 376-385Article in journal (Refereed)
    Abstract [en]

    Ti(1−x−y)AlxSiyNz (0.02≤x≤0.46, 0.02≤y≤0.28, and 1.08≤z≤1.29) thin films were grown on cemented carbide substrates in an industrial scale cathodic arc evaporation system using Ti-Al-Si compound cathodes in a N2 atmosphere. The microstructure of the as-deposited films changes from nanocrystalline to amorphous by addition of Al and Si to TiN. Upon incorporation of 12 at% Si and 18 at% Al, the films assume an x-ray amorphous state. Post-deposition anneals show that the films are thermally stable up to 900 ◦C. The films exhibit age hardening up to 1000 ◦C with an increase in hardness from 21.9 GPa for as-deposited films to 31.6 GPa at 1000 ◦C. At 1100 ◦C severe out-diffusion of Co and W from the substrate occur, and the films recrystallize into c-TiN and w-AlN.

  • 244.
    Jouanny, I
    et al.
    University of Calif Los Angeles, CA USA .
    Palisaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Ngo, C
    University of Calif Los Angeles, CA USA .
    Mayrhofer, P H.
    Vienna University of Technology, Austria .
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Persson, Per O A .
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Kodambaka, S
    University of Calif Los Angeles, CA USA .
    In situ transmission electron microscopy studies of the kinetics of Pt-Mo alloy diffusion in ZrB2 thin films2013In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 103, no 12Article in journal (Refereed)
    Abstract [en]

    Using in situ high-temperature (1073–1173 K) transmission electron microscopy, we investigated the thermal stability of Pt and Mo in contact with polycrystalline ZrB2 thin films deposited on Al 2O3(0001). During annealing, we observed the diffusion of cubic-structured Pt1− x Mo x (with x = 0.2 ± 0.1) along the length of the ZrB2 layer. From the time-dependent increase in diffusion lengths, we determined that the Pt1− x Mo x does not react with ZrB2, but diffuses along the surface with a constant temperature-dependent velocity. We identify the rate-limiting step controlling the observed phenomenon as the flux of Mo atoms with an associated activation barrier of 3.8 ± 0.5 eV.

  • 245.
    Schmidt, Susann
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Czigany, Zsolt
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Influence of inert gases on the reactive high power pulsed magnetron sputtering process of carbon-nitride thin films2013In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 31, no 1, p. 011503-Article in journal (Refereed)
    Abstract [en]

    The influence of inert gases (Ne, Ar, Kr) on the sputter process of carbon and carbon-nitride (CNx) thin films was studied using reactive high power pulsed magnetron sputtering (HiPIMS). Thin solid films were synthesized in an industrial deposition chamber from a graphite target. The peak target current during HiPIMS processing was found to decrease with increasing inert gas mass. Time averaged and time resolved ion mass spectroscopy showed that the addition of nitrogen, as reactive gas, resulted in less energetic ion species for processes employing Ne, whereas the opposite was noticed when Ar or Kr were employed as inert gas. Processes in nonreactive ambient showed generally lower total ion fluxes for the three different inert gases. As soon as N-2 was introduced into the process, the deposition rates for Ne and Ar-containing processes increased significantly. The reactive Kr-process, in contrast, showed slightly lower deposition rates than the nonreactive. The resulting thin films were characterized regarding their bonding and microstructure by x-ray photoelectron spectroscopy and transmission electron microscopy. Reactively deposited CNx thin films in Ar and Kr ambient exhibited an ordering toward a fullerene-like structure, whereas carbon and CNx films deposited in Ne atmosphere were found to be amorphous. This is attributed to an elevated amount of highly energetic particles observed during ion mass spectrometry and indicated by high peak target currents in Ne-containing processes. These results are discussed with respect to the current understanding of the structural evolution of a-C and CNx thin films.

  • 246.
    Zhu, Jianqiang
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Johansson Jöesaar, Mats P.
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology. Seco Tools, Fagersta, Sweden.
    Polcik, Peter
    PLANSEE Composite Materials GmbH.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Odén, Magnus
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Influence of Ti-Si cathode grain size on the cathodic arc process and resulting Ti-Si-N coatings2013In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 235, no 25, p. 637-647Article in journal (Refereed)
    Abstract [en]

    The influence of the Ti-Si cathode grain size on cathodic arc processes and resulting Ti-Si-N coating synthesis has been studied. 63 mm Ti-Si cathodes containing 20-25 at % Si with four dedicated grain size of ~8 µm, ~20 µm, ~110 µm, and ~600 µm were fabricated via spark plasma sintering or hot isostatic pressing. They were evaporated in 2 Pa nitrogen atmosphere in an industrial-scale arc deposition system and the Ti-Si-N coatings were grown at 50 A, 70 A, and 90 A arc current. The composition and microstructure of the virgin and worn cathode surfaces as well as the resulting coatings were characterized using optical and electron microscopy, x-ray diffraction, elastic recoil detection analysis, x-ray photoelectron spectroscopy, and nanoindentation. The results show that the existence of multiple phases with different work function values directly influences the cathode spot ignition behavior and also the arc movement and appearance. Specifically, there is a preferential erosion of the Ti5Si3-phase grains. By increasing the grain size of the virgin cathode, the preferential erosion is enhanced, such that the cathode surface morphology roughens substantially after 600 Ah arc discharging. The deposition rate of the Ti-Si-N coating is increased with decreasing grain size of the evaporated Ti-Si cathodes. The composition, droplet density, and droplet shape of the coatings are influenced by the arc movement, which is also shown to depend on the cathode grain size.

  • 247.
    Olsson, Simon
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Garbrecht, Magnus
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Eriksson, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Ion-assisted Growth of Quasicrystalline Cu-Al-Sc Directly from the Vapor Phase2013Manuscript (preprint) (Other academic)
    Abstract [en]

    Ion assisted depositions have been used to grow the Al38Cu46Sc16 quasicrystalline phase directly from the vapor phase in thin film form. Diffraction experiments reveal that amorphous films are formed at room temperature. The quasicrystalline phase formed at a substrate temperature of 340 °C with an improved quality at higher temperatures up to 460 °C. The quasicrystal film quality is improved by increasing the ion flux during ion-assisted growth with ion energies of 26.7 eV. Increasing the ion energy further was however found to cause resputtering and defects in the film. Electron microscopy reveals a polycrystalline microstructure with crystal grains in the shape of thin needles.

  • 248.
    Kodambaka, S
    et al.
    University of Calif Los Angeles, CA USA.
    Ngo, C
    University of Calif Los Angeles, CA USA.
    Palisaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Mayrhofer, P H.
    Vienna University of Technology, Austria.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Persson, Per O A
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Kinetics of Ga droplet decay on thin carbon films2013In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 102, no 16Article in journal (Refereed)
    Abstract [en]

    Using in situ transmission electron microscopy, we investigated the kinetics of liquid Ga droplet decay on thin amorphous carbon films during annealing at 773 K. The transmission electron microscopy images reveal that liquid Ga forms spherical droplets and undergo coarsening/decay with increasing time. We find that the droplet volumes change non-linearly with time and the volume decay rates depend on their local environment. By comparing the late-stage decay behavior of the droplets with the classical mean-field theory model for Ostwald ripening, we determine that the decay of Ga droplets occurs in the surface diffusion limited regime.

  • 249.
    Monemar, Bo
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Khromov, Sergey
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Pozina, Galia
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Paskov, Plamen
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Bergman, Peder
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Hemmingsson, Carl
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Amano, Hiroshi
    Nagoya University, Japan.
    Avrutin, Vitaliy
    Virginia Commonwealth University, VA USA.
    Li, Xing
    Virginia Commonwealth University, VA USA.
    Morkoc, Hadis
    Virginia Commonwealth University, VA USA.
    Luminescence of Acceptors in Mg-Doped GaN2013In: Japanese Journal of Applied Physics, ISSN 0021-4922, E-ISSN 1347-4065, Vol. 52, no 8Article in journal (Refereed)
    Abstract [en]

    Recent photoluminescence (PL) data for Mg-doped GaN at 2 K are discussed, with reference to published theoretical calculations of the electronic level structure. It is concluded that the typical PL peaks at 3.466 eV (acceptor bound exciton ABE1) and the broader 3.27 eV donor-acceptor pair (DAP) PL are the expected standard PL signatures of the substitutional Mg acceptor. Additional broader peaks at 3.455 eV (ABE2) and 3.1 eV are suggested to be related to the same acceptors perturbed by nearby basal plane stacking faults. The low temperature metastability of PL spectra is assigned to a nonradiative metastable deep level.

  • 250.
    Pettersson, M
    et al.
    Uppsala University, Sweden.
    Tkachenko, S
    Uppsala University, Sweden.
    Schmidt, Susann
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Berlind, Torun
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Jacobson, S
    Uppsala University, Sweden.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Engqvist, H
    Uppsala University, Sweden.
    Persson, C
    Uppsala University, Sweden.
    Mechanical and tribological behavior of silicon nitride and silicon carbon nitride coatings for total joint replacements2013In: Journal of The Mechanical Behavior of Biomedical Materials, ISSN 1751-6161, E-ISSN 1878-0180, Vol. 25, p. 41-47Article in journal (Refereed)
    Abstract [en]

    Total joint replacements currently have relatively high success rates at 10–15 years; however, increasing ageing and an active population places higher demands on the longevity of the implants. A wear resistant configuration with wear particles that resorb in vivo can potentially increase the lifetime of an implant. In this study, silicon nitride (SixNy) and silicon carbon nitride (SixCyNz) coatings were produced for this purpose using reactive high power impulse magnetron sputtering (HiPIMS). The coatings are intended for hard bearing surfaces on implants. Hardness and elastic modulus of the coatings were evaluated by nanoindentation, cohesive, and adhesive properties were assessed by micro-scratching and the tribological performance was investigated in a ball-on-disc setup run in a serum solution. The majority of the SixNy coatings showed a hardness close to that of sintered silicon nitride (∼18 GPa), and an elastic modulus close to that of cobalt chromium (∼200 GPa). Furthermore, all except one of the SixNy coatings offered a wear resistance similar to that of bulk silicon nitride and significantly higher than that of cobalt chromium. In contrast, the SixCyNz coatings did not show as high level of wear resistance.

2345678 201 - 250 of 712
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf