liu.seSearch for publications in DiVA
Change search
Refine search result
2345678 201 - 250 of 454
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 201.
    Teixeira, A.I.
    et al.
    Karolinska Institute.
    Ilkhanizadeh, S.
    Karolinska Institute.
    Wigenius, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Duckworth, J.K.
    Karolinska Institute.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Hermanson, O.
    Karolinska Institute.
    The promotion of neuronal maturation on soft substrates2009In: Biomaterials, ISSN 0142-9612, Vol. 30, no 27, p. 4567-4572Article in journal (Refereed)
    Abstract [en]

    Microenvironmental mechanical properties of stem cell niches vary across tissues and developmental stages. Accumulating evidence suggests that matching substrate elasticity with in vivo tissue elasticity facilitates stem cell differentiation. However, it has not been established whether substrate elasticity can control the maturation stage of cells generated by stem cell differentiation. Here we show that soft substrates with elasticities commensurable to the elasticity of the brain promote the maturation of neural stem cell-derived neurons. In the absence of added growth factors, neurons differentiated on soft substrates displayed long neurites and presynaptic terminals, contrasting with the bipolar immature morphology of neurons differentiated on stiff substrates. Further, soft substrates supported an increase in astrocytic differentiation. However, stiffness cues could not override the dependency of astrocytic differentiation on Notch signaling. These results demonstrate that substrate elasticity per se can drive neuronal maturation thus defining a crucial parameter in neuronal differentiation of stem cells.

  • 202.
    Asplund, M
    et al.
    Royal Institute Technology.
    Thaning, E
    Royal Institute Technology.
    Lundberg, J
    Karolinska University Hospital.
    Sandberg-Nordqvist, A C
    Karolinska University Hospital.
    Kostyszyn, B
    Karolinska University Hospital.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    von Holst, H
    Royal Institute Technology.
    Toxicity evaluation of PEDOT/biomolecular composites intended for neural communication electrodes2009In: BIOMEDICAL MATERIALS, ISSN 1748-6041, Vol. 4, no 4, p. 045009-Article in journal (Refereed)
    Abstract [en]

    Electrodes coated with the conducting polymer poly(3,4-ethylene dioxythiophene) (PEDOT) possess attractive electrochemical properties for stimulation or recording in the nervous system. Biomolecules, added as counter ions in electropolymerization, could further improve the biomaterial properties, eliminating the need for surfactant counter ions in the process. Such PEDOT/biomolecular composites, using heparin or hyaluronic acid, have previously been investigated electrochemically. In the present study, their biocompatibility is evaluated. An agarose overlay assay using L929 fibroblasts, and elution and direct contact tests on human neuroblastoma SH-SY5Y cells are applied to investigate cytotoxicity in vitro. PEDOT: heparin was further evaluated in vivo through polymer-coated implants in rodent cortex. No cytotoxic response was seen to any of the PEDOT materials tested. The examination of cortical tissue exposed to polymer-coated implants showed extensive glial scarring irrespective of implant material (Pt:polymer or Pt). However, quantification of immunological response, through distance measurements from implant site to closest neuron and counting of ED1+ cell density around implant, was comparable to those of platinum controls. These results indicate that PEDOT: heparin surfaces were non-cytotoxic and show no marked difference in immunological response in cortical tissue compared to pure platinum controls.

  • 203.
    Nemec, Hynek
    et al.
    Lund University.
    Nienhuys, Han-Kwang
    FOM.
    Perzon, Erik
    Chalmers.
    Zhang, Fengling
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Kuzel, Petr
    Acad Sci Czech Republic.
    Sundstrom, Villy
    Lund University.
    Ultrafast conductivity in a low-band-gap polyphenylene and fullerene blend studied by terahertz spectroscopy2009In: PHYSICAL REVIEW B, ISSN 1098-0121, Vol. 79, no 24, p. 245326-Article in journal (Refereed)
    Abstract [en]

    Time-resolved terahertz spectroscopy and Monte Carlo simulations of charge-carrier motion are used to investigate photoinduced transient conductivity in a blend of a low-band-gap polyphenylene copolymer and fullerene derivative. The optical excitation pulse generates free holes delocalized on polymer chains. We show that these holes exhibit a very high initial mobility as their initial excess energy facilitates their transport over defects (potential barriers) on polymer chains. The conductivity then drops down rapidly within 1 ps, and we demonstrate that this decrease occurs essentially by two mechanisms. First, the carriers loose their excess energy and they thus become progressively localized between the on-chain potential barriers-this results in a mobility decay with a rate of (180 fs)(-1). Second, carriers are trapped at defects (potential wells) with a capture rate of (860 fs)(-1). At longer time scales, populations of mobile and trapped holes reach a quasiequilibrium state and further conductivity decrease becomes very slow. .

  • 204.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Alternative Geometries for Organic Solar Cells - Folded Tandems and Transparent Stacks2008In: Universitet Groningen,2008, 2008Conference paper (Other academic)
  • 205.
    Nemec, H.
    et al.
    Nemec, H., Department of Chemical Physics, Lund University, Getingevdgen 60, 222 41 Lund, Sweden.
    Nienhuys, H.-K.
    Institute for Atomic and Molecular Physics, Kruislaan 407, 1098SJ Amsterdam, Netherlands.
    Zhang, Fengling
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Yartsev, A.
    Department of Chemical Physics, Lund University, Getingevdgen 60, 222 41 Lund, Sweden.
    Sundstrom, V.
    Sundström, V., Department of Chemical Physics, Lund University, Getingevdgen 60, 222 41 Lund, Sweden.
    Charge carrier dynamics in alternating polyfluorene copolymer: Fullerene blends probed by terahertz spectroscopy2008In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 112, no 16, p. 6558-6563Article in journal (Refereed)
    Abstract [en]

    Time-resolved terahertz spectroscopy is used for investigation of photoinduced charge carrier dynamics in blends of a polyfluorene copolymer (poly[2,7-(9,9-dioctyl-fluorene)-alt-5,5-(4',7'-di-2-thienyl- 2',1',3-benzo-thiadiazole)]) and an electron acceptor ([6,6]-phenyl-C61-butyric acid methyl ester). The transient far-infrared response appears instantaneously after photoexcitation. We show that the transient conductivity spectrum is dominated by two major contributions: response of separated charge carriers and response of coupled polaron pairs. © 2008 American Chemical Society.

  • 206.
    Andersson, Viktor
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    Persson, Nils-Krister
    School of Engineering, Swedish School of Textiles, University College of Borås, SE-501 90 Borås, Sweden.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Comparative study of organic thin film tandem solar cells in alternative geometries2008In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 104, no 12, p. 124508-Article in journal (Refereed)
    Abstract [en]

    Optical modeling of one folded tandem solar cell and four types of stacked tandem solar cells has been performed using the finite element method and the transfer matrix method for the folded cell and the stacked cells, respectively. The results are analyzed by comparing upper limits for short circuit currents and power conversion efficiencies. In the case of serial connected tandems all of the five cell types may be compared, and we find that the folded cells are comparable to stacked tandem cells in terms of currents and power conversion efficiencies.

  • 207.
    Asplund, Maria
    et al.
    Royal Institute of Technology, Sweden.
    von Holst, Hans
    Royal Institute of Technology, Sweden.
    Inganäs , Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Composite biomolecule/PEDOT materials for neural electrodes2008In: BIOINTERPHASES, ISSN 1559-4106 , Vol. 3, no 3, p. 83-93Article in journal (Refereed)
    Abstract [en]

    Electrodes intended for neural communication must be designed to meet both the electrochemical and biological requirements essential for long term functionality. Metallic electrode materials have been found inadequate to meet these requirements and therefore conducting polymers for neural electrodes have emerged as a field of interest. One clear advantage with polymer electrodes is the possibility to tailor the material to have optimal biomechanical and chemical properties for certain applications. To identify and evaluate new materials for neural communication electrodes, three charged biomolecules, fibrinogen, hyaluronic acid (HA), and heparin are used as counterions in the electrochemical polymerization of poly (3,4-ethylenedioxythiophene) (PEDOT). The resulting material is evaluated electrochemically and the amount of exposed biomolecule on the surface is quantified. PEDOT: biomolecule surfaces are also studied with static contact angle measurements as well as scanning electron microscopy and compared to surfaces of PEDOT electrochemically deposited with surfactant counterion polystyrene sulphonate (PSS). Electrochemical measurements show that PEDOT: heparin and PEDOT: HA, both have the electrochemical properties required for neural electrodes, and PEDOT: heparin also compares well to PEDOT: PSS. PEDOT: fibrinogen is found less suitable as neural electrode material.

  • 208.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Conjugated Polymers and Polyelectrolytes as Probes of Biomolecules and Biosystems2008In: Gordon Conference,2008, 2008Conference paper (Other academic)
  • 209.
    Asplund, Maria
    et al.
    Neuronic Engineering, School of Technology and Health, Royal Institute of Technology, Alfred Nobels Allé 10, 146 57 Huddinge, Stockholm, Sweden.
    Hamedi, Mahiar
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Forchheimer, Robert
    Linköping University, Department of Electrical Engineering, Image Coding. Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Holst, Hans von
    Neuronic Engineering, School of Technology and Health, Royal Institute of Technology, Alfred Nobels Allé 10, 146 57 Huddinge, Stockholm, Sweden/Division of Clinical Neuroscience, Section Neurosurgery, Karolinska Institutet, Stockholm, Sweden.
    Construction of wire electrodesand 3D woven logicas a potential technology forneuroprosthetic implants2008In: IEEE Transactions on Biomedical Engineering, ISSN 0018-9294, E-ISSN 1558-2531Article in journal (Other academic)
    Abstract [en]

    New strategies to improve neuron coupling to neuroelectronic implants are needed. In particular, tomaintain functional coupling between implant and neurons, foreign body response like encapsulation must meminimized. Apart from modifying materials to mitigate encapsulation it has been shown that with extremely thinstructures, encapsulation will be less pronounced. We here utilize wire electrochemical transistors (WECTs) usingconducting polymer coated fibers. Monofilaments down to 10 μm can be successfully coated and weaved intocomplex networks with built in logic functions, so called textile logic. Such systems can control signal patterns at alarge number of electrode terminals from a few addressing fibres. Not only is fibre size in the range where lessencapsulation is expected but textiles are known to make successful implants because of their soft and flexiblemechanical properties. Further, textile fabrication provides versatility and even three dimensional networks arepossible. Three possible architectures for neuroelectronic systems are discussed. WECTs are sensitive to dehydrationand materials for better durability or improved encapsulation is needed for stable performance in biologicalenvironments.

  • 210.
    Herland, Anna
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Thomsson, Daniel
    University of Lund.
    Mirzov, Oleg
    University of Lund.
    Scheblykin, Ivan G.
    University of Lund.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Decoration of amyloid fibrils with luminescent conjugated polymers2008In: Journal of Materials Chemistry, ISSN 0959-9428, E-ISSN 1364-5501, Vol. 18, no 1, p. 126-132Article in journal (Refereed)
    Abstract [en]

    In this work we report the coating of a biological template with a polar, but uncharged, luminescent conjugated polymer, soluble in organic solvents but not in water, to produce a nanowire. Amyloid fibrils from bovine insulin were decorated with an alternating polyfluorene derivative. Decorated fibrils were partially aligned on hydrophobic surfaces as separate and bundled fibrils, by means of molecular combing. The single molecule spectroscopy technique utilizing excitation by rotating linearly polarized light and fluorescence detection through a rotating polarizer showed a high degree of anisotropy of the polymer chains on the individual fibrils. The high degree of polarization indicated highly oriented polymer chains with the preferential orientation of the polymer backbone along the fibrils. The anisotropy ratios are comparable with those of well-oriented polymer chains in films. © The Royal Society of Chemistry.

  • 211.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Device Design and Designer Polymers for Tandem Solar Cells2008In: Materials Research Society, Fall Meeting,2008, 2008Conference paper (Other academic)
  • 212.
    Wang, Xiangjun
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Berggren, Magnus
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics.
    Dynamic Control of Surface Energy and Topography of Microstructured Conducting Polymer Films2008In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 24, p. 5942-5948Article in journal (Refereed)
    Abstract [en]

     Microstructured polymer surfaces, including conducting and insulating polymers, have been prepared to achieve electrochemical control of the surface energy and topography. The reported surface switches include pillar- and mesh-like surface patterns of polypyrrole (PPy), poly(3,4-ethylene-dioxythiophene) (PEDOT), and photoresists. The structures have been evaluated by contact angle measurements and optical and scanning electron microscopy to determine the surfaces characteristics. These microstructured polymer surface switches can be electrochemically modified from dewetting to wetting conditions, with a maximum associated change of the water contact angle from 129° to 44°. This contact angle switching was observed for samples in which dynamic control of the surface topography and surface tension was coupled. Control of topography was achieved with a dynamic height-switching range of more than 3 ìm. In addition, dynamic control of anisotropic wetting is reported. Our experiments were carried out under conditions that are suitable for a biointerface, implying potential application in biotechnology and cell science. In particular, switching of the energy, chemistry, and topography of the surface, along with their associated orientation, are interesting features for dynamic (electronic) control of the seeding and proliferation for living cells. The technology reported promises for electronically controlled cell-growth within Petri dishes, well plates, and other cell-hosting tools. 

  • 213.
    Hamedi, Mahiar
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Herland, Anna
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Karlsson, Roger H
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Electrochemical Devices Made from Conducting Nanowire Networks Self-Assembled from Amyloid Fibrils and Alkoxysulfonate PEDOT2008In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 8, no 6, p. 1736-1740Article in journal (Refereed)
    Abstract [en]

    Proteins offer an almost infinite number of functions and geometries for building nanostructures. Here we have focused on amyloid fibrillar proteins as a nanowire template and shown that these fibrils can be coated with the highly conducting polymer alkoxysulfonate PEDOT through molecular self-assembly in water. Transmission electron microscopy and atomic force microscopy show that the coated fibers have a diameter around 15 nm and a length/thickness aspect ratio >1:1000 . We have further shown that networks of the conducting nanowires are electrically and electrochemically active by constructing fully functional electrochemical transistors with nanowire networks, operating at low voltages between 0 and 0.5 V.

  • 214.
    Tanaka, H.
    et al.
    Kyushu University.
    Herland, Anna
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Lindgren, L.J.
    Chalmers univeristy of Technology.
    Tsutsui, T.
    Kyushu University.
    Andersson, Mats R
    Chalmers univeristy of Technology.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Enhanced current efficiency from Bio-Organic light-emitting diodes using decorated amyloid fibrils with conjugated polymer2008In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 8, no 9, p. 2858-2861Article in journal (Refereed)
    Abstract [en]

    We demonstrate the use of self-assembled bionanostructures in polymer light-emitting diodes. Amyloid fibrils formed by protein misfolding were decorated with a soluble luminescent conjugated polymer. This conjugated polymer complex with amyloid fibrils was used as the active layer in a light emitting diode, resulting in a 10-fold increase in external quantum efficiency compared with pristine polymer, because of improved carrier injection. © 2008 American Chemical Society.

  • 215.
    De, Swati
    et al.
    Kemisk Fysik, Kemicentrum, Lunds Universitet, Lund, Sweden.
    Kesti, Tero
    Kemisk Fysik, Kemicentrum, Lunds Universitet, Lund, Sweden.
    Maiti, Manisankar
    Kemisk Fysik, Kemicentrum, Lunds Universitet, Lund, Sweden.
    Zhang, Fengling
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Yartsev, Arkady
    Kemisk Fysik, Kemicentrum, Lunds Universitet, Lund, Sweden.
    Pascher, Torbjörn
    Kemisk Fysik, Kemicentrum, Lunds Universitet, Lund, Sweden.
    Sundström, Villy
    Kemisk Fysik, Kemicentrum, Lunds Universitet, Lund, Sweden.
    Exciton Dynamics in Alternating Polyfluorene/Fullerene Blends2008In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 350, no 1-3, p. 14-22Article in journal (Refereed)
    Abstract [en]

    Exciton dynamics in alternating copolymer/fullerene solar cell blends have been investigated using femtosecond transient absorption spectroscopy. The acceptor concentrations have been varied over a wide range. Experimental data, kinetic modeling and simulations, all indicate that the efficiency of exciton conversion to charges is 100% even at acceptor concentrations as low as 20 wt%. The reported dependence of solar cell efficiency on fullerene concentration may thus arise from other factors. However, there exists an acceptor concentration threshold (5 wt%) below which a substantial fraction of the excitations remain unquenched. The results, we believe are very relevant to optimization of performance efficiency by clever manipulation of morphology. We have also observed exciton–exciton energy transfer in these blends at low acceptor concentrations.

  • 216.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Folded Reflective Multijunction Polymer Solar Cells2008In: Technologies for Printed Electronics,2008, 2008Conference paper (Other academic)
  • 217.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    From Modelling to Manufacturing-Plastic Photovoltaics should come cheap2008In: AGHSET Meeting-International Energy Association,2008, 2008Conference paper (Other academic)
  • 218.
    Zhang, Fengling
    et al.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Bijleveld, Johan
    Chalmers University.
    Perzon, Erik
    Chalmers University.
    Tvingstedt, Kristofer
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Barrau, Sophie
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Andersson , Mats R
    Chalmers University.
    High photovoltage achieved in low band gap polymer solar cells by adjusting energy levels of a polymer with the LUMOs of fullerene derivatives2008In: Journal of Materials Chemistry, ISSN 0959-9428, E-ISSN 1364-5501, Vol. 18, no 45, p. 5468-5474Article in journal (Refereed)
    Abstract [en]

    Solar cells based on organic molecules or conjugated polymers attract great attention due to their unique advantages, such as low cost, and their use in flexible devices, but are still limited by their low power conversion efficiency (PCE). To improve the PCEs of polymer solar cells, more efforts have been made to increase short-circuit current (J(sc)) or open-circuit voltage (V-oc). However, the trade-off between J(sc) and V-oc in bulk heterojunctions solar cells makes it tricky to find a polymer with a low band gap to efficiently absorb photons in the visible and near infrared region of the solar spectrum, while maintaining a high V-oc in solar cells. Therefore, it is crucial to design and synthesize polymers with energy levels aligning with the LUMO (lowest unoccupied molecular orbital) of an electron acceptor to minimize the LUMO level difference between donor and acceptor to keep enough driving force for charge generation, thereby maximizing photovoltage in solar cells. Here a novel copolymer APFO-Green 9 was synthesized. Polymer solar cells based on APFO-Green 9 blended with a derivative of fullerene demonstrate high photovoltage by fine tuning the HOMO and LUMO level of APFO-Green 9. Solar cells based on APFO-Green 9 and [6,6]-phenyl-C71-butyric acid methyl ester ([70]PCBM) present a photoresponse extended to 900 nm with J(sc) of 6.5 mA cm(-2), V-oc of 0.81 V and PCE of 2.3% under illumination of AM1.5 with light intensity of 100 mW cm(-2). As a low band gap polymer with a V-oc bigger than 0.8 V, APFO-Green 9 is a promising candidate for efficient tandem solar cells.

  • 219.
    Barrau, Sophie
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Zhang, Fengling
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Herland, Anna
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Mammo, W.
    Chalmers University of Technology.
    Andersson, Mats R.
    Chalmers University of Technology.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Integration of Amyloid Nanowires in Organic Solar Cells2008In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 93, p. 23307-Article in journal (Refereed)
    Abstract [en]

      

  • 220.
    Andersson, Mattias
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics.
    Osikowicz, Wojciech
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry.
    Jakobsson, Fredrik L.E.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Berggren, Magnus
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Lindgren, L.
    Polymer Chemistry, Department of Materials and Surface Chemistry, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
    Andersson, M.R.
    Polymer Chemistry, Department of Materials and Surface Chemistry, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics.
    Intrinsic and extrinsic influences on the temperature dependence of mobility in conjugated polymers2008In: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 9, no 5, p. 569-574Article in journal (Refereed)
    Abstract [en]

    The temperature dependence of charge carrier mobility in conjugated polymers and their blends with fullerenes is investigated with different electrical methods, through field effect transistor (FET), space charge limited current (SCLC) and charge extraction (CELIV) measurements. Simple models, such as the Gaussian disorder model (GDM), are shown to accurately predict the temperature behavior, and a good correlation between the different measurement methods is obtained. Inconsistent charge carrier concentrations in the modeling are explained through intrinsic non-equilibrium effects, and are responsible for the limited applicability of existing numerical models. A severe extrinsic influence from water in FETs with a hydrophilic insulator interface is also demonstrated. The presence of water leads to a significant overestimate of the disorder in the materials from measurements close to room temperature and erratic behavior in the 150-350 K range. To circumvent this problem it is shown to be necessary to measure under ultra high vacuum (UHV) conditions. © 2008 Elsevier B.V. All rights reserved.

  • 221.
    Zhou, Yinhua
    et al.
    State Key Lab for Supramolecular Structure and Materials Jilin University.
    Zhang, Fengling
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Tvingstedt, Kristofer
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Barrau, Sophie
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Li, Fenghong
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Tian, Wenjing
    State Key Lab for Supramolecular Structure and Materials Jilin University.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Investigation on Polymer Anode Design for Flexible Polymer Solar Cells2008In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 92Article in journal (Refereed)
    Abstract [en]

       

  • 222.
    Wigenius, Jens
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Hamedi, Mahiar
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Limits to Nanopatterning of Fluids on Surfaces in Soft Lithography2008In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 18, no 17, p. 2563-2571Article in journal (Refereed)
    Abstract [en]

    Soft lithographic microcontact printing using the residual polydimethylsiloxane (PDMS) found in elastomeric PDMS stamps is demonstrated to lead to unstable prints with sub-micrometer dimensions. The statics and dynamics of the process have been followed with time-resolved atomic force microscopy, imaging ellipsometry, water contact angle measurement, and optical diffraction. It is proposed that this instability places a fundamental limitation on patterning by macromolecular fluids, which is of general relevance to soft lithography and nanoimprint lithography with low viscosity polymers.

  • 223.
    Zhou, Yinhua
    et al.
    State Key Lab for Supramolecular Structure and Materials Jilin University.
    Zhang, Fengling
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Tvingstedt, Kristofer
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Tian, Wenjing
    State Key Lab for Supramolecular Structure and Materials Jilin University.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Multifolded Polymer Solar Cells on Flexible Substrates2008In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 93, no 033302Article in journal (Refereed)
  • 224.
    Campoy-Quiles, M.
    et al.
    Experimental Solid State Physics Group, Blackett Laboratory, Imperial College London, UK.
    Nelson, J.
    Experimental Solid State Physics Group, Blackett Laboratory, Imperial College London, UK.
    Etchegoin, P.G.
    Experimental Solid State Physics Group, Blackett Laboratory, Imperial College London, UK.
    Bradley, D.D.C.
    Experimental Solid State Physics Group, Blackett Laboratory, Imperial College, UK.
    Zhokhavets, V
    Inst of Physics, Ilmenau Technical University, Germany.
    Gobsch, G.
    Inst of Physics, Ilmenau Technical University, Germany.
    Vaughan, H.
    Dept of Physics University of Durham, UK.
    Monkman, A,
    Dept of Physics, University of Durham, UK.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Persson, Nils-Krister
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Arwin, Hans
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
    Garriga, M.
    Inst de Ciència de Materials de Barcelona - CSIS, Campus de la UAB, Spain.
    Alonso, M.I.
    Inst de Ciència de Materials de Barcelona - CSIS, Campus de la UAB, Spain.
    Herrmann, G.
    Max Planck Institute for Polymer Research, Germany.
    Becker, M.
    Max Planck Institute for Polymer Research, Germany.
    Scholdei, W.
    Max Planck Institute for Polymer Research, Germany.
    Jahja, M.
    Max Planck Institute for Polymer Research, Germany.
    Bubeck, C.
    Max Planck Institute for Polymer Research, Germany.
    On the determination of anistropy in polymer thin films: A comparative study of optical techniques2008In: Physica Status Solidi. C: Current Topics in Solid State Physics, ISSN 1862-6351, Vol. 5, no 5, p. 1270-1273Article in journal (Refereed)
    Abstract [en]

    We have used seven different techniques to measure the anisotropic refractive index of poly(vinylcarbazole) films. These techniques are: two types of variable angle spectroscopic ellipsometry (VASE) with multiple sample analysis, Interference enhanced VASE, Transmittance combined with VASE, Polarised Reflectance, beta-scan VASE, and prism coupling. We have found the average ordinary and extraordinary indices at 633 nm to be no = nTE = 1.675 ± 0.008, and ne = nTM = 1.722 ± 0.018, respectively, consistent amongst methods and conclusive on the magnitude of Δn in polymer films.

  • 225.
    Andersson, Viktor
    et al.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Tvingstedt, Kristofer
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Optical modeling of a folded organic solar cell2008In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 103, no 9, p. 094520-Article in journal (Refereed)
    Abstract [en]

    The optical behavior of a reflective tandem solar cell (V cell) is modeled by means of finite element method (FEM) simulations. The absorption of solar light in the active material as well as in both electrode layers is calculated. The FEM solves the electromagnetic wave equation on the entire defined geometry, resulting in the consideration of interference effects, as well as effects of refraction and reflection. Both single cells and tandem cells are modeled and confirmed to be in accordance with reflectance measurements. Energy dissipation in the active layers is studied as a function of layer thickness and folding angle, and the simulations clearly display the advantage of the light trapping feature of folded cells. This is especially prominent in cells with thinner active layers, where folding induces absorption in the active layer equivalent to that of much thicker cells.

  • 226.
    Andersson, Mats R.
    et al.
    Chalmers.
    Lindgren, Lars
    Chalmers.
    Perzon, Erik
    Chalmers.
    Mammo, Wendimagegn
    Chalmers.
    Zhang, Fengling
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    PMSE 413-Solar cells of low band gap conjugated polymers in ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, vol 236, issue , pp 413-PMSE -2008In: ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, AMER CHEMICAL SOC , 2008, Vol. 236, p. 413-Conference paper (Refereed)
    Abstract [en]

    n/a

  • 227.
    Wigenius, Jens
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Fransson, Sophia
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    von Post, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Inganäs , Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Protein biochips patterned by microcontact printing or by adsorption-soft lithography in two modes2008In: BIOINTERPHASES, ISSN 1559-4106 , Vol. 3, no 3, p. 75-82Article in journal (Refereed)
    Abstract [en]

    Patterning of proteins is critical to protein biochips. Printing of layers of proteins is well established, as is adsorption of proteins to surfaces properly modified with surface chemical functionalities. The authors show that simple methods based on soft lithography stamps can be used to prepare functional antibody chips through both these routes. Both methods incorporate transfer of the stamp material poly (dimethylsiloxane) (PDMS) to the biochip, whether intended or not intended. The results indicate that microcontact printing of proteins always includes PDMS transfer, thereby creating a possibility of unspecific adsorption to a hydrophobic domain.

  • 228.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Solar Light Collected in Plastic Photovoltaics2008In: ICSM 2008,2008, 2008Conference paper (Other academic)
  • 229.
    Nemec, Hynek
    et al.
    Lund University.
    Nienhuys, Han-Kwang
    FOM Institute for Atomic and Molecular Physics, Amsterdam.
    Perzon, Erik
    Chalmers University.
    Zhang, Fengling
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Kuzel, Petr
    Academy of Sciences of the Czech Republic, Prague.
    Sundström, Villy
    Lund University.
    Sub-Picosecond Time-Dependent Mobility in Low-Band-Gap Polyphenylene:Fullerene Blend Probed by Terahertz Spectroscopy2008In: Conference on Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electronics and Laser Science. CLEO/QELS 2008, IEEE , 2008, p. 3108-3109Conference paper (Refereed)
    Abstract [en]

    Time-resolved terahertz spectroscopy is used to investigate photoinduced dynamics of charge carriers in a polymer heterojunction. We directly observe instantaneous generation of highly mobile charge carriers followed by a rapid drop in their mobility. (C) 2008 Optical Society of America

  • 230.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Tandem Solar Cells in Alternative Geometries2008In: Excitonic Solar Cells,2008, 2008Conference paper (Other academic)
  • 231.
    Tvingstedt, Kristofer
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Dal Zilio, Simone
    CNR-Istituto Nazionale per la Fisica della Materia, Laboratorio Nazionale TASC Area Science Park - Basovizza S.S.14 I-34012 (TS), Italy.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Tormen , Massimo
    CNR-Istituto Nazionale per la Fisica della Materia, Laboratorio Nazionale TASC Area Science Park - Basovizza S.S.14 I-34012 (TS), Italy.
    Trapping light with micro lenses in thin film organic photovoltaic cells2008In: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 16, no 26, p. 21608-21615Article in journal (Refereed)
    Abstract [en]

    We demonstrate a novel light trapping configuration based on an array of micro lenses in conjunction with a self aligned array of micro apertures located in a highly reflecting mirror. When locating the light trapping element, that displays strong directional asymmetric transmission, in front of thin film organic photovoltaic cells, an increase in cell absorption is obtained. By recycling reflected photons that otherwise would be lost, thinner films with more beneficial electrical properties can effectively be deployed. The light trapping element enhances the absorption rate of the solar cell and increases the photocurrent by as much as 25%.

  • 232.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Woven Logic with Electrochemical Transistors2008In: CIMTEC 2008,2008, 2008Conference paper (Other academic)
  • 233.
    Perzon, Erik
    et al.
    Chalmers university of Technology.
    Zhang, Fengling
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Andersson, Mattias
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Mammo, W.
    Addis Ababa university.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Andersson, M.R.
    Chalmers University of Technology.
    A Conjugated Polymer for Near Infrared Optoelectronic Applications2007In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 19, p. 3308-3311Article in journal (Refereed)
  • 234.
    Gadisa, Abay
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Mammo, W.
    Addis Ababa University.
    Andersson, Mattias
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Admassie, S.
    Addis Ababa University.
    Zhang, Fengling
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Andersson, M.R.
    Chalmers University of Technology.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    A New Donor-Acceptor-Donor Polyfluorence Copolymer with Balanced Electron and Hole Mobility2007In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 0000, no 00Article in journal (Refereed)
  • 235.
    Herland, Anna
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Björk, Per
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Hania, P. Ralph
    Department of Chemical Physics, University of Lund, Lund, Sweden.
    Scheblykin, Ivan G.
    Department of Chemical Physics, University of Lund, Lund, Sweden.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Alignment of a conjugated polymer onto amyloid-like protein fibrils2007In: Small, ISSN 1613-6810, Vol. 3, no 2, p. 318-325Article in journal (Refereed)
    Abstract [en]

    The amyloid-like fibril is a biomolecular nanowire template of very high stability. Here we describe the coordination of a conjugated polyelectrolyte, poly(thiophene acetic acid) (PTAA), to bovine insulin fibrils with widths of <10 nm and lengths of up to more than 10 m. Fibrils complexed with PTAA are aligned on surfaces through molecular combing and transfer printing. Single-molecule spectroscopy techniques are applied to chart spectral variation in the emission of these wires. When these results are combined with analysis of the polarization of the emitted light, we can conclude that the polymer chains are preferentially aligned along the fibrillar axis.

  • 236.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Alternating Polyfluorene/Fullerene Solar Cells - Optical and Electronic Processes for Colllecting the Solar Spectrum2007In: Second International Conference on Electroactive Polymers; Materials and Devices,2007, 2007Conference paper (Other academic)
  • 237.
    Lindgren, L.J
    et al.
    CTH.
    Zhang, Fengling
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Admassie, S.
    Addis Abeba university.
    Wang, Xiangjun
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Blue light-emitting diodes based on novel polyfluorene copolymers2007In: Journal of Luminescence, ISSN 0022-2313, E-ISSN 1872-7883, Vol. 122-123, no 1-2, p. 610-613Article in journal (Refereed)
    Abstract [en]

    This study presents the synthesis and characterisation of a series of fluorene-based conjugated copolymers, together with the preparation and characterisation of the corresponding light-emitting devices. The polymers consist of alkoxyphenyl-substituted fluorene units together with different amounts of a hole-transporting triphenylamine-substituted fluorene unit: 0%, 10%, 25% and 50%. All polymers (P0, P1, P2, and P3) show high photoluminescence efficiency (ηPL) and light emission (both PL and EL) in the blue spectral region. Electrochemical studies show improved hole injection as the ratio of the triphenylamine-substituted segment is increased. The electroluminescence quantum efficiencies (EQEs) of the devices increase six times going from P0 to P1. Compared with P1, polymers P2 and P3 show lower efficiencies in devices. These findings indicate the presence of an optimal polymer composition, where balance between the charge-carrier mobilities has been reached. © 2006 Elsevier B.V. All rights reserved.

  • 238.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Conjugated Polyelectrolytes as Optical Probes of Biomolecules and Biosystems2007In: Optical Probes 2007, invited lecture,2007, 2007Conference paper (Other academic)
  • 239.
    Wigenius, Jens
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Fransson, Sophia
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Conjugated Polyelectrolytes as Reporter Molecules2007In: E-MRS 2007 Strasbourg,2007, 2007Conference paper (Refereed)
  • 240.
    Wigenius, Jens
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Fransson, Sophia
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Conjugated Polyelectrolytes as Reporter Molecules;Biochip Constructed by Soft Litography Method2007In: BIOSCOPE 2007,2007, 2007Conference paper (Other academic)
    Abstract [en]

       

  • 241.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Conjugated Polyelectrolytes as Tools for Decorating Biomolecules in vitro, in Tissue and in vivo2007In: MRS Spring Meeting 2007,2007, 2007Conference paper (Other academic)
  • 242.
    Herland, Anna
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Conjugated polymers as optical probes for protein interactions and protein conformations2007In: Macromolecular rapid communications, ISSN 1022-1336, E-ISSN 1521-3927, Vol. 28, no 17, p. 1703-1713Article in journal (Refereed)
    Abstract [en]

    There is a need for highly sensitive, multi-parallel protein sensors within diagnostics and proteomic research. Conjugated polymers (CPs) have been demonstrated as highly sensitive optical probes for protein biosensing. Compared to small molecules, the polymeric probe has the possibility of multiple interactions and a collective response, which enhances the sensor signal. The optical output is colorimetric or, more sensitive, fluorescence based, including Förster energy transfer and changes in the emission wavelengths and/or intensity. Using CPs, many interesting protein detection events have been demonstrated, e.g., protein interactions, enzymatic activity, amyloid fibril formation, and detection by aptamers. CPs have also been successfully used to stain bacterial, cellular, and tissue samples. © 2007 WILEY-VCH Verlag GmbH & Co. KGaA.

  • 243.
    Björk, Per
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Organic Chemistry. Linköping University, The Institute of Technology.
    Lenner, Liselotte
    Linköping University, Department of Clinical and Experimental Medicine, Clinical Chemistry. Linköping University, Faculty of Health Sciences.
    Kågedal, Bertil
    Linköping University, Department of Clinical and Experimental Medicine, Clinical Chemistry. Linköping University, Faculty of Health Sciences.
    Persson, Birgitta
    Linköping University, Department of Biomedicine and Surgery. Linköping University, Faculty of Health Sciences.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Jonasson, Jon
    Linköping University, Department of Clinical and Experimental Medicine, Molecular and Immunological Pathology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Laboratory Medicine, Department of Clinical Pathology and Clinical Genetics.
    Conjugated polythiophene probes target lysosome-related acidic vacuoles in cultured primary cells2007In: Molecular and Cellular Probes, ISSN 0890-8508, Vol. 21, no 5-6, p. 329-337Article in journal (Refereed)
    Abstract [en]

    Conformation-sensitive optical probes for studying biological processes and structures are of great interest. The present work shows for the first time that conjugated polyelectrolyte (CPE) probes can be used for specific targeting of chromatin, nuclear and cytoplasmatic vesicles, and cytoskeletal components in a complex system of cultured cells. One of the probes could also be used for vital staining of live cells. When bound to different entities, the polythiophene derivative probes emitted light with different colors due to the unique spectral properties of these conformation sensitive probes. The physical pre-requisites for binding could also be exploited for characterization of the target. Unexpectedly, lysosome-related acidic vacuoles were targeted in cultured primary cells by both anionic, cationic, and zwitter-ionic polythiophene derivatives. Pre-treatment with Bafilomycin A1, a specific inhibitor of vacuolar-type H+-ATPase, caused redistribution of the staining. The targeting of lysosome-related acidic vesicles could not be demonstrated in transformed cells (melanoma, neuroblastoma, and prostate cancer cell lines), indicating a difference in the localization, structure, accessibility, or quantity of the target in cultured normal cells as compared with the malignant cell lines. The chemical nature of the conjugated polyelectrolyte complex in the cytoplasmatic vacuoles remains elusive.

  • 244.
    Tvingstedt, Kristofer
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Electrode grids for ITO-free organic photovoltaic devices2007In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 19, no 19, p. 2893-2897Article in journal (Refereed)
  • 245.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Electronic Polymers at the Interface to Biosystems2007In: Plenary Lecture at the E-MRS Spring Meeting May 28-1 June,2007, 2007Conference paper (Other academic)
  • 246.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Electronic Polymers Interfacing Biological Systems2007In: University of California at Los Angeles Dept. Materials Science,2007, 2007Conference paper (Other academic)
  • 247.
    Zhang, Fengling
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Ceder, M.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics.
    Enhancing the photovoltage of polymer solar cells by using a modified cathode2007In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 19, no 14, p. 1835-1838Article in journal (Refereed)
    Abstract [en]

    A method to increase the open-circuit voltage (Voc) up to 200 mV and the power conversion efficiency (PCE) by 50%, by using a thin layer of poly(ethylene oxide) (PEO) to modify the cathode in polymer solar cells, was reported. An enhanced photocurrent of polymer solar cells by bending a small amount of PEO and LiCF3SO3 into the active layer was also demonstrated. The results show that the value of open-circuit voltage increases in all diodes with PEO by 150 to 200 mV while the fill factor (FF) increases with a decrease of the thickness of PEO. The thickness of the PEO layers on Si wafers measured by using ellipsometry shows that the thickness are 3.8 nm for 1000 rmp, 2.1 nm for 3000 rmp, and 1.4 nm for 5000 rmp. The quantitative similarity of the J-V characteristics in the dark between the diodes containing PEO and LiF shows that PEO has an analogous function in the device as LiF.

  • 248.
    Tvingstedt, Kristofer
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Andersson, Viktor
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Zhang, Fengling
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Folded reflective tandem polymer solar cell doubles efficiency2007In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 91, no 12, p. 123514-Article in journal (Refereed)
    Abstract [en]

    Conjugated polymers are promising materials for the production of inexpensive and flexible photovoltaic cells. Organic materials display tunable optical absorption within a large spectral range. This enables the construction of organic tandem photovoltaic cells. The authors here demonstrate a reflective tandem cell where single cells are reflecting the nonabsorbed light upon another adjacent cell. By folding two planar but spectrally different cells toward each other, spectral broadening and light trapping are combined to give an enhancement of power conversion efficiency of a factor of 1.8±0.3.

  • 249.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    From Low Bandgap to Black: APFO/Fullerene Blends in New Geometries2007In: Complutense Internacional Symposium SIC-07: Materials for Renewable Energies: Orgnic and Hybrid Solar Cells,2007, 2007Conference paper (Other academic)
  • 250. De, S.
    et al.
    Pascher, T.
    Maiti, M.
    Kesti, T.
    Zhang, Fengling
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics.
    Yartsev, A.
    Sundstrom, V.
    Geminate charge recombination in alternating polyfluorene copolymer/fullerene blends2007In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 129, no 27, p. 8466-8472Article in journal (Refereed)
    Abstract [en]

    By measuring excited state and charge dynamics in blends of an alternating polyfluorene copolymer and fullerene derivative over nine orders in time and two orders in light intensity, we have monitored the light-induced processes from ultrafast charge photogeneration to much slower decay of charges by recombination. We find that at low light intensities relevant to solar cell operation relatively fast (∼30 ns) geminate recombination is the dominating charge decay process, while nongeminate recombination has a negligible contribution. The conclusion of our work is that under solar illumination conditions geminate recombination of charges may be directly competing with efficient charge collection in polymer/fullerene solar cells. © 2007 American Chemical Society.

2345678 201 - 250 of 454
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf